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1 Introduction

What is the optimal tariff? The classic answer to this question in a two-country environment is that

Home’s optimal tariff τt at date t is equal to one over Foreign’s export supply elasticity εt,

τt =
1
εt

, (1)

where εt =
∂ logX ∗

t
∂ log pt

. This formula emerges naturally when Foreign produces a single tradable good

and Foreign’s export supply x∗t is a static function of the import price, x∗t = X ∗
t (pt). When choosing

the optimal level of imports, the Home planner trades off the utility benefit of consumption against

two costs. A unit of imports has a direct monetary cost of pt. But demanding more imports also

leads to an increase in the price, which is required in equilibrium to incentivize Foreign to supply

more exports. And this equilibrium price response is proportional to the inverse of the static export

supply elasticity εt. Unlike the planner, households in Home do not internalize this price impact

when making consumption decisions. The optimal import tariff incentivizes households to demand

the socially optimal level of imports.

This paper develops a theory of optimal tariffs in dynamic environments where Foreign’s

export supply is an intertemporal rather than a static function of prices, x∗t = X ∗
t (p), with p =

{pk}k≥0. Foreign’s export supply may respond to price changes both at earlier dates due to

anticipation effects or at later dates due to endogenous persistence. As emphasized by Auclert et al.

(2024b), static response functions—such as the one underlying the classic tariff formula—cannot be

microfounded in modern models featuring intertemporal budget constraints and forward-looking

behavior. We show in our applications that important benchmark models of intertemporal trade

can be represented in terms of the intertemporal export supply function X ∗(p).

Intertemporal tariff formula. Our first main result is an intertemporal tariff formula that general-

izes the classic one to dynamic heterogeneous agent models of intertemporal trade. It takes the

form

τt =
1

ω′
t E t

. (2)

We denote by E the sequence-space Jacobian (Auclert et al., 2021) of the intertemporal export supply

function X ∗, that is, the infinite matrix of partial log derivatives ∂logX ∗
k

∂ log pt
. The formula also features

relative tariff revenue weights, with ω denoting the infinite matrix with entries ωkt =
τk pkx∗k
τt ptx∗t

. We

denote by E t and ω′
t the t-th column and row of the respective matrices, so the intertemporal tariff

formula can also be written as 1
τt
= ∑k ωkt

∂ logX ∗
k

∂ log pt
.

While the contemporaneous export elasticity εt (XE) is a sufficient statistic for the optimal tariff

according to the classic formula (1), our intertemporal tariff formula (2) identifies intertemporal

export elasticities E (iXEs), as the relevant determinants of optimal tariffs in dynamic models of

intertemporal trade. Together with relative tariff revenue weights, they are sufficient statistics for
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the optimal tariff. The economic intuition for equation (2) is similar to that of the classic formula (1).

The Home planner internalizes that demanding more imports from Foreign at date t leads to a rise

in the price of imports in equilibrium. Unlike in the classic case, however, intertemporal linkages

imply that this demand impulse at date t shows up in market clearing conditions at all dates k,

exerting pressure on prices in proportion to the off-diagonal entries of the iXE matrix E , which can

be interpreted as intertemporal cross-price elasticities. Therefore, the Home planner internalizes

that changing import demand at date t affects the entire sequence of prices p in equilibrium, thus

changing the cost of inframarginal trade at all dates. To make households internalize this price

impact—both contemporaneous and intertemporal price impact—the required import tariff takes

the form (2).

Second-best tariffs. The intertemporal tariff formula (2) determines the optimal tariff whenever

the Home allocation is efficient internally. It therefore characterizes the tariff that helps decentralize

the efficient allocation—possibly in conjunction with other instruments. In this case, the planner

uses tariffs for a single purpose: to manipulate Home’s intertemporal terms of trade. Whenever the

efficient allocation is not attainable, the planner may find it desirable to use tariffs to also target

other inefficiencies.

We develop a general theory of second-best optimal tariffs that complements our intertemporal

tariff formula. Our second main result is a Ramsey targeting rule that identifies the normative

considerations relevant for second-best tariffs. In a large class of dynamic heterogeneous agent

models, the optimal second-best tariff trades off intertemporal terms of trade manipulation against

gains from production efficiency, risk-sharing, and redistribution. Nonetheless, we show that

intertemporal export supply elasticities E , together with revenue weights, remain a sufficient

statistic for the terms of trade manipulation motive of second-best tariffs.

Micro-foundations of intertemporal export supply elasticities. The classic tariff formula (1)

corresponds to the case where the iXE matrix E is diagonal, with E kt =
∂ logX ∗

k
∂ log pt

= 0 for all k ̸= t.
This is the case where intertemporal cross-price elasticities are zero. We explore the shape and

importance of the off-diagonal entries of E across three benchmark models of intertemporal trade

that provide different micro-foundations for the intertemporal export supply function X ∗. We

begin by studying a representative agent (RA) endowment economy in Section 3.1, which allows

us to revisit and relate our results to the seminal analysis of Costinot et al. (2014). We show that

E has a stark shape in environments with permanent-income consumers, featuring a positive

diagonal and negative and flat off-diagonal entries. Permanent-income consumers are infinitely

forward-looking and consume the annuity value of the change in lifetime wealth following an

anticipated price change at date t. Their consumption response is therefore the same across all

dates k ̸= t. This implies that all elements of the t-th column of E are identical, except for the

diagonal corresponding to the contemporaneous response. Our next result shows that while E is
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not diagonal in this setting, its off-diagonal terms exactly cancel out in the determination of the

optimal tariff. Tariffs are therefore determined exclusively by the diagonal of E , just as if the classic

tariff formula applied.

Models with permanent-income consumers come deceptively close to replicating the classic

tariff formula. While the iXE matrix E is not diagonal, the off-diagonal intertemporal cross-

price elasticities exactly cancel out in the determination of the optimal tariff. We next show that

this coincidence breaks down in heterogeneous agent (HA) models with incomplete markets.

Crucially, intertemporal cross-price elasticities are no longer constant when markets are incomplete.

Consumers are no longer infinitely forward-looking. Instead, their effective planning horizons

depend on their proximity to the borrowing constraint. For dates sufficiently far in advance of the

anticipated price change, Foreign export supply does not respond at all. Shortly before and after

the price change, however, the export supply response is much stronger than in the RA benchmark.

In the presence of incomplete markets, households have larger marginal propensities to consume

(MPC) out of near-contemporaneous windfalls as a result.

Finally, we present a micro-foundation of X ∗ in a New Keynesian model in Appendix C in the

spirit of Farhi and Werning (2017). In both previous applications, the export supply function X ∗

was a strictly partial equilibrium (PE) object. But our theory also applies to richer environments

where X ∗ features general equilibrium (GE) dynamics that are internal to Foreign. What is key

is that X ∗ never accounts for GE adjustments that work through international trade. In the New

Keynesian model, we show that X ∗ also accounts for business cycle dynamics that are internal to

Foreign, something that Home exploits by adjusting the optimal import tariff.

Optimal tariffs according to a quantitative HANK model with trade. We leverage our analytical

results to study optimal tariffs in a quantitative heterogeneous agent New Keynesian (HANK)

model with trade, extending the canonical open economy HANK model developed by Auclert

et al. (2024a) to the case of two large countries. There are J goods that come in differentiated

Home- and Foreign-produced varieties. Firms face adjustment costs when changing prices, giving

rise to sectoral New Keynesian Phillips curves. Households have homothetic CES preferences

over the 2 × J goods. In the tradition of the Bewley-Huggett-Aiyagari incomplete markets model,

households face uninsurable income risk and are subject to a borrowing limit. Our calibrated

quantitative model matches both trade elasticities and key moments of the income and wealth

distribution.

Our quantitative analysis starts with a positive expoloration of the consequences of tariff

shocks. In response to a permanent 10% increase in import tariffs, Home consumption rises by

0.5% in the long run, while labor supply and output fall by roughly 1%. Exports fall by nearly

20% while imports only contract by 15%, leading to a long-run worsening of the trade balance. In

response to a temporary import tariff shock, the trade balance does improve for some time and

Home production rises on impact.
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We present the Ramsey problem for optimal second-best tariff policy in Appendix D and

derive the optimality conditions that characterize the Ramsey plan. We compute the Ramsey steady

state (RSS) and show that it implies an optimal long-run import tariff of 5.4%. We then compute

the optimal tariff dynamics in response to a TFP shock from a timeless perspective. As Home

productivity rises by 1%, the optimal import tariff also increases by 0.5%, leading to a moderate

improvement in Home’s trade balance.

Related literature. Our paper builds on the seminal work of Costinot et al. (2014). There is a vast

literature studying optimal tariffs but much of this work is cast in static environments.1 Costinot

et al. (2014) was the first paper to develop a theory of optimal tariffs in dynamic environments.

Our dual approach is complementary to their primal approach and identifies intertemporal export

supply elasticities as a key determinant of optimal tariffs in both first-best and second-best environ-

ments. We also extend their analysis to HA models and show that the iXE matrix E takes a starkly

different shape in the presence of incomplete markets. As a result, optimal tariffs are no longer

determined as if by the classic tariff formula, unlike in environments with permanent-income

consumers.

Other papers in the trade literature that have influenced our work include Costinot et al.

(2015), who characterize optimal tariffs in a static model of Ricardian comparative advantage,

and Lashkaripour (2021), who derives a related sufficient statistics formula in a static multi-good

environment. Costinot and Werning (2023) study optimal tariff policy in a static environment

with redistribution concerns. Our results build on theirs by showing that a related but distinct

risk-sharing motive emerges in dynamic incomplete market environments where households are

exposed to uninsurable risk.

Our paper is more broadly related to prior work that characterizes constrained efficiency

and optimal second-best policies in heterogeneous agent environments. Farhi and Werning (2016)

develop a general theory of financial transaction taxes in an environment with heterogeneous

households, a general supply side, and a flexible representation of nominal rigidities. Our approach

builds closely on theirs, especially our characterization of the second-best tariff formula. We cast

our result in terms of wedges, as they do, which succinctly summarize sources of inefficiency

relative to the first-best allocation. Our main point of departure from their analysis is that we study

a two-country model where the planning problem only puts welfare weights on households in one

country. This gives rise to a new intertemporal terms of trade manipulation motive that a global

planner would not act on. Relatedly, Farhi and Werning (2017) show in an open-economy setting

that aggregate demand externalities make even the complete markets competitive equilibrium

constrained inefficient, which motivates the use of fiscal transfers.

Our paper also contributes to the quickly growing literature in macroeconomics that leverages

sequence-space methods to study heterogeneous agent models. The seminal work by Auclert

1 See, among many others, Johnson (1953).
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et al. (2021) introduced and popularized sequence-space Jacobians. Auclert et al. (2024b) derive

an intertemporal Keynesian cross that generalizes the static one to HA environments that admit

a sequence-space representation in terms of an intertemporal consumption function. We show

that an intertemporal tariff formula generalizes the static one to HA environments that admit a

sequence-space representation for the rest of the world in terms of an intertemporal export supply

function. Our paper also builds on Dávila and Schaab (2023a), who extend this sequence-space

approach to optimal policy problems and welfare analysis in HA economies. We extend their

methods for solving the primal and dual Ramsey problems to two-country HA environments where

intertemporal terms of trade manipulation emerges as a new motive of optimal policy. We illustrate

the power of these tools in a quantitative HANK model that extends the canonical open-economy

HANK model of Auclert et al. (2024a) to a setting with two large countries.

Finally, there is a new and quickly growing strand of literature in response to current tariff

policy debate. Many of these papers address positive questions. Auclert et al. (2025) show that

tariff shocks are contractionary in a representative agent New Keynesian model. They argue that

consideration for the short-run recessionary effects of import tariffs lower the optimal long-run

tariff. Costinot and Werning (2025) show that tariffs may have long-lasting effects on the trade

balance and reduce trade deficits if the Engel curves for aggregate imports and exports are convex.

Itskhoki and Mukhin (2025a) show that valuation effects are a key channel through which tariff

policy affects the trade balance. Aguiar et al. (2025) characterize when a trade war that imposes

balanced trade can be consistent with given initial net foreign asset positions. Caliendo et al.

(2025) study the determinants of endogenous trade imbalances across countries in a dynamic

complete markets model. Rodríguez-Clare et al. (2025) use a dynamic trade and reallocation

model with downward nominal wage rigidity to show that recent U.S. tariff policy would expand

manufacturing employment but at the cost of declines in service and agricultural employment.

Ignatenko et al. (2025) study how the welfare implications of recent U.S. tariff policy depend on

whether and to what extent trading partners relatiate. Itskhoki and Mukhin (2025b) characterize

optimal tariffs under policy objectives that go beyond social welfare—such as maximizing revenue,

closing the trade deficit, or increasing manufacturing employment. They focus on representative

agent environments where long-run bilateral and aggregate trade deficits reflect differential returns

on assets and liabilities, and show that the planner trades off terms of trade manipulation against

the cost of negative valuation effects. Finally, several papers study the interaction between tariffs

and optimal monetary policy, including Bianchi and Coulibaly (2025), who show that the optimal

monetary policy response to a tariff shock is expansionary, and Werning et al. (2025), who show that

tariffs appear as cost-push shocks in a standard New Keynesian model and that optimal monetary

policy partially accommodates the shock and allows for higher short-run inflation.
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2 The Intertemporal Tariff Formula

2.1 The Classic Tariff Formula

Consider a world economy with two large countries, Home and Foreign. Time is discrete and

indexed by t ∈ {0, 1, . . .}. A representative household in Home consumes a basket of domestically

produced goods, ct, and a tradable good produced by and imported from Foreign, mt. The

household’s consumption preferences are ∑t βtu(ct, mt). To derive the classic tariff formula, we

assume that Home faces a static budget constraint, yt = ct + ptmt; total consumption expenditures

must equal a given per-period level of income yt. We denote by pt the price of the imported good

relative to the basket of Home goods. Finally, equilibrium requires that Home imports are equal to

Foreign exports, mt = x∗t .

The key assumption underpinning the classic tariff formula is that there exists a static export

supply function X ∗
t that is differentiable and determines the level of Foreign export supply at date

t as a function of the contemporaneous price,

x∗t = X ∗
t (pt). (3)

The planning problem of Home is therefore to choose an allocation {ct, mt} and prices {pt} subject

to the domestic budget constraint and the implementability condition mt = X ∗
t (pt). The Lagrangian

associated with this problem is given by

L = ∑
t

βt
[

u(ct, mt) + ϕt(yt − ct − ptmt) + µt(X ∗
t (pt)− mt)

]
,

with first-order conditions uc,t = ϕt for domestic consumption, um,t = ptϕt + µt for imports, and

ptϕt = µt
∂X ∗

t
∂pt

for prices. Solving out for the multiplier µt we can write

um,t = ptϕt +
1

∂X ∗
t

∂pt

mt ϕt,

where the Lagrange multiplier ϕt = uc,t represents the utility value of one additional unit of

numeraire (domestic consumption), which is marginal utility uc,t. This equation tells us that the

Home planner trades off the utility benefit of consuming imports against a direct monetary cost and

an indirect cost due to equilibrium price adjustment. A unit of imports delivers um,t utility units. It

costs pt units of domestic consumption, which would alternatively deliver a total of ptuc,t utility

units—the direct cost. The Home planner also internalizes, however, that increasing imports by one

unit is only implementable by allowing the price pt to rise by exactly 1/ ∂X ∗
t

∂pt
to incentivize Foreign

to supply one additional unit of exports. This increase in price raises the cost of inframarginal

imports mt. And the alternative use of funds is again domestic consumption, delivering utility

units in proportion to uc,t. That is, the RHS captures the total cost in utility units of consuming one
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additional unit of imports.

Putting all this together, we arrive at Home’s social optimality condition for imports

um,t = ptuc,t

(
1 +

1
εt

)
(4)

written in terms of the static export supply elasticity εt =
∂ logX ∗

t
∂ log pt

= mt
pt

∂X ∗
t

∂pt
. When households in

Home make consumption decisions, they do not internalize the indirect cost of imports through

equilibrium price impact. They choose import demand to satisfy the private first-order condition

um,t = ptuc,t. However, the Home planner can make households internalize the price impact by

confronting them with an import tariff, so that the effective price of imports households face is

instead pt(1 + τt). By setting τt to exactly match the social optimality condition (4), we arrive at the

classic tariff formula (1),

τt =
1
εt

.

The validity of the classic tariff formula therefore relies on two key assumptions: the static bud-

get constraint of Home households and the existence of a static export supply function representing

Foreign. Together, these two assumptions shut down important mechanisms of intertemporal

linkages that are found in modern, micro-founded models of intertemporal trade.

2.2 Environment

We now introduce a large class of dynamic heterogeneous agent (HA) environments and derive our

intertemporal tariff formula. There are two large countries, Home and Foreign. Home is populated

by a measure one continuum of households, indexed by i ∈ I = [0, 1]. Time is discrete and indexed

by t ∈ {0, 1, . . .}. At the beginning of each period t, a stochastic event st realizes. We denote the

history of such events by st = (s0, s1, . . . , st) with probability π(st). We allow for idiosyncratic

uncertainty but abstract from aggregate uncertainty. There is a single consumption good at each

date and history. We study the case with multiple tradable goods and both intra- and intertemporal

trade in Section 4.

Preferences. The lifetime utility of individual i in Home is defined as

Vi
0 = ∑

t
βt ∑

st

π(st)ui(ci
t(s

t), ℓi
t(s

t)), (5)

where ci
t(s

t) and ℓi
t(s

t) denote i’s consumption and labor supply in history st.

Technologies. Home is endowed with a production technology to produce the single consumption

good at date t using labor,

yt = Ft(ℓt), (6)
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where yt denotes aggregate output and ℓt total use of effective labor in production. The production

function Ft(·) is allowed to depend on time, which may for example reflect deterministic time

variation in technology. In the main text, we study environments with a single factor for simplicity.

In the Appendix, we show that our approach applies to richer models of production featuring

intertemporal linkages (capital) and intermediate inputs.

Resource constraints. The resource constraint for effective labor in Home is given by

ℓt =
∫ 1

0
zi

t(s
t)ℓi

t(s
t)di. (7)

Household i’s hours of work ℓi
t(s

t) are transformed into effective labor by i’s productivity shifter

zi
t(s

t) at date t and history st. We assume that zi
t(s

t) follows an exogenous Markov chain for each

individual i and is therefore a source of idiosyncratic uncertainty. Since we abstract from aggregate

uncertainty, a law of large numbers holds and aggregate effective labor ℓt is not contingent on the

realization of history st at date t.
Finally, the resource constraint for the consumption good at date t is given by

x∗t =
∫ 1

0
ci

t(s
t)di − yt, (8)

where x∗t is Foreign’s aggregate export supply. We denote Foreign variables with asterisks. Foreign

exports must equal Home’s aggregate imports, that is, aggregate consumption ct =
∫ 1

0 ci
t(s

t)di net

of output yt.

Intertemporal export supply function. We denote the intertemporal price of consumption at date

t by pt. Anticipating our use of sequence-space methods (Auclert et al., 2021), we use bold-faced

notation for the infinite sequence of prices p = {pt}t≥0. Our key assumption in this section is that

there exists an intertemporal export supply function X ∗ : ℓ∞ → ℓ∞ that is (Fréchet) differentiable and

satisfies

x∗t = X ∗
t (p) and NFA∗

0 + ∑
t

ptX ∗
t (p) = 0. (9)

The intertemporal export supply function X ∗ is a sequence-space function analogous to the in-

tertemporal consumption functions used widely in macroeconomics. It maps an infinite sequence

of prices p to a level of Foreign export supply at each date t. The micro-foundations of X ∗ we

study in this paper all assume budget constraints and no-Ponzi conditions at the micro level that,

when aggregated, imply the external balance condition in (9), with NFA∗
0 denoting Foreign’s initial

aggregate net foreign asset position.

Our strategy in this section is to work directly with X ∗ as a reduced-form representation

of Foreign, not taking a stance on its underlying micro-foundations. We show that intertemporal
export supply elasticities—the sequence-space Jacobian of X ∗—are a sufficient statistic for Home’s
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intertemporal terms of trade manipulation motive and thus for the optimal tariff that decentralizes

Home’s efficient allocation. Our main result in this section shows that as long as there exists a

function X ∗ that satisfies (9), the efficient tariff takes a very particular shape. In Section 3, we will

then study different micro-foundations for X ∗ and show that its sequence-space Jacobian differs

qualitatively across several important benchmark models of intertemporal trade.

2.3 Home Efficiency

We now characterize efficient allocations from the perspective of Home. Our notion of efficiency in

this paper is that of Pareto efficiency, so that a Home allocation is efficient if there are no feasible

perturbations that make one individual at Home better off without leaving others at Home worse off.

Such allocations must be feasible—they must satisfy technologies and resource constraints—but

additionally they must be implementable—accounting for the fact that Home can exploit its market

power in trade.

We take a dual approach in this paper and keep the sequence of prices p explicit in our

formulation of the planning problem below. This contrasts with the primal approach often used

in the literature (Costinot et al., 2014). The primal approach would first solve for the price as a

function of the Home allocation and then work with an implementability condition specified in

terms of the Home allocation. We find the dual approach useful for two reasons. First, the efficiency

condition and optimal tariff formula it delivers generalize directly to a broad class of environments.

And second, it allows us to characterize optimal tariffs in terms of export supply elasticities in the

tradition of prior work in the trade literature.

Lemma 1 (Implementability). A Home allocation {ci
t(s

t), ℓi
t(s

t)}i, t, st and prices p are implementable if
and only if they satisfy

X ∗
t (p) =

∫ 1

0
ci

t(s
t)di − Ft

( ∫ 1

0
zi

t(s
t)ℓi

t(s
t)di
)

(10)

for all t.

Efficient allocations therefore solve the planning problem

max
∫ 1

0
αiVi

0 di s.t. (10) . (11)

Varying the Pareto weights αi allows us to trace out the Pareto frontier. In other words, we say

that an allocation and prices are efficient from the perspective of Home if there exist weights {αi}i

such that they solve Home’s efficiency problem (11). The Lagrangian associated with this planning

problem is given by

L =
∫ 1

0
αi ∑

t
βt ∑

st

π(st)ui(ci
t(s

t), ℓi
t(s

t)) di+∑
t

βtµt

[
X ∗

t (p)−
∫ 1

0
ci

t(s
t)di+ Ft

( ∫ 1

0
zi

t(s
t)ℓi

t(s
t)di
)]

,
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where we denote by µt the Lagrange multiplier on the date t implementability condition. In the

classic efficiency problem of a closed economy, the planner maximizes social welfare subject to

technologies and resource constraints. If the Home planner took Foreign exports x∗ as given,

the Home efficiency problem (11) and the associated Lagrangian L would collapse to the classic

efficiency problem. Here, the Home planner also internalizes the price impact that choosing one

Home allocation over another has in the world market for tradable goods, as captured by the

implementability condition (10). We present the complete set of first-order conditions for problem

(11) and derive the Home efficiency conditions in Appendix A.2. The following Proposition

summarizes and presents the efficiency condition for Home’s intertemporal terms of trade.

Proposition 1 (Home Efficiency). A Home allocation {ci
t(s

t), ℓi
t(s

t)}i, t, st and prices p are efficient if they
satisfy (i) the classic efficiency conditions (Mas-Colell et al., 1995) and (ii) the intertemporal terms of trade
efficiency condition

0 = ∑
k

MRSkt
∂X ∗

k
∂pt

, (12)

where MRSkt is Home’s marginal rate of substitution between consumption at dates k and t.

Proposition 1 characterizes the necessary conditions for a Pareto efficient allocation and prices

from the perspective of Home. It generalizes the classic efficiency conditions to a two-country

environment where Home internalizes its price impact in the world market for tradable goods.

The Home efficiency problem (11) allows the planner to pick the Home allocation freely,

subject only to technologies and resource constraints. So the Home planner will ensure that the

allocation satisfies the usual efficiency conditions internally—requiring that all marginal rates of

substitution (MRS) are equalized, and that MRS are equal to marginal rates of transformation (MRT)

for the allocation internal to Home. Appendix A.2 presents a self-contained characterization of

these conditions for completeness.

If Home was a closed economy and x∗ represented an exogenous endowment sequence taken

as given by the Home planner, then the classic efficiency conditions would fully characterize Pareto

efficient allocations. However, when Home internalizes that choosing one domestic allocation

over another affects the world prices of tradable goods, equation (12) emerges as a new efficiency

condition for Home’s intertemporal terms of trade.

The Home planner cannot choose x∗ freely but from a possibility frontier in the space of

sequences. In the dual representation, this possibility frontier is defined as the set of aggregate

imports sequences that are implementable according to (10) by a valid sequence of prices, that is,

the set of sequences {
c − y ∈ ℓ∞ : there exists p ≫ 0 with ct − yt = X ∗

t (p)
}

Intuitively, the Home planner understands that choosing a particular allocation of consumption
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{ci
t(s

t)} and labor supply {ℓi
t(s

t)} implies a sequence of aggregate import demand, ct − yt. This

import sequence must be implementable, in the sense that there must be a sequence p that solves

(10)—that is, a sequence of prices at which Foreign is willing to supply the necessary exports to

clear the world market for tradable goods. The Home planner understands that she can move along

this frontier and choose her desired point on the frontier by choosing the associated price sequence.

This optimal point on the frontier is precisely characterized by the new efficiency condition (12).

And once the planner has chosen where on this frontier to locate, then the rest of the allocation is

pinned down by the usual efficiency conditions taking as given the associated sequence of Foreign

exports.

In the dual representation of this problem, the Home planner directly chooses a price sequence

p and understands that this choice of prices pins down Foreign’s desired export supply x∗ = X ∗(p).

The intuition behind equation (12) in the dual representation is surprisingly similar to the intuition

behind the classic tariff formula we discussed in Section 2.1. Consider the perturbation of marginally

increasing the price of consumption pt at date t. Since Foreign’s export supply function X ∗ is

smooth by assumption, the increase in price pt induces Foreign to change its export supply in all

periods k by ∂X ∗
k

∂pt
. Implementability (10) then requires that Home increases its aggregate import

demand ck − yk by ∂X ∗
k

∂pt
in all periods k. Starting from an efficient allocation and prices, it must

be that the Home planner cannot increase social welfare by marginally increasing or decreasing

price pt: the marginal impact of such a perturbation on the Lagrangian L must be 0. Therefore, the

marginal impact on social welfare of changing aggregate Home imports by ∂X ∗
k

∂pt
in all periods k

must be 0.

What, then, is the welfare impact of a marginal increase in Home imports at date k? Intuitively,

the planner can allocate an increase (decrease) in imports to the individual with the highest

(lowest) marginal (social) utility of consumption, αiβkπ(sk)ui
c,k(s

k). Whenever the classic efficiency

conditions are satisfied, however, marginal social utility of consumption is equalized across all

individuals i. This measure of social utility still features the Pareto weight αi, which we only use to

trace out the Pareto frontier. To get rid of it, we divide by social marginal utility at date t, yielding

an MRS between consumption at dates k and t, exactly as it appears in equation (12). Finally,

we sum over all periods k in which the price perturbation ∂pt affects Foreign exports, arriving at

equation (12).

2.4 Intertemporal Tariff Formula

We now ask how the efficient allocations of Proposition 1 might be decentralized. However, we do

not take a stance on the set of instruments required to satisfy the classic efficiency conditions—these

will depend on the exact details of the environment. Instead, we show that an import tariff can

be set to satisfy the efficiency condition (12) for Home’s intertemporal terms of trade whenever

the classic efficiency conditions are satisfied. Our first main result is a formula that characterizes

these tariffs in terms of intertemporal export supply elasticities. We now derive this formula
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constructively in three steps.2

First, an import tariff τt represents an ad-valorem consumption tax combined with an ad-

valorem production subsidy at date t. At any allocation and prices that satisfy the classic efficiency

conditions, households in Home therefore face the intertemporal consumption prices (1 + τt)pt,

and we must have

MRSkt =
(1 + τk)pk

(1 + τt)pt
.

In other words, the MRS between consumption at dates k and t is equalized across all households,

and it must be equal to the relative price these households face. In order for the Home efficiency

condition (12) to be satisfied, we therefore must have

0 = ∑
k

(1 + τk)pk

(1 + τt)pt

∂X ∗
k

∂pt
= ∑

k
(1 + τk)pk

∂X ∗
k

∂pt
= ∑

k
pk

∂X ∗
k

∂pt
+ ∑

k
τk pk

∂X ∗
k

∂pt
.

Second, the intertemporal export supply function X ∗ satisfies Foreign’s external balance

condition (9) by assumption. Given an initial NFA position NFA∗
0 , this condition holds for any

strictly positive price sequence p. Therefore, we can differentiate this equation with respect to pt,

which implies

0 = x∗t + ∑
k

pk
∂X ∗

k
∂pt

.

Finally, we put these two equations together and rearrange,

x∗t = ∑
k

τk pk
∂X ∗

k
∂pt

= ∑
k

τk pk
x∗k
pt

∂ logX ∗
k

∂ log pt
.

Multiplying and dividing by τt now yields our result, which we summarize in the following

Proposition.

Proposition 2 (Intertemporal Tariff Formula). As part of a decentralization of the Home efficiency
allocation, the efficiency condition (12) for intertemporal terms of trade is satisfied if Home consumers face
an ad-valorem import tariff given by

1
τt

= ∑
k

ωkt
∂ logX ∗

k
∂ log pt

(13)

where ωkt represents Home’s relative tariff revenue weight

ωkt =
τk pkx∗k
τt ptx∗t

.

2 Our approach in this subsection admits two useful interpretations. The tariff formula we derive is valid whenever
the classic efficiency conditions are satisfied at Home. This may be the case because the Home economy is internally
efficient to begin with, as will be the case in the application we consider in Section 3.1, for example. Alternatively,
the Home planner may have access to a sufficiently large set of instruments that allows her to implement the efficient
allocation. We will showcase this in the New Keynesian application we consider in Appendix C, where monetary policy
is sufficient to ensure production efficiency.
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Proposition 2 presents an intertemporal tariff formula that characterizes the optimal tariff in terms

of two sufficient statistics: intertemporal export supply elasticities ∂ logX ∗
k

∂ log pt
and relative tariff revenue

weights ωkt. Intertemporal export supply elasticities are captured by the sequence-space Jacobian

of X ∗ (Auclert et al., 2021), the infinite matrix E∗ with entries

E∗
kt =

∂ logX ∗
k

∂ log pt

in row k and column t. Denoting by E∗
t the t-th column of this matrix, the intertemporal tariff

formula can also be written as

τt =
1

ω′
t E

∗
t

, (14)

where ω′
t is the t-row of the tariff revenue weight matrix ω. In the tradition of recent sequence-

space results in the heterogeneous agent macro literature, we identify intertemporal export supply

elasticities—or iXEs—as key determinants of optimal tariffs, similar to Auclert et al. (2024b)’s

generalization of the static Keynesian cross to an intertemporal one using intertemporal marginal

propensities to consume (iMPCs).

According to the classic tariff formula (1), the contemporaneous export supply elasticity εt is

a sufficient statistic for the optimal tariff. This would be a valid characterization if the matrix of

iXEs E∗ was diagonal. Proposition 2 generalizes the classic tariff formula to dynamic environments

that admit a representation of Foreign in terms of the intertemporal export supply function X ∗(p).

In such settings, both the diagonal and off-diagonal entries of the elasticity matrix E∗ determine

the optimal tariff. It is therefore clear that the structure of this matrix is key to understanding

Home’s intertemporal terms of trade manipulation motive. Section 3 presents three alternative

micro-foundations of E∗ and investigates its structure across important benchmark models of

intertemporal trade.

2.5 Second-Best Tariffs

The intertemporal tariff formula we presented in Proposition 2 characterizes the optimal tariff

in the absence of distortions in the Home economy. In this case, tariffs are used for a singular

purpose: intertemporal terms of trade manipulation. And because marginal rates of substitution

are equalized across households, the planner values changes in net exports across periods at

the economy-wide MRSkt. When the first-best allocation is not achievable, however, this logic

fails for two reasons. First, MRS are no longer equalized across individuals, which complicates

determining the planner’s valuation of changes in imports x∗t at a given date. Second, it is now

welfare-improving to use tariffs as a second-best instrument to target other inefficiencies in the

economy.

In this subsection, we develop a general theory of second-best optimal tariffs in dynamic

heterogeneous agent economies. Our main result is a targeting rule that identifies the normative
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considerations relevant for second-best tariffs.

Constrained planning problem. In Sections 2.3 and 2.4, we considered the Home efficiency

problem, under which the planner can directly choose any feasible Home allocation {ci
t(s

t), ℓi
t(s

t)}
and price sequence p that satisfy the implementability condition (10). In this section, we instead

consider a Ramsey problem, under which the planner has access to a sequence of policy instruments

τ = {τt}t≥0 but faces a set of constraints rich enough to nest a large class of heterogeneous agent

models. We continue to assume the existence of a Foreign export supply function x∗t = X ∗
t (p) that

maps a sequence of prices p to the level of exports at date t and satisfies equation (9).

In particular, we assume that there exist consumption and labor supply functions that deter-

mine individual i’s consumption and labor supply at date t and history st according to

ci
t(s

t) = C i
t(p, τ, st) and ℓi

t(s
t) = Li

t(p, τ, st). (15)

Similar to Foreign’s export supply function, C i
t(·) and Li

t(·) are sequence-space functions, in

the sense that they map infinite sequences of prices p and policy instruments τ to levels of

individual consumption and labor supply. Such functions are commonly used in macroeconomics to

characterize heterogeneous agent models (Auclert et al., 2024b). Crucially, equations (15) imply that

the planner can no longer choose consumption and labor supply freely, subject only to technologies

and resource constraints, but must also respect the constraints embedded in C i
t(·) and Li

t(·).
A consumption function of the form (15) emerges naturally in standard incomplete markets

models of intertemporal consumption-smoothing. In particular, the functions C i
t(·) and Li

t(·)
may encode not only household preferences, budget constraints and borrowing limits, but also

competitive general equilibrium conditions that are internal to the Home economy.

Instead of choosing consumption and labor supply directly as before, the planner can now

only affect them indirectly through the policy instruments τ. The Ramsey problem is therefore to

maximize social welfare subject to technologies, resource constraints, the external implementability

condition (10), as well as the new internal implementability conditions (15). It is given by

max
∫ 1

0
αi ∑

t
βt ∑

st

π(st)ui(ci
t(s

t), ℓi
t(s

t)) di,

subject to

ci
t(s

t) = C i
t(p, τ, st)

ℓi
t(s

t) = Li
t(p, τ, st)

X ∗
t (p) =

∫ 1

0
ci

t(s
t) di − Ft

( ∫ 1

0
zi

t(s
t)ℓi

t(s
t) di

)
Notice that we assume Foreign’s export supply remains a function of the world prices p only. This
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is consistent with the interpretation of τt as an import tariff on Home consumers at date t, which

does not affect Foreign directly.

Wedges. It will be useful to introduce notation for the relevant wedges between the Home

efficiency and second-best allocations. In the main text, we focus on environments with no ex-ante

or permanent heterogeneity. In other words, all individuals i are homogeneous at date 0 but become

different over time (ex post heterogeneity) due to the realization of idiosyncratic shocks zi
t(s

t). In

particular, this assumption rules out that second-best optimal policy is motivated by an explicit

redistribution motive. We consider the more general case of ex ante and ex post heterogeneity in

the Appendix.

In the absence of ex ante heterogeneity, there are three relevant wedges that can emerge

in second-best allocations. First, we denote deviations from the Home efficiency condition for

intertemporal terms of trade by

ΛITM
t = ∑

k
ωk

∂X ∗
k

∂pt
, (16)

where we denote by

ωk =
∫ 1

0

βk ∑sk π(sk)ui
c,k(s

k)

ui
c,0

di (17)

the relevant social valuation of an increase in Home imports at date k. In particular, βk ∑sk π(sk)ui
c,k(s

k)

denotes i’s valuation of a unit increase in consumption in all histories sk at date k. The term un-

der the integral sign therefore corresponds to i’s marginal rate of substitution between a unit of

consumption at date k (in all histories) and consumption at date 0. We obtain ωk by averaging

this MRS across individuals, which turns out to be the appropriate notion of social MRS between

consumption at dates k and 0.

Second, we define the aggregate labor wedge in the spirit of Farhi and Werning (2016) as

Λℓ
t = 1 +

ui
ℓ,t(s

t)

ui
c,t(st)

1
zi

t(st)Fℓ,t
, (18)

where Fℓ,t = F′
t (ℓt) is the derivative of the production function with respect to labor at date t.

Conditional on the aggregate labor wedge, we assume for simplicity that households are then on

their individual labor-leisure conditions. In other words, we assume that Li
t(·) is such that the RHS

of equation (18) is equalized across all individuals at all dates t and histories st.3

3 Intuitively, if there is a common wage wt that all households face, as will be the case in our applications, then
individual labor-leisure conditions imply −ui

ℓ,t(s
t) = wtzi

t(s
t)ui

c,t(s
t) and the aggregate labor wedge simply becomes

Λℓ
t = 1 − wt

At
.
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Third and finally, we introduce wedges in individual risk-sharing, defined as

Λi
t(s

t) =
π(st)u′(ci

t(s
t))

∑st π(st)u′(ci
t(st))

− 1. (19)

Intuitively, if financial markets were complete and individuals could fully insure themselves, they

would smooth private marginal utility across histories st at a given date t. This condition is satisfied

at an efficient allocation and implies π(st)u′(ci
t(s

t)) = π(s̃t)u′(ci
t(s̃

t)) for any two histories st and

s̃t.

In summary, ΛITM
t , Λℓ

t and Λi
t(s

t) represent wedges in the sense that they are 0 at efficient

allocations. With these wedges in hand, we can now present a targeting rule for optimal second-best

tariffs.

Proposition 3 (Second-Best Tariffs). In the absence of ex ante heterogeneity, the optimal second-best tariff
trades off intertemporal terms of trade manipulation against production efficiency and risk-sharing. The
optimality condition for tariff τk is

0 = ∑
t

ΛITM
t

dpt

dτk︸ ︷︷ ︸
Intertemporal

Terms of Trade Manipulation

+ ∑
t

ωtΛℓ
t

dyt

dτk︸ ︷︷ ︸
Production Efficiency

+ ∑
t

ωt ∑
st

Covi

(
Λi

t(s
t),

dVi
t (s

t)

dτk

)
︸ ︷︷ ︸

Risk-Sharing

, (20)

where we denote by dVi
t (s

t)
dτk

=
dci

t(s
t)

dτk
− zi

t(s
t)Fℓ,t(1 − Λℓ

t )
dℓi

t(s
t)

dτk
the consumption-equivalent welfare gain of

individual i at date t history st from the tariff perturbation τk. The terms of trade wedge ΛITM
t , the labor

wedge Λℓ
t , and the risk-sharing wedge Λi

t(s
t) are defined in (16), (18), and (19).

Proposition 3 characterizes a targeting rule for second-best tariffs in dynamic heterogeneous

agent economies. When the first-best allocation is not achievable, the efficient tariff formula of

Proposition 2 fails for two reasons: First, dispersion in individuals’ marginal utilities at date t
affects the planner’s valuation of a change in date t net exports. In this case, ωk is the relevant

generalization of the social MRS between dates k and 0. And second, the planner finds it valuable

to use tariffs not only for intertemporal terms of trade manipulation but also to tackle other

inefficiencies. Equation (20) illustrates how the optimal second-best tariff is shaped by both of these

forces.

At a second-best allocation, the optimal tariff trades off two new motives against intertemporal

terms of trade manipulation: production efficiency and risk-sharing. We discuss each of the

three terms in equation (20) in turn. The first term, ∑t ΛITM
t

dpt
dτk

captures the same terms of trade

manipulation forces already characterized in equation (12). At an efficient allocation, condition

(12) tells us that the planner chooses pt directly to set ΛITM
t = 0. Here, the planner can no

longer choose world prices pt directly subject only to the external implementability condition (10).
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Instead, the planner must also respect internal implementability (15) and can influence world prices

only indirectly by choosing tariffs τk. In other words, the terms of trade gain from a marginal

increase in tariff τk at date t is determined as follows. First, the change in tariff dτk directly affects

Home households desired consumption and labor supply through C i
t(·) and Li

t(·). These changes

aggregate into a change in Home’s aggregate import demand, which must be accommodated by

Foreign export supply to satisfy the implementability condition (10). In general equilibrium, this

will induce price changes dpt
dτk

. These price changes will, in turn, generate gains from terms of trade

in proportion to ΛITM
t .

The second term describes the production efficiency gains from a change in tariff dτk. The

change in tariff directly and indirectly (through GE changes in world prices p) affects households’

labor supply through Li
t(·). This, in turn, leads to a change in Home’s aggregate output, dyt

dτk
. Labor

wedges Λℓ
t represent a measure of how depressed production in a given period t is (Farhi and

Werning, 2016). So if tariffs stimulate production in periods where activity is inefficiently low, then

this results in production efficiency welfare gains. Finally, these gains are discounted at the social

MRS ωt.

And finally, tariffs now potentially generate efficiency gains from improved risk-sharing. A

change in tariff dτk directly and indirectly (through the equilibrium response of world prices p)

affects individual i’s consumption at all dates t and histories st. To the extent that tariffs raise the

consumption of those individuals whose weights Λi
t(s

t) are relatively high, tariffs help provide ex

post consumption smoothing across individuals and therefore improves risk-sharing. These gains

are again discounted at the relevant social MRS ωt.

We conclude with one final but important observation: Second-best tariffs now trade off

several sources of welfare gains and losses. However, intertemporal export supply elasticities
∂ logX ∗

k
∂pt

are still key determinants of the intertemporal terms of trade manipulation motive of second-

best tariffs through the term ΛITM
t . The only change relative to Sections 2.3 and 2.4 is that the

planner must now also take into consideration how tariffs at date k affect equilibrium prices pt at

other dates t.4

3 Models of Intertemporal Export Supply Elasticities

Intertemporal export supply elasticities are sufficient statistics for optimal tariffs in dynamic

environments. We now present three alternative micro-foundations of the intertemporal export

supply function X ∗ and its sequence-space Jacobian. We show in Section 3.1 that intertempral

export supply elasticities take a special form in representative agent (RA) economies because

households are infinitely forward-looking. In fact, the optimal tariff formula collapses to a static

one in these environments. This is no longer the case in the presence of household heterogeneity

4 Models with more than two countries may still admit a sequence-space representation X ∗(p) for aggregate rest of
the world export supply. In that case, our results in this section generalize directly to many-country environments.
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and incomplete markets, as we show in Section 3.2. Finally, we present a New Keynesian model in

Appendix C and show how intertemporal export supply elasticities are shaped by Foreign business

cycle conditions. Our intertemporal tariff formula (13) and targeting rule (20) provide a unified

framework that allows us to contrast optimal tariffs across these different environments.

3.1 A Representative Agent Endowment Economy

The first model of intertemporal export supply elasticities we consider is a deterministic represen-

tative agent (RA) endowment economy. Working through this simple benchmark is useful to set

the stage and take a first look at X ∗ and its sequence-space Jacobian. It also allows us to revisit

Costinot et al. (2014), who study the same environment, and clarify how our approach relates to

theirs. Our main result in Section 3.1 is that the intertemporal export supply function X ∗ and its

derivatives take a special form in RA environments with permanent-income consumers.5

3.1.1 Environment

We start by describing the world competitive equilibrium taking Home import tariffs as given, and

then apply Proposition 2 directly.

Households. Home and Foreign are each populated by representative households whose lifetime

utilities are

V0 = ∑
t

βtu(ct) and V∗
0 = ∑

t
βtu(c∗t ), (21)

where ct and c∗t denote each household’s consumption of the single consumption good at date

t. This good appears as an endowment in both countries, denoted yt and y∗t . As before, we use

bold-faced notation for infinite sequences such as y = {yt}t≥0.

Assuming complete financial markets allows us to write the consumption-savings problems

of both households in terms of the lifetime budget constraints,

NFA0 = ∑
t

[
(1 + τt)pt(ct − yt)− Tt

]
and NFA∗

0 = ∑
t

pt(c∗t − y∗t ), (22)

where pt denotes the intertemporal price of date t consumption, τt is Home’s import tariff (export

subsidy), and Tt is a lump-sum rebate. We take as given both countries’ initial net foreign asset

(NFA) positions NFA0 and NFA∗
0 , and we assume that Foreign does not set a tariff.

Households maximize preferences (21) subject to (22). Denoting the Lagrange multipliers on

each lifetime budget constraint by λ and λ∗, the associated first-order conditions are

βtu′(ct) = λ(1 + τt)pt and βtu′(c∗t ) = λ∗pt. (23)

5 We present a RA model with production and an endogenous labor supply choice in Appendix B and show that our
main insight about the sequence-space Jacobian of X ∗ remains unchanged in that environment.
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Government, market clearing, and competitive equilibrium. The Home government runs a

balanced budget. This requires that import tariff revenue (export subsidy outlays) equal lump-sum

transfers (taxes),

τt pt(ct − yt) = Tt (24)

in all periods t. In other words, τt > 0 represents a tax on imports when ct − yt > 0 and a subsidy

on exports when ct − yt < 0. The Foreign government is passive and does not set tariffs.

The market clearing condition for the single consumption good at date t is given by

yt + y∗t = ct + c∗t . (25)

We now define a competitive equilibrium with tariffs.

Definition 1 (Competitive Equilibrium). Taking as given initial net foreign asset positions NFA0 and
NFA∗

0 , endowment sequences y and y∗, as well as Home tariffs τ, a competitive equilibrium comprises an
allocation (c, c∗, T), multipliers (λ, λ∗) and prices p that satisfy lifetime budget constraints (22), household
first-order conditions (23), the Home government budget constraint (24), and market clearing (25).

Notice that if Home took consumption prices pt as given, the Home allocation without policy

would be efficient. This allows us to apply the results from Sections 2.3 and 2.4 directly.

3.1.2 Intertemporal Export Supply Elasticities

The Home efficiency condition (12) and optimal tariff formula (13) apply as-is to this environment.

The key question is therefore how to characterize Foreign’s intertemporal export supply function

X ∗. We first present a constructive derivation of X ∗ and then characterize its sequence-space

Jacobian.

Foreign export supply x∗t = y∗t − c∗t is fully determined by the consumption behavior of

the Foreign representative consumer since the endowment y∗t is exogenous. And the Foreign

household problem can be characterized fully by the lifetime budget constraint (22) and the first-

order condition in (23). Taking as given a price sequence p, these two equations solve for the

Lagrange multiplier λ∗ and a sequence of consumption c∗. In particular, the date t first-order

condition solves for c∗t as a function of the contemporaneous price pt and the Lagrange multiplier

λ∗. And plugging back into the lifetime budget constraint solves for the multiplier λ∗ as a function

of the entire sequence of prices p.

In summary, we can use the Foreign competitive equilibrium conditions to derive an intertem-

poral consumption function for Foreign, whose sequence-space representation is c∗t = C∗
t (p). This

consumption function C∗ maps a time path of prices p into a time path of Foreign consumption

c∗ that is consistent with the optimality condition and lifetime budget constraint of the Foreign

household. With Foreign’s consumption function in hand, we can define the intertemporal export
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supply function simply as

X ∗
t (p) = y∗t − C∗

t (p).

We now show that the sequence-space Jacobian of X ∗ takes a special form because Foreign

households are permanent-income consumers. First, notice that we have ∂X ∗
k

∂pt
= − ∂C∗

k
∂pt

, which relates

the Jacobian of the export supply function to that of the consumption function. In RA models

with complete financial markets, the optimal consumption behavior of the Foreign household is

fully determined by the lifetime budget constraint 0 = ∑t pt(c∗t − y∗t ) and the first-order condition

βtu′(c∗t ) = λ∗pt, where λ∗ is the Lagrange multiplier on the lifetime budget constraint. We

constructed the consumption function C∗
t (p) by plugging the FOC back into the lifetime budget

constraint to solve for λ∗ as a function of p. Using the first-order condition directly, we can

alternatively represent the consumption function as

c∗t = C̃∗
t (λ

∗, pt) where C∗
t (p) = C̃∗

t (λ
∗(p), pt).

In other words, Foreign consumption at date t depends directly only on the contemporaneous

price pt; it depends indirectly on all other prices through the Lagrange multiplier λ∗. This structure

is special to the RA environment because we can represent the household problem in terms of a

lifetime budget constraint. Therefore, we have

∂C∗
k

∂pt
=

∂C̃∗
k

∂λ∗
∂λ∗

∂pt
+

∂C̃∗
k

∂pt
1k=t =

pk

βku′′(c∗k )
∂λ∗

∂pt
+

λ∗

βku′′(c∗k )
1k=t . (26)

Foreign consumption at date k responds to a price change at date t for two reasons. First, there

is a direct effect if k = t. An increase in the contemporaneous price induces consumers to spend

less at date t—notice that λ∗

βku′′(c∗k )
< 0 for all k. Second, there is an indirect effect. Since financial

markets are complete, Foreign households consume the annuity value of their lifetime wealth in

each period. The Lagrange multiplier λ∗ on the lifetime budget constraint represents the value of a

unit of lifetime wealth at date 0. A change in the price pt of consumption at date t affects lifetime

wealth and consequently consumption in all periods k. This indirect effect is captured by the first

term in equation (26), and we have

∂λ∗

∂pt
= − λ∗

∑s ps

[
u′(c∗t )
u′′(c∗t )

− x∗t

]
, (27)

which follows from differentiating the lifetime budget constraint as we show in Appendix A.5.

Finally, we denote by γ∗
t = −c∗t

u′′(c∗t )
u′(c∗t )

Foreign’s inverse elasticity of intertemporal substitution. This

allows us to arrive at the following characterization, where we denote by ϕ and ρ the infinite

column vectors with t-th entries

ϕt = − 1
γ∗

t
and ρt =

∂ log λ∗

∂ log pt
.
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Lemma 2. Denote by C the log sequence-space Jacobian of Foreign’s intertemporal consumption function,
i.e., the infinite matrix with entries Ckt =

∂ log C∗
k

∂ log pt
. It admits a decomposition into a diagonal matrix and a

rank-one matrix,

C = D + P , or equivalently
∂ log C∗

k
∂ log pt

= − 1
γ∗

k
1k=t︸ ︷︷ ︸

Direct Effect

− 1
γ∗

k

∂ log λ∗

∂ log pt︸ ︷︷ ︸
Indirect Effect

,

where D is the diagonal matrix diag(ϕ) and P = ϕ ρ′ is the outer product of the two vectors ϕ and ρ.
When consumption preferences u(·) are CRRA and γ∗

t = γ, then C has two distinct eigenvalues, − 1
γ (with

infinite multiplicity) and − 1
γ (1 + ∑t ρt).

Lemma 2 establishes that the log sequence-space Jacobian C has a special structure: it is a rank-

one update of a diagonal matrix. The entries of the diagonal matrix are the negatives of the

elasticity of intertemporal substitution (IES). The component D therefore corresponds to the direct

effect of a price change. For illustration, assume that consumption preferences are CRRA, with

u(c) = 1
1−γ c1−γ. This implies that γ∗

t = γ is constant across periods, and the log Jacobian of the

consumption function can be written as

C = − 1
γ

I − 1
γ

1ρ′ = − 1
γ
×



1 + ρ1 ρ2 ρ3 ρ4 ρ5 · · ·
ρ1 1 + ρ2 ρ3 ρ4 · · ·
ρ1 ρ2 1 + ρ3 · · ·
ρ1 ρ2 · · ·
ρ1 · · ·
· · ·


(28)

A change in price pt at date t affects consumption at all dates k the same, namely by − 1
γ ρt, except

for the contemporaneous diagonal entry, which is − 1
γ (1 + ρt).

Leveraging Lemma 2, we now show that intertemporal export supply elasticities take a special

form in this RA economy with permanent-income consumers. We illustrate the sequence-space

Jacobian of X ∗ in Figure 1, which follows directly from Lemma 2 since

E kt =
∂ logX ∗

k
∂ log pt

= −
c∗k
x∗k

∂ log C∗
k

∂ log pt
=

1
γ∗

k

c∗k
x∗k

+
1

γ∗
k

c∗k
x∗k

∂ log λ∗

∂ log pt
=⇒ E = diag(ϕ̂) + ϕ̂ρ′,

where we denote by ϕ̂ the infinite column vector with entries 1
γ∗

t

c∗t
x∗t

. It follows directly from

Lemma 2, therefore, that the iXE matrix E also takes the form of a rank-one shift of a diagonal

matrix. Panel (a) plots the responses of Foreign exports to a price shock in the far future, ∂X ∗
k

∂pt
, for

k ∈ [t − 10, t + 10]. In other words, the figure plots part of the t-th column of E . Panel (b) is simply

a zoomed-in version for additional clarity.6 The figure graphically illustrates the stark shape of
6 We evaluate the export supply function around τt = 0 for illustration. This is the relevant object to ask in which
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Figure 1. Column t of the sequence-space Jacobian of X ∗

this sequence-space Jacobian. Foreign export supply sharply rises contemporaneously with an

increase in the intertemporal consumption price, but falls by the exact same amount at all other

dates, leading to a slightly negative but completely flat profile at all dates k ̸= t.

3.1.3 Optimal Tariffs: Revisiting Costinot et al. (2014)

We conclude this subsection by characterizing the optimal import tariff in this RA endowment

economy. In particular, we show that the special structure of X ∗ and its sequence-space Jacobian

implies that the intertemporal (cross-price elasticity) terms in our tariff formula (13) cancel out.

This implies that the first-best optimal tariff formula becomes static in economies with permanent-

income consumers.

This also allows us to relate our results to the seminal analysis of Costinot et al. (2014). They

study the same RA endowment environment as we do in this subsection but take a primal approach

to characterize optimal tariffs. Our discussion in this subsection clarifies how our dual approach

relates to their primal approach, and how our optimal tariff formula simplifies to theirs in this

special RA environment.

Primal efficiency condition. As a first step, we show that the efficiency condition (12) for Home’s

intertemporal terms of trade simplifies due to the special structure of the sequence-space Jacobian

direction the planner wants to push tariffs relative to the laissez fair competitive equilibrium. We set yt = y∗t = 0.5 for all
t. Consumption preferences are CRRA with inverse IES γ = 2 and discount factor β = 0.96.
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of X ∗. Using X ∗
t (p) = y∗t − C∗

t (p) and equation (26), condition (12) can be rewritten as

0 = ∑
k

βku′(ck)
∂X ∗

k
∂pt

=
∂λ∗

∂pt
∑

k
pk

u′(ck)

u′′(c∗k )
+ λ∗ u′(ct)

u′′(c∗t )
.

Crucially, the term ∑k pk
u′(ck)
u′′(c∗k )

is a constant that does not vary with t. We can now plug in for ∂λ∗

∂pt

using (27), rearrange, and arrive at

u′(ct) =
∑k pk

u′(ck)
u′′(c∗k )

∑k pk

[
u′(c∗t )− u′′(c∗t )x∗t

]
This is precisely the efficiency condition Costinot et al. (2014) derive using the primal approach—

equation (6) in their paper. The constant −∑k pk
u′(ck)
u′′(c∗k )

/ ∑k pk corresponds exactly to their La-

grangue multiplier “µ”. We thus showed that our efficiency condition in the dual representation

collapses to that of Costinot et al. (2014) in this special environment. This derivation illustrates that

our dual approach is closely related to the primal approach taken in other papers to characterize

optimal tariff formulas.

Optimal tariffs. We now show that our intertemporal tariff formula also takes a special form in

this economy with permanent-income consumers. We can use (26) to rewrite our intertemporal

tariff formula (13) as

1
τt

= ∑
k

ωkt
∂ logX ∗

k
∂ log pt

= ∑
k

ωkt
pt

x∗k

∂X ∗
k

∂pt
= −∑

k
ωkt

pt

x∗k

∂C∗
k

∂pt
= −∂λ∗

∂pt
∑

k
ωkt

pt

x∗k

∂C̃∗
k

∂λ∗ − pt

x∗t

∂C̃∗
t

∂pt
,

where we used ωtt = 1, or in matrix notation

1
τt

= ωt · E t = ωt · D̂t + ωt · P̂t,

where D̂ = diag(ϕ̂) and P̂ = ϕ̂ρ′. In words, the optimal tariff at date t is governed by two forces.

Foreign’s exports respond to a price change at date t directly, and at all dates k indirectly due to

the effect on lifetime wealth. The next Proposition establishes that these indirect effects exactly

cancel out in the determination of Home’s optimal tariff. Our intertemporal tariff formula therefore

becomes static.

Proposition 4. In this RA endowment economy with permanent income consumers, we have

ωt · P̂t = 0 , or equivalently
∂λ∗

∂pt
∑

k
ωkt

pt

x∗k

∂C̃∗
k

∂λ∗ = 0.
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The intertemporal tariff formula (13) therefore collapses to a static tariff formula given by

τt =
1

E tt − P̂tt
= −u′′(c∗t )

u′(c∗t )
x∗t , (29)

as in Costinot et al. (2014). The optimal tariff is the inverse of the contemporaneous export supply elasticity
E tt net of the contemporaneous indirect effect P̂tt.

Proposition 4 shows that our intertemporal tariff formula (13) collapses to a static one in this

environment with permanent-income consumers. The optimal tariff τt is determined as if by the

classic tariff formula (1) — using not the entire contemporaneous export supply elasticity E tt,

but instead netting out the indirect effect of the contemporaneous price change P̂tt. Proposition

4 uses Lemma 2 to decompose the iXE matrix E into the direct and indirect effects of price

changes on export supply, and then shows that these indirect effects exactly offset each other in the

determination of the optimal tariff τt. That is, ωt · P̂t = 0. In this special case, our intertemporal

tariff formula becomes static. And since we deliberately work in the exact same environment as

Costinot et al. (2014) for illustration, we recover their tariff formula (29) exactly. The optimal tariff

is determined as if by the classic tariff formula, but using a modified static export supply elasticity

E tt − P̂tt that nets out the indirect contemporaneous effect. In other words, the optimal tariff is

governed by the diagonal component D̂ of the iXE matrix E .

Optimal tariffs are proportional to the trade balance. As already observed by Costinot et al.

(2014), the optimal tariff takes a stark form in this representative agent endowment economy: it is

proportional to the trade balance. Home internalizes the price impact that choosing one domestic

allocation over another has through the world market clearing condition for the consumption good.

When x∗t > 0 and Home runs a trade deficit, it is effectively a net demander of the consumption

good at date t. The tariff formula (29) implies that the optimal import tariff is positive in this

case, τt > 0, since − u′′(c∗t )
u′(c∗t )

> 0. By setting a positive import tax, the Home planner discourages

households from importing the consumption good from Foreign, which in turn leads to a fall in the

contemporaneous world price. And a lower price in turn implies that Home has to spend less on

the (infra-marginal) units of the consumption good it is already importing from Foreign. This is

precisely the sense in which Home internalizes its price impact. The optimal tariff therefore reflects

Home’s incentive to manipulate its intertemporal terms of trade as a monopolist in the market for

intertemporal consumption claims. The surplus Home can extract from its trading partner depends

on the sign and size of the trade balance, and so does the optimal tariff.

Optimal tariff dynamics. How does Home’s optimal tariff evolve along a transition path of

exogenous endowments y and y∗? In Figure 2, we consider the case where Home initially has a

larger endowment than Foreign, but the two endowments converge over time. This experiment
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Figure 2. Tariff Dynamics

is intended to reflect a situation where the rest of the world is initially poorer but converges to

Home gradually over the course of roughly 50 years. In this environment, Home’s consumption-

smoothing motive implies an initial trade surplus that eventually turns into a permanent deficit.

The optimal tariff is proportional to the trade balance and therefore mirrors these dynamics. The

Home planner initially taxes exports, τt < 0, to raise the world price and extract a larger export

revenue. Once the trade surplus turns into deficit and Home starts importing, it becomes optimal

to start taxing imports to lower world prices and therefore total import expenditures.

Do tariffs affect the long-run trade balance? Recent policy debate has shown a spotlight on the

question of whether tariffs can affect and help close the current trade deficit of the U.S. This debate

has focused largely on the long-run tariff rather than transition dynamics. Figure 2 demonstrates

that this focus is misguided in models of intertemporal trade and that it is important to consider

the entire Ramsey plan, as we do here. We plot the economy’s transition dynamics under constant

0% (green line) and 10% (yellow line) tariffs set once and for all at date 0. Both of these tariff

regimes imply the exact same dynamics for the Home trade balance. Home initially runs a trade

surplus but converges to a long-run trade deficit. Figure 2 illustrates that the level of the long-run

tariff has no effect on the trade balance at all—its dynamics or its steady state level—as long as the

tariff is set to be constant over time. This contrasts sharply with the optimal tariff regime, which

initially subsidizes exports and later taxes imports. Under this regime, the Home trade balance

converges to a smaller trade deficit in the long run. This illustrates that different tariff regimes do

affect the long-run trade balance in dynamic environments and, crucially, that the optimal tariff

regime implies a smaller long-run trade deficit.

3.2 Heterogeneous Agents and Incomplete Markets

As our next micro-foundation of intertemporal export supply elasticities, we model Foreign as a

Beweley-Huggett-Aiyagari incomplete markets economy. Households face uninsurable income

risk and they can only trade a riskfree bond. We abstract from capital and aggregate uncertainty
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for simplicity. The key insight that emerges from this application is that Foreign’s export supply

function X ∗ and its sequence-space Jacobian take a starkly different shape in incomplete markets

environments. We focus our exposition on Foreign in this subsection since the details of the Home

economy do not matter for the determination of X ∗.

3.2.1 Environment

Households. There is a continuum of households i ∈ I∗ = [0, 1] in Foreign. Household i’s
lifetime utility is defined by

Vi
0 = ∑

t
βt ∑

st

π(st)ui(ci
t(s

t)). (30)

We abstract from a labor supply choice and assume that each household inelastically supplies 1

unit of labor.

Households can trade a one-period riskfree bond that represents a claim to one unit of the

consumption good in the subsequent period. We denote the value of i’s bond purchases at date t
and history st in units of the consumption good by ai

t+1(s
t). The budget constraint is

ai
t+1(s

t) + ci
t(s

t) = w∗
t zi

t(s
t) + Rtai

t(s
t−1), (31)

where Rt = 1 + rt is the gross rate of return on savings. We denote by w∗
t the per-period local

wage rate for effective labor. While each household supplies one unit hours inelastically, their

individual labor productivity zi
t(s

t) varies and evolves stochastically over time, representing the

source of idiosyncratic risk. Since we abstract from aggregate uncertainty, macroeconomic objects

such as prices are not contingent on the realization of the history st. Finally, each household i faces

a borrowing constraint of the form

ai
t+1(s

t) ≥ a. (32)

The problem of household i is therefore to maximize (30) subject to (31) and (32), taking as

given the sequences of interest rates R and wages w∗. It is useful to switch to a recursive representa-

tion of the household problem. We can uniquely associate households with their idiosyncratic state

variables (a, z), where a is the household’s beginning-of-period wealth. Dropping i superscripts,

the policy functions for savings and consumption of households in Foreign are then given by

a∗t+1(a, z) and c∗t (a, z). Finally, we denote the joint density of households over wealth and labor

productivities by g∗t (a, z) and its law of motion is characterized by the usual Kolmogorov forward

equation.

Firms. A representative and perfectly competitive firm produces the final consumption good

using technology y∗t = A∗
t ℓ

∗
t , where ℓ∗t denotes total use of effective labor. Profit maximization

implies the optimality condition

w∗
t = A∗

t .
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Markets and equilibrium. Three markets must clear in each period. Labor market clearing

requires

ℓ∗t =
∫∫

zg∗t (a, z) da dz.

The world goods market clears when total Foreign exports are equal to Home imports,

x∗t ≡ A∗
t ℓ

∗
t −

∫∫
c∗t (a, z)g∗t (a, z) da dz = ct − yt,

where yt and ct denote aggregate output and consumption of Home. Finally, we assume that the

bond is in zero net supply globally, so that one country’s net foreign asset position must be equal to

the other country’s liabilities. We drop the asset market clearing condition by Walras’ law.

Definition 2 (Competitive Equilibrium in Foreign). Given an initial density g∗0(a, z), a Home allocation
(c, y) and a technology sequence A∗, competitive equilibrium in Foreign comprises an aggregate allocation
(c∗, ℓ∗, y∗), prices (R, w∗), policy functions {c∗t (a, z)} and joint densities {g∗t (a, z) so that (i) households
optimize, (ii) firms optimize, (iii) markets clear, and (iv) the evolution of the joint density is consistent with
household behavior.

To relate our results to Sections 2 and 3.1, it will be convenient to represent equilibrium conditions

in terms of intertemporal consumption prices pt instead of per-period rates of return Rt. Since R0 is

not determined as part of equilibrium, we set it to 1. We can then define the intertemporal price of

consumption at date t as

pt =
t

∏
s=0

1
Rs

. (33)

Since our normalizations imply p0 = 1
R0

= 1, we treat consumption at date 0 as our numeraire, so

that pt denotes the intertemporal price of date t consumption relative to date 0 consumption.

3.2.2 Intertemporal Export Supply Elasticities

Our analysis in Section 2 assumes the existence of an intertemporal export supply function X ∗ that

satisfies the external balance condition in (9). We now show how to construct this function in this

HA economy and characterize its properties.

Foreign exports are aggregated from household consumption behavior at the micro level

according to x∗t = A∗
t
∫∫

zg∗t (a, z) da dz −
∫∫

c∗t (a, z)g∗t (a, z) da dz. Households’ behavior at date t
depends on their current state variables and on the path of future prices from t onwards. At the

same time, date t state variables are determined by initial conditions at date 0 and consumption-

savings decisions between dates 0 and t, which in turn depend on prices. Consequently, households’

policy functions at date t can be expressed entirely in terms of the paths of prices starting from

date 0 as shown in Auclert et al. (2024b). Using firm optimality to determine wages as w∗
t = A∗

t ,

Foreign date t aggregate consumption c∗t can therefore be expressed in terms of an intertemporal
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consumption function C∗, given by

c∗t =
∫∫

c∗t (a, z)g∗t (a, z) da dz = C∗
t (p).

Therefore, the intertemporal export supply function is simply

X ∗
t (p) = A∗

t − C∗
t (p).

We still have to show that X ∗ satisfies the external balance condition (9). Starting from

households’ budget constraints (31) and aggregating yields

NFA∗
t+1 = RtNFA∗

t + w∗
t ℓ

∗
t − c∗t ,

where we define NFA∗
t =

∫∫
ag∗t (a, z) da dz. Using w∗

t = A∗
t and x∗t = y∗t − c∗t , iterating forward

yields

NFA∗
0 = −∑

t
ptX ∗

t (p),

where NFA∗
0 is the value of Foreign’s initial asset position and where we used limT→∞ pT NFA∗

T =

0, which follows directly from household optimality at the micro level. In other words, the

intertemporal export supply function X ∗ satisfies this aggregate external balance condition because,

in response to a change in prices p, the consumption-savings behavior of Foreign households must

still satisfy their individual budget constraints. And the above condition follows simply from

aggregating individual budget constraints.

Just like in the RA model, the intertemporal export supply function captures everything the

Home planner has to know about Foreign. Unlike in the RA model, however, the micro-foundation

of X ∗ in HA captures the rich dynamics of household heterogeneity in Foreign. It encodes how

the entire income and wealth distribution of Foreign reacts to changes in the price sequence p and

therefore tariff policy.

In the presence of household heterogeneity and incomplete markets, the sequence-space

Jacobian of X ∗ has a starkly different shape than in the RA environment of Section 3.1. We illustrate

this in Figure 3, which compares the t-th column of the Jacobian matrix E∗ in the RA and HA

models of Sections 3.1 and 3.2. Panel (a) overlays the columns of both matrices, whereas Panels (b)

and (c) present zoomed-in versions for each model to make the comparison easier.

What the two Jacobians have in common is that a price increase at date t increases Foreign

exports contemporaneously at date t but decreases exports at all other dates k ̸= t. Beyond this

qualitative similarity, Figure 3 displays three sharp differences between the two models.

First, and most importantly, the profile of the export supply response in HA at dates k ̸= t
is not like it is in RA. In RA, we already observed in Section 3.1 that the response profile at dates

k ̸= t is entirely flat, as illustrated again in Panel (b). In the HA economy with incomplete markets,

households no longer behave like the infinitely-forward looking permanent-income consumers
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Figure 3. Column t of the sequence-space Jacobian of X ∗ in RA and HA

of Section 3.1. Instead, households’ effective planning horizon is much shorter; households make

forward-looking plans until they hit their borrowing constraint. The strength of anticipation

effects governing a household’s behavior is therefore determined by that household’s distance

to the borrowing constraint—the behavior of households with very large a is still similar to that

of permanent-income consumers but households with low a close to the borrowing constraint a
behave increasingly hand-to-mouth. Therefore, in response to an anticipated price increase at date

t, households do not respond at all for k more than 50 years prior to t because almost all households

expect to hit the borrowing constraint before reaching period t. This can be seen in Panel (c), where

the export supply response dissipates entirely for small k.

As with the anticipation effect, the persistence of the export supply response to the price

increase is also different. In the RA model, households continue to consume the annuity value of

the change in lifetime wealth after date t, just like they did in anticipation before date t. In the

HA model, on the other hand, households save initially but start dissaving as they draw negative

earnings shocks and get closer to their borrowing constraints. As all households eventually hit

their borrowing constraints, at which point they have fully dissaved the initial effect of the price

change, the export supply response eventually fully dissipates for large enough k.

Second, conditional on responding to the price change at dates k before or after t, households

in HA respond more strongly. This can be seen in Figure 3 by noting that the scale of the negative

effect in Panel (c) is almost two orders of magnitude larger for k close to t than it is in Panel (b). This

is because households have much larger marginal propensities to consume (MPC) in HA than they

do in RA, and consumption responses to price changes are partly governed by and proportional to

MPCs.

Third, and relatedly to the previous point, the contemporaneous positive response of exports

to the price increase at date t is one order of magnitude larger in HA than it is in RA. This can
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be seen in Panel (a). The contemporaneous response at date t is roughly 0.4 in HA, whereas it is

exactly 0.04 in RA (the blue dot at k − t = 0).

In summary, the export supply elasticities that govern the intertemporal terms of trade

manipulation of optimal tariff policy differ starkly across the RA and HA models of Sections

3.1 and 3.2. While the off-diagonal entries of the iXE matrix E∗ are constant in the RA model,

implying anticipation in and persistence of the export supply response that are infinitely lived,

the off-diagonal entries in the HA model are no longer constant and decline in their distance to

the diagonal. In other words, the substitution elasticities between different periods are constant

in the RA model but not in the HA model. With incomplete markets, there is a natural notion of

“distance” to an announced price change.

Export supply elasticities to interest rates. We started with a discussion of export supply elastici-

ties to intertemporal prices pt to facilitate comparison to Sections 2 and 3.1. Intertemporal prices

in these settings are functions of per-period interest rates, according to equation (33). In Figure

4, we also plot the sequence-space Jacobian of the intertemporal export supply function X ∗
r (r)

expressed in terms of sequences of net interest rates. This is useful in part for comparability to the

heterogeneous agent macro literature, which often reports sequence-space Jacobians in terms of

interest rates.

4 Multiple Goods

This section introduces multiple goods, allowing for both intra- and intertemporal trade. We

assume that all goods appear as exogenous endowments in both countries. This allows us to

abstract for now from the issue of non-differentiability that emerges in Ricardian models of trade
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with comparative advantage in production (Costinot et al., 2015). We view this as orthogonal to the

observations we make in this section.

4.1 Preferences, Endowments and Implementability

There are two countries, and time is discrete as before. In each period t, there is a finite number

J of tradable consumption goods which we denote by j and k. We abstract from household

heterogeneity and uncertainty in this section for simplicity, but bring both of these features back in

our quantitative model in Section 5.

Preferences. There is a representative household in each country whose preferences are

V0 = ∑
t≥0

βtu(ct) and V∗
0 = ∑

t≥0
βtu(c∗t )

where ct and c∗t denote the consumption bundles of Home and Foreign. These are given by

ct = D({cjt}j) and c∗t = D∗({c∗jt}j).

We make no assumptions about the homotheticity of D(·) and D∗(·).

Endowments. Each good j appears as an exogenous endowment in both countries, denoted yjt

and y∗jt. We assume that yjt > 0 and y∗jt > 0 for all j and t. We also assume as before that the infinite

sequences yj = {yjt}t≥0 and y∗
j = {y∗jt}t≥0 are deterministic and convergent for all j, so agents have

perfect foresight over them.

Resource constraints. The resource constraint for consumption good j at date t is now given by

x∗jt = cjt − yjt,

where x∗jt denotes Foreign’s aggregate export supply.

Intertemporal export supply function and implementability. We denote the intertemporal price

of good j at date t by pjt. As before, we use bold-faced notation for infinite sequences, denoting

by pj = {pjt}t≥0. It will also be useful to collect all price sequences p = {pj}j. Similarly, we

define cj = {cjt}t≥0 and c = {cj}j. As in Section 2.2, we start by assuming the existence of an

intertemporal export supply function X ∗ that is differentiable and satisfies

x∗jt = X ∗
jt(p) = y∗jt − C∗

jt(p) and NFA∗
0 + ∑

t
∑

j
pjtX ∗

jt(p) = 0. (34)
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The intertemporal export supply function maps the infinite price sequences p for all goods to a

level of Foreign export supply for good j at each date t. We again assume that X ∗ satisfies an

aggregate external balance condition, so that Foreign’s initial NFA∗
0 is equal to the sum of future

trade balances. It is also useful to explicitly assume the existence of the Foreign consumption

function C∗, which maps price sequences to a level of consumption.

4.2 Home Efficiency and First-Best Tariff

We now follow Sections 2.3 – 2.4 and characterize efficient allocations from the perspective of Home,

as well as the tariffs that help decentralize them.

We start with a statement of implementability that mirrors Lemma 1 in Section 2.2: Taking as

given endowment sequences y and y∗, a Home allocation c and prices p are implementable if and

only if they satisfy

X ∗
jt(p) = cjt − yjt

for all j and t. Efficient allocations therefore maximize the lifetime utility of Home’s representative

household subject to the implementability condition. The associated Lagrangian is given by

L = ∑
t

βtu(D(cjt)) + ∑
t

∑
j

µjt

[
X ∗

jt(p)− cjt + yjt

]
,

with first-order conditions βtu′(ct)
∂D
∂cjt

= µjt and 0 = ∑s ∑k µks
∂X ∗

ks
∂pjt

for all t and j. Putting these

together, we get

0 = ∑
s

βsu′(cs)∑
k

∂D
∂cks

∂X ∗
ks

∂pjt
, (35)

which is the analog to the efficiency condition (12) for Home’s intertemporal terms of trade in the

one-good environment.

Optimal tariff. We now characterize the optimal tariff that helps decentralize efficiency condition

(35). In particular, we allow for import tariffs τjt that vary across goods and periods. Since we

assumed Foreign’s export supply function to satisfy the external balance condition (34) for all

positive price sequences, we can differentiate and obtain

0 = ∑
s

∑
k

pks
∂X ∗

ks
∂pjt

+ x∗jt.

Next, if tariffs τjt decentralize the Home efficiency allocation in a world competitive equilib-
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rium, then it must be the case that

βt−s u′(ct)

u′(cs)

∂D/∂cjt

∂D/∂cks
=

(1 + τjt)pjt

(1 + τks)pks
.

We plug this condition back into Home’s efficiency condition (35) and obtain

0 = ∑
s

∑
k

(
βtu′(ct)

∂D
∂cjt

)
(1 + τks)pks

(1 + τjt)pjt

∂X ∗
ks

∂pjt
= ∑

s
∑

k
pks

∂X ∗
ks

∂pjt
+ ∑

s
∑

k
τks pks

∂X ∗
ks

∂pjt

And finally we put the previous two equations together, multiply and divide by τjt, and rearrange.

This yields the optimal tariff formula for environments with multiple goods.

Proposition 5 (Intertemporal Tariff Formula: Multiple Goods). As part of a decentralization of the
Home efficiency allocation, the efficiency condition (35) for intertemporal terms of trade is satisfied if Home
consumers face an ad-valorem import tariff given by

1
τjt

= ∑
s

∑
k

ωks
jt

∂ logX ∗
ks

∂ log pjt

where ωks
jt denotes a relative tariff revenue weight defined as

ωks
jt =

τks pksx∗ks
τjt pjtx∗jt

.

5 A HANK Model with Trade

In this section, we develop a quantitative heterogeneous agent New Keynesian (HANK) model

with multi-sector trade. Time is discrete and we abstract from aggregate uncertainty. Our model

features heterogeneous households and multiple goods. Home and Foreign are each populated

by a measure one continuum of households who face uninsurable idiosyncratic risk. There are J
types of goods that come in Home- and Foreign-produced varieties. In other words, there are J
production sectors in each country, with each sector producing a unique variety. Households in

both countries have homothetic CES preferences over these 2 × J varieties.

Section 5.1 presents the key model elements and defines competitive equilibrium. Our ex-

position focuses on Home for simplicity since the environment in Foreign is symmetric. We set

up the model with a rich set of instruments, which allows us to compare different policy regimes

in our numerical analysis. Section 5.2 takes the model to the data. The calibrated model matches

both trade elasticities and key moments of the income and wealth distribution. Our numerical

analysis starts with a positive exploration of the consequences of tariff shocks in Section 5.3. We

then compute the Ramsey steady state of our model in Section 5.4 and show that the optimal

long-run import tariff it implies is 5.4%. Finally, we analyze optimal tariff dynamics in response
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to TFP shocks from a timeless perspective. Our numerical experiments presently focus on the

benchmark where monetary policy restores the flexible price allocation in both countries, as we

discuss below. This is a useful benchmark to study optimal tariff policy because it implies that

Ramsey optimal second-best tariffs are not used to close labor wedges. In ongoing work, we also

consider the case where monetary policy instead follows a Taylor rule and therefore fails to restore

production efficiency. In that case, using tariffs for the purpose of terms of trade manipulation

comes at the additional cost of creating labor wedges. This section is accompanied by an online

appendix (Appendix D) that provides a detailed statement of the optimal tariff Ramsey problem

and derives the key optimality conditions that characterize the Ramsey plan.

5.1 Model

5.1.1 Households

Preferences. The preferences of a household in Home are defined as

E0

∞

∑
t=0

βt
[
u(ct)− v(ℓt)

]
where ct is a homothetic consumption aggregator of all varieties and ℓt denotes hours of work. We

assume that the household’s consumption aggregator is Cobb Douglas over the J types of goods

and CES over varieties within each type of good,

ct = ∑
j

αj log cj,t and cj,t =

(
(1 − θj)

1
ηj c

ηj−1
ηj

jH,t + θ
1
ηj
j c

ηj−1
ηj

jF,t

) ηj
ηj−1

. (36)

We denote by cjω,t and c∗jω,t the consumption of a household in Home and Foreign, respectively,

of good j variety ω. The Home- and Foreign-produced varieties are indexed by ω ∈ {H, F}. The

consumption preferences of households in Home and Foreign take the same nested CES form

but we allow for different parameters for Foreign, denoted by (α∗
j , θ∗j , η∗

j ). Calibrated differences

between θj and θ∗j allow us to capture home bias in trade. This is isomorphic to iceberg trade costs,

which we consequently abstract from.

Budget constraint. We denote the world price of good j variety ω at date t by pjω,t. The total

consumption expenditure of a household in Home is therefore given by ∑j ∑ω(1 + τjω,t)pjω,tcjω,t,

where τjω,t denotes Home’s ad-valorem import tariff as in previous sections. Each country issues

a nominal bond and we abstract from segmentation in international financial markets, so all

households can trade the two bonds. A household in Home therefore faces the following budget
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constraint in units of domestic currency

aH,t+1 + EtaF,t+1 + ∑
j

∑
ω

(1 + τjω,t)pjω,tcjω,t = (1 + it)aH,t + Et(1 + i∗t )aF,t + Et.

We denote by aH,t and aF,t the value of the household’s beginning-of-period holdings of the Home

and Foreign bonds in units of local currency. And we denote by Et the nominal exchange rate, i.e.,

the relative price of Foreign to Home currency. Finally, it and i∗t denote the nominal rates of return

on the two bonds, and Et is the household’s post-tax non-financial income. This comprises after-tax

labor income, dividend income, and government transfers,

Et = Wtztℓt + ztΠt + Tt(zt),

where Wt is the nominal wage, Tt(zt) is a lump-sum rebate that may vary across households, and

zt denotes the household’s individual labor productivity. It follows a first-order Markov chain with

mean 1 and is the source of idiosyncratic risk. Labor supply decisions ℓt are intermediated by labor

unions as we describe below and therefore taken as given by the household.

Household problem. Since the consumption aggregator is homothetic, there exists an ideal

price index Pt that satisfies Ptct = ∑j ∑ω(1 + τjω,t)pjω,tcjω,t. This assumption allows us to derive

a recursive representation of the household problem in terms of total real wealth, defined as

at =
aH,t+Et−1aF,t

Pt
. Since all households can trade the two bonds freely and there is no aggregate risk,

the usual no-arbitrage condition must hold and implies uncovered interest parity (UIP),

1 + it+1 =
Et+1

Et
(1 + i∗t+1).

Since the household’s portfolio positions in the two bonds are indeterminate in this setting, we write

the household problem directly in terms of total real wealth. We can therefore uniquely associate

each household with her state variables at date t and arrive at the following recursive representation

of the household problem: A household with real wealth a and individual productivity z at date t
solves the dynamic problem

Vt(a, z) = max
{cjω}, a′

u
({

cjω

}
jω

)
− v(ℓt) + βEt

[
Vt+1(a′, z′)

]

s.t a′ = Rta + et(z)− ∑
j

∑
ω

(1 + τjω,t)pjω,t

Pt
cjω

a′ ≥ a

taking as given the sequences of union-intermediated hours of work ℓt, real interest rates Rt =

(1+ it)
Pt−1

Pt
, real wages wt =

Wt
Pt

, and cum-tariff prices (1+ τjω,t)pjω,t. We denote by et(z) = Et(z)/Pt
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the household’s real post-tax non-financial income, which may depend on the household’s income

state z because we allow transfers to be household-specific. Finally, households also face a constraint

on borrowing in terms of real wealth, given by a′ ≥ a.

The consumption-savings problem of households in Foreign admits the same recursive repre-

sentation except that all variables are denoted with asterisks. For example, the real interest rate

R∗
t faced by households in Foreign differs from that in Home because households have different

homothetic consumption aggregators and thus different ideal price indices, even though rates of

return on assets are equalized.

Cross-sectional distribution. We denote the joint density of households over real wealth and labor

productivity at date t by gt(a, z). This joint density evolves according to the usual Kolmogorov

forward equation, which we present in Appendix D.2. We also refer to the density gt(a, z) as

Home’s cross-sectional income and wealth distribution.

Labor unions. Household labor supply decisions are intermediated by labor unions as in Erceg

et al. (2000) and Auclert et al. (2024b). We allow for flexible nominal wage adjustments but maintain

the standard assumption of labor rationing: all households work the same hours, so ℓt does not

depend on the state (a, z) of the household. Appendix D.4 presents a self-contained treatment

of our model’s labor market structure and shows that it gives rise to the aggregate labor supply

schedule

v′(ℓt) =
ϵw − 1

ϵw wtu′(Ct) (37)

where ϵw denotes the elasticity of substitution that governs the labor union’s desired markup of

real wages over the marginal rate of substitution. It is a measure of monopsony in the labor market.

5.1.2 Multi-Sector Production

Production in each country takes place in J sectors. Each sector j produces the country-specific

variety of good j. To keep notation symmetric, we denote by yjω,t and y∗jω,t the date t output of

good j variety ω in Home and Foreign, respectively. But since Home varieties can only be produced

in Home, and vice versa for Foreign, we have yjF,t = y∗jH,t = 0.

In the New Keynesian tradition, a production sector j comprises a retailer and a continuum of

intermediate input firms whose dynamic pricing problem gives rise to sectoral New Keynesian

Phillips curves. These sectoral intermediate inputs are non-tradable and cannot be used in produc-

tion outside of sector j. They are consequently not relevant for trade or any other part of the model.

Their only role is as a micro-foundation of sectoral Phillips curves. We discuss each production

stage in turn.
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Retailer. In each Home sector j, a retailer produces final good j by bundling a measure one

continuum of sector-specific intermediate input varieties k, according to

yjH,t =

( ∫ 1

0
yjH,t(k)

ϵj−1
ϵj dk

) ϵj
ϵj−1

,

with elasticity of substitution ϵj. CES aggregation implies the usual demand function for variety k,

yjH,t(k) =
(

pjH,t(k)
pjH,t

)−ϵj

yjH,t,

where pjH,t(k) is the price of input k in Home sector j and pjH,t is the price of Home-produced final

good j.

Intermediate firms. Intermediate input k in Home sector j is produced by a monopolistically

competitive firm according to the production technology

yjH,t(k) = AjH,tℓjH,t(k).

The Hicks-neutral productivity shifter AjH,t is specific to each good and variety, which allows us

to capture comparative advantage. We assume that AjF,t = A∗
jH,t = 0, which is the technological

analog of assuming that there are unique Home- and Foreign-produced varieties. Profits are equal

to revenue net of salary payments, given by

ΠjH,t(k) = pjH,t(k)yjH,t(k)− (1 − τ
f
jH,t)WtℓjH,t(k).

We allow for an employment subsidy τ
f
jH,t that is specific to each sector and may vary over time.

Real marginal costs therefore differ at the sector level but are common to all intermediate input

producers,

mcjH,t =
(1 − τ

f
jH,t)Wt

AjH,t
. (38)

Firm k in sector j faces a quadratic Rotemberg adjustment cost when it changes its sales price

pjH,t(k). This adjustment cost is given by χj
2 (

pjH,t(k)
pjH,t−1(k)

− 1)2 pjH,tyjH,t, where χj governs the degree

of price stickiness and may vary across production sectors. The firm’s dynamic pricing problem is

therefore to maximize the net present value of profits net of adjustment costs and subject to the

demand it faces from the retailer. We define and characterize this problem in Appendix D.5.

Sectoral aggregation and Phillips curves. Under our assumption of Rotemberg adjustment costs,

all intermediate input firms k in sector j will be symmetric ex post. In other words, as long as

firms k and k′ are initialized with the same prices pjH,−1(k) = pjH,−1(k′), they will choose the same
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prices and production plans from time 0 onwards. Symmetry within sectors therefore implies that

yjH,t(k) = yjH,t and ℓjH,t(k) = ℓjH,t for all k and we can directly work with the sectoral production

function

yjH,t = AjH,tℓjH,t. (39)

Symmetry also implies that all firms k choose the same inflation rates, so that pjH,t(k) = pjH,t.

We show in Appendix D.5 that the solution to the firm’s dynamic pricing problem in a symmetric

equilibrium therefore gives rise to a set of sectoral New Keynesian Phillips curves,

πjH,t = βπjH,t+1 +
ϵj

χj

(
mcjH,t −

ϵj − 1
ϵj

)
, (40)

that characterize the price dynamics in sector j, where we define sectoral price inflation as πjH,t =
pjH,t

pjH,t−1
− 1. While deriving these sectoral Phillips curves in discrete time requires linearization,

equation (40) is exact in continuous time.

5.1.3 Government Policy

Fiscal policy. Fiscal policy in Home comprises four sets of instruments: ad-valorem import tariffs

τjω,t, an employment subsidy on the labor union τu (see Appendix D.4), employment subsidies

on firms τ
f
jH,t, and the lump-sum transfer to households Tt(z). The import tariff only applies to

Foreign-produced good, so τjH,t = 0 for all j and t. In our numerical analysis, we presently focus

on the case of a uniform tariff τjF,t = τt that applies equally to all imported goods. We abstract

from government spending and deficit finance and assume that the fiscal authority runs a balanced

budget in each period t. This requires that tariff revenue is equal to aggregate transfer payments

plus subsidies,

τt ∑
j

pjF,t

∫∫
cjF,t(a, z)gt(a, z) da dz =

∫∫
Tt(z)gt(a, z) da dz + ∑

j
τ

f
jH,tWtℓjH,t + τuWtℓt. (41)

The fiscal authority in Foreign also sets employment subsidies and finances these using a lump-sum

tax on households. But we assume that Foreign does not engage in tariff policy.

Monetary policy. Each country’s central bank is tasked with setting nominal interest rates, it

and i∗t . We consider two alternative monetary policy regimes in our numerical experiments. Our

main analysis in Sections 5.3 and 5.4 presently assumes that monetary policy implements the

flexible-price allocation in each country—with the help of fiscal policy setting appropriate sectoral

employment subsidies. Intuitively, monetary policy is set so as to close the aggregate labor wedge

while fiscal policy sets time-varying subsidies τ
f
jH,t to align marginal costs across sectors. This

regime is a useful benchmark to study optimal tariff policy because it implies that Ramsey optimal

second-best tariffs are not used to close labor wedges.
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In ongoing work, we study optimal tariffs under the alternative monetary policy regime where

each central bank follows a Taylor rule. Home’s policy rule is given by

1 + it = (1 + rss)

(
Pt

Pt−1

)ϕπ
(

Yt

Yss

)ϕy

, (42)

where rss denotes the steady state real interest rate. The central bank sets the nominal interest rate

as a function of CPI inflation and the output gap, where Yt =
∑j pjH,tyjH,t

Pt
denotes real gross domestic

product. Foreign’s policy rule is symmetric. Under this policy regime, monetary policy does not

restore the flexible price allocation. On the one hand, this implies that second-best tariff policy may

be used for production efficiency gains in response to shocks. On the other hand, using tariffs for

the purpose of terms of trade manipulation comes at the additional cost of creating labor wedges

when monetary policy is not set optimally to restore production efficiency.

5.1.4 Markets and Equilibrium

The markets for goods, labor and bonds must clear in equilibrium. Goods market clearing requires

that total output of good j variety ω is equal to total consumption in both countries,

yjω,t + y∗jω,t =
∫∫

cjω,t(a, z)gt(a, z) da dz +
∫∫

c∗jω,t(a, z)g∗t (a, z) da dz, (43)

where of course yjF,t = y∗jH,t = 0 for all j. Labor market clearing requires that total supply of

effective labor is equal to total use in production in each country,∫∫
ℓtzgt(a, z) da dz = ∑

j
ℓjH,t, (44)

and symmetrically for Foreign. Finally, we assume that both bonds are in zero net supply, so

bond market clearing requires that households’ total bond holdings aggregate to 0. Since portfolio

allocation is indeterminate, we focus directly on total real wealth and Home’s net foreign asset

position, defined by NFAt =
∫∫

agt(a, z) da dz, where we must have

NFAt + NFA∗
t = 0. (45)

We can now define world competitive equilibrium taking as given fiscal and monetary policy

in both countries.

Definition 3 (Competitive Equilibrium). Taking as given initial household distributions g0(a, z) and
g∗0(a, z), shocks (A, A∗) as well as policy (i, i∗, τ, τ

f
jH), a world competitive equilibrium comprises an

aggregate allocation (C, C∗, ℓ, ℓ∗, y, y∗), prices (w, w∗, P, P∗, pjω, R,E), individual policy functions
{ct(a, z), c∗t (a, z)}, and joint densities {gt(a, z), g∗t (a, z)}, such that: (i) households, firms and unions
optimize, (ii) markets clear, (iii) and the evolution of the joint densities is consistent with household behavior.
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Comparison benchmarks. In our numerical experiments, we contrast optimal tariff policy in

this HANK model with two instructive comparison benchmarks. Our model nests a standard

representative agent New Keynesian model with trade, which we refer to as the “RANK bench-

mark”. This model features a representative, permanent-income household as in Section 3.1. We

also compare our results to the classic tariff formula, where tariffs are not set optimally but instead

ad-hoc according to the policy rule (1).

5.2 Calibration

We calibrate the model to match trade flows, trade elasticities, and key moments of the income and

wealth distribution at a quarterly frequency. Our targets for trade moments are OECD country

averages. Our baseline calibration presently focuses on the case where Home and Foreign each

produce a single differentiated trade good. In ongoing work, we extend this to a calibration with

many sectors and two countries, the U.S. as Home and an aggregation of the rest of the world as

Foreign, using trade and production data from the OECD Inter-Country Input-Output tables. We

summarize our calibration targets and parameter values below in Table 1.

Preferences. We set the discount rate 1/β − 1 to a quarterly 0.02 and adopt isoelastic preferences,

with u(c) = 1
1−γ c1−γ and v(ℓ) = 1

1+ν ℓ
1+ν. The coefficient of relative risk aversion is calibrated to

γ = 2, and the inverse Frisch elasticity to ϕ = 2.5 following Chetty et al. (2011).

Labor market structure. We set the elasticity of substitution between labor varieties to ϵw = 10 for

both Home and Foreign. This is implies moderate wage markups and is consistent with standard

estimates from the wage rigidity literature (Auclert et al., 2024b).

Markups. Steady state markups in our model are given by ϵj
ϵj−1 . Following standard practice, our

baseline calibration sets ϵj = 10, reflecting a corporate profit share of around 10%.

Trade elasticities. We set the long-run elasticity of substitution between Home and Foreign

varieties to η = η∗ = 6 for both economies. Head and Mayer (2014) provide a comprehensive

survey of trade elasticity estimates, reporting values typically in a range from 4 to 6. Similarly,

Obstfeld and Rogoff (2000) present panel estimates ranging from 5 to 6.

Country size. Following common practice in the New Keynesian literature that studies two-

country open economy models, our baseline calibration assumes that Home and Foreign are of

equal economic size. We follow Auray et al. (2025) among others.
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Table 1. List of Calibrated Parameters in Baseline HANK Model with Trade

Parameters Value Target / Source

ρ Discount rate (p.q.) 2 % Standard
γ Relative risk aversion 2 Standard
ν Inverse Frisch elasticity 2.5 Chetty et al. (2011)
η = η∗ Trade elasticity of substitution 6 Head and Mayer (2014)
θ = θ∗ Openess 0.32 Internally calibrated to match OECD trade-to-GDP 63.92%
A = A∗ Aggregate productivity 1 Standard

Openess. The home bias parameters θ and θ∗ govern the degree of trade openness in our model.

We follow Auray et al. (2025) and target trade-to-GDP ratios commonly observed across OECD

countries. The trade-to-GDP ratio is computed as a country’s imports plus exports divided by GDP.

In particular, we calibrate symmetric θ = θ∗ to match the OECD average trade-to-GDP ratio of

63.93% in 2022. This calibration ensures that our model accurately reflects the openness of a typical

developed economy to international trade.

5.3 The Positive Effects of Tariff Shocks

We start our numerical analysis with an exploration of the positive effects of tariff shocks. Figure 5

plots impulse responses to transitory (yellow dashed line) and permanent (blue solid line) import

tariff shocks. The permanent shock raises Home import tariffs from 0% to 10% at date 0. The

transitory shock also raises tariffs to 10% but gradually reverts them back to 0. In both cases, we

initialize the economy at a competitive stationary equilibrium with a 0% tariff. Finally, Figure 5 is

plotted under the policy regime in which monetary policy restores the flexible price allocation.

Transitory shock. The import tariff shock raises the price of imported goods. The price of the

Home consumption bundle (CPI) rises by 1.5% on impact. In response, Home households reduce

their consumption on impact, as the immediate increase in consumer prices lowers real purchasing

power. The tariff generates fiscal revenues that are redistributed lump-sum, which partially offsets

the decline in real income but not sufficiently to prevent an initial fall in consumption. Following

this initial decline, consumption gradually recovers and eventually overshoots its steady state level

before returning. This intertemporal substitution pattern is driven partly by the real interest rate,

which initially rises, incentivizing households to save. Labor supply rises modestly on impact and

its transition dynamics inversely mirror that of consumption. As a result, Home production rises

modestly on impact, before falling gradually and then reverting to steady state.

Permanent shock. Under a permanent tariff shock, the economy gradually converges to a new

steady state over the course of roughly 40 quarters. Unlike in the representative agent benchmark,

this transition is not instantaneous because it takes time for the wealth distribution to converge to

the new stationary equilibrium. Directionally, the impulse responses are similar to those under the
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Figure 5. Impulse responses to permanent and transitory tariff shocks

transitory tariff shock. The main difference is that aggregate consumption rises both on impact and

in the long run. As a result, labor supply and aggregate production fall both on impact and in the

long run.

Effects on the trade balance. In the face of a transitory or permanent import tariff shock, Home

imports and exports both fall. The response of Home’s trade balance does depend on the shock’s

persistence, however. Following a transitory tariff shock, imports decline by more than exports on

impact, improving Home’s trade balance. Following the permanent tariff shock of 10%, however,

exports decline by around 20% while imports only fall by around 15%, leading to a deterioration of

the long-run trade balance.

5.4 Optimal Tariffs

Ramsey steady state. In Appendix D, we present the Ramsey problem for Home’s optimal import

tariffs and derive the optimality conditions that characterize the Ramsey plan. In our numerical

analysis, the Ramsey plan converges to a stationary equilibrium, which we refer to as the Ramsey

steady state (RSS). And the optimal long-run import tariff associated with this RSS is 5.4%.

Optimal tariff dynamics. Finally, we study how the optimal import tariff responds to a TFP shock

in Home. We adopt a timeless perspective around the Ramsey steady state, following Dávila and

Schaab (2023a). That is, we initialize the economy at the RSS and then compute the optimal tariff
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Figure 6. Impulse responses to Home TFP shock under optimal tariffs

transition dynamics as if the planner had solved the Ramsey plan infinitely far in anticipation of the

MIT shock. Formally, we solve an augmented Ramsey problem, where we add timeless penalties

as defined in Dávila and Schaab (2023a). The key property of this augmented, or timeless, Ramsey

problem is that the planner would not want to adjust tariffs away from their Ramsey steady state

level in the absence of shocks.

Figure 6 plots the dynamics of timeless optimal import tariffs in response to a 1% positive

TFP shock at Home, as well as the impulse responses of key quantities and prices. We continue

to assume in this subsection that monetary policy implements the flexible-price allocation in both

countries.

The optimal import tariff (top left panel) temporarily rises to around 5.9% before monotonically

converging back to its RSS level of 5.4%. A 1% increase in TFP therefore translates into a 0.5%

optimal tariff increase. Higher TFP raises production at Home by close to but less than 1%, reflecting

a modestly negative labor supply response. Absent policy intervention, the rise in productivity

would lower domestic prices and therefore worsen Home’s terms of trade. By raising import

tariffs, the planner curbs imports and boosts exports for some time. The optimal tariff response

therefore delivers a sizeable but short-lived improvement in Home’s trade balance. In Foreign,

output contracts due to a strong, negative labor supply response. After the initial tariff hike has

dissipated, Foreign production rises slightly above Home production for some time.
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6 Conclusion

The paper presents an intertemporal tariff formula that generalizes the classic tariff formula to

dynamic heterogeneous agent economies. Intertemporal export supply elasticities (iXEs) are

sufficient statistics for the optimal tariff, together with tariff revenue weights. We characterize

the shape of the iXE matrix E across several benchmark models of intertemporal trade. When

households are permanent-income consumers, the off-diagonal entries of E are flat within each

column. In this case, our intertemporal tariff formula collapses to a static equation, and optimal

tariffs are determined exclusively by contemporaneous export supply elasticities. This coincidence

breaks down when financial markets are incomplete. In this case, intertemporal export supply

elasticities play an important role in the determination of optimal tariffs.

Our intertemporal tariff formula characterizes the import tariff that helps decentralize the

Pareto efficient Home allocation. When the first-best allocation is not attainable, the planner

has an incentive to use tariffs not solely for terms of trade manipulation but also to tackle other

inefficiencies in the economy. We derive a Ramsey targeting rule for optimal second-best tariffs in a

large class of heterogeneous agent economies. The second-best tariff trades off intertemporal terms

of trade manipulation against gains from production efficiency, risk-sharing, and redistribution.

Finally, we leverage our analytical results to solve for optimal tariff policy in a quantitative

heterogeneous agent New Keynesian (HANK) model with trade. The optimal long-run import

tariff that emerges in the Ramsey steady state is 5.4%. And from the timeless perspective, the

optimal import tariff rises in response to positive TFP shocks.
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A Proofs

A.1 Proof of Lemma 1

Proof. Suppose that an allocation {ci
t(s

t), ℓi
t(s

t)} and prices p satisfy the implementability condition

(10). First, we set ℓt =
∫ 1

0 zi
t(s

t)ℓi
t(s

t) di and yt = Ft(ℓt). Then, we set x∗t = X ∗
t (p) as in (9), so that

the world resource constraint for goods x∗t = ct − yt is satisfied. The allocation is therefore feasible

and it is implementable according to (9).

Conversely, suppose that an allocation {ci
t(s

t), ℓi
t(s

t)} and prices p are feasible and satisfy (9).

Then we can plug in for yt = Ft(ℓt) and use the resource constraint for labor, and from the resource

constraint for goods we immediately get (10). ■

A.2 Proof of Proposition 1

We first present Proposition 1 again, listing the complete set of efficiency conditions explicitly. Then

we present a proof.

Proposition 1 (Home Efficiency). A Home allocation {ci
t(s

t), ℓi
t(s

t)}i, t, st and prices p are efficient if they
satisfy:

(i) The marginal rate of substitution between consumption and labor is equalized with the marginal rate
of transformation for all individuals,

−
ui
ℓ,t(s

t)

ui
c,t(st)

= Fℓ,tzi
t(s

t).

(ii) The marginal rates of substitution between consumption across different histories are equalized across
individuals,

ui
c,t(s

t)

ui
c,k(s

k)
=

uj
c,t(s

t)

uj
c,k(s

k)
.

(iii) Probability-weighted marginal utilities are equalized across all idiosyncratic histories st and s̃t at date
t,

π(st)ui
c,t(s

t) = π(s̃t)ui
c,t(s̃

t).

(iv) The intertemporal terms of trade efficiency condition is satisfied

0 = ∑
k

MRSkt
∂X ∗

k
∂pt

where MRSkt is the marginal rate of substitution between consumption at dates k and t, which is
equalized across individuals and across histories at k and t.
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Proof. We present the Lagrangian again, which is

L =
∫ 1

0
αi ∑

t
βt ∑

st

π(st)ui(ci
t(s

t), ℓi
t(s

t)) di+∑
t

βtµt

[
X ∗

t (p)−
∫ 1

0
ci

t(s
t)di+ Ft

( ∫ 1

0
zi

t(s
t)ℓi

t(s
t)di
)]

.

The first-order condition for consumption ci
t(s

t) is given by

αiπ(st)ui
c,t(s

t) = µt.

The first-order condition for labor supply ℓi
t(s

t) is given by

αiπ(st)ui
ℓ,t(s

t) = −Fℓ,tµtzi
t(s

t).

And the first-order condition for the price pt is given by

0 = ∑
k

βkµk
∂X ∗

k
∂pt

.

We now rearrange these equations. First, we get the MRS = MRT efficiency condition by

solving the first two FOCs for µt, yielding

ui
ℓ,t(s

t) = −Fℓ,tui
c,t(s

t)zi
t(s

t).

where the αi drop out because we are comparing MRS and MRT for a given individual i.
Second, we get the MRS equalization condition by solving out for µt in the first FOC across

two individuals i and j, and across two different histories st and sk. We can write

αiui
c,t(s

t) = αjuj
c,t(s

t)

We now divide this equation for date t and history st by the same equation for date k and history sk.

The Pareto weights αi and αj drop out, and we arrive at the efficiency condition of the Proposition.

Third, we get one additional efficiency condition because we focus on idiosyncratic risk, which

implies that the Lagrange multiplier µt is not contingent on the history. Therefore, we can again use

the first FOC and compare across two different histories st and s̃t at the same date within individual

i, yielding

π(st)ui
c,t(s

t) = π(s̃t)ui
c,t(s̃

t),

which is the desired condition.

Finally, notice that all MRS are equalized across individuals, which implies that we can define
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the economy-wide MRS for Home as

MRSkt =
βkπ(sk)ui

c,k(s
k)

βtπ(st)ui
c,t(st)

which is equal across all i. Using the first FOC to solve out for µt, we can therefore rewrite the third

FOC for the price as

0 = ∑
k

βkαiπ(sk)ui
c,k(s

k)
∂X ∗

k
∂pt

= ∑
k

βkπ(sk)ui
c,k(s

k)

βtπ(st)ui
c,t(st)

∂X ∗
k

∂pt
,

which concludes the proof. ■

A.3 Proof of Proposition 2

Proof. The proof is presented in the main text. ■

A.4 Proof of Proposition 3

Proof. The Ramsey problem for optimal second-best tariffs in the environment of Section 2.5 is

given by

max
∫ 1

0
αi ∑

t
βt ∑

st

π(st)ui(ci
t(s

t), ℓi
t(s

t)) di,

subject to

ci
t(s

t) = C i
t(p, τ, st)

ℓi
t(s

t) = Li
t(p, τ, st)

X ∗
t (p) =

∫ 1

0
ci

t(s
t) di − Ft

( ∫ 1

0
zi

t(s
t)ℓi

t(s
t) di

)
We refer to the first and second constraint as internal implementability conditions and to the third

constraint as the external implementability condition.

Our proof strategy is as follows, building on Dávila and Schaab (2024) and Dávila and Schaab

(2023b): We consider a feasible and implementable perturbation dτk. When evaluated at the Ramsey

plan, the planner must be indifferent to such a perturbation from the perspective of date 0. That is,

we must have

0 =
dW0

dτk
= ∑

i

∂W
∂Vi

0

dVi
0

dτk

for all k around the Ramsey plan. Here, αi = ∂W
∂Vi

0
denotes the marginal contribution of individual i

to social welfare under the social welfare function W . We proceed in 5 steps.
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Step 1 (Welfare Numeraire). We express the welfare assessment in a comparable unit which

we call the welfare numeraire. For simplicity, we express interpersonal comparisons in units of

consumption at date 0. Therefore, the Ramsey FOC can be written as

0 =
1∫ 1

0 αiλidi

dW0

dτk
=

1∫ 1
0 αiλidi

∫ 1

0
αiλi 1

λi
dVi

0
dτk

di

where λi = ui
c,0 is the normalizing factor that translates individual gains and losses into units

of date 0 consumption. Multiplying and dividing by λi accomplishes that 1
λi

dVi
0

dτk
now captures

individual i’s willingness to pay for the tariff perturbation dτk in (consumption-equivalent) units of

date 0 consumption. We can therefore rewrite the Ramsey FOCs as

0 =
∫ 1

0
ωi 1

λi
dVi

0
dτk

di,

where ωi = αiλi∫ 1
0 αiλidi

is the normalized individual welfare weight expressed in units of welfare

numeraire.

Step 2 (Redistribution). We first show that optimal tariff policy trades off efficiency and redistri-

bution considerations. Noticing that
∫ 1

0 ωidi = 1, a covariance decomposition of the Ramsey FOCs

yields

0 =
∫ 1

0

1
λi

dVi
0

dτk
di + Covi

(
ωi,

1
λi

dVi
0

dτk

)
,

where the first term captures all efficiency gains from tariff perturbation dτk and the second term

captures redistribution gains (Dávila and Schaab, 2024).

In the main text, we assume that individuals are ex ante homogeneous, in which case ωi = ω j

for all i and j, and so the redistribution term drops out. We maintain this assumption in the

remainder of the proof. A general targeting formula for optimal second-best tariffs will include the

redistribution motive Covi(ω
i, 1

λi
dVi

0
dτk

).

Step 3 (Risk-Sharing). We now start unpacking the efficiency gains from optimal tariff policy.

Notice that efficiency can be written as

∫ 1

0

1
λi ∑

t
βt ∑

st

π(st)

[
ui

c,t(s
t)

dci
t(s

t)

dτk
+ ui

ℓ,t(s
t)

dℓi
t(s

t)

dτk

]
di

after using the definition of i’s lifetime utility. Notice that here and throughout it is understood that

the total derivatives refer to

dci
t(s

t)

dτk
=

∂C i
t(r, τ, st)

∂τk
+ ∑

s

∂C i
t(r, τ, st)

∂rs

drs

dτk
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and similarly for dℓi
t(s

t)
dτk

, where drs
dτk

is determined by the implementability condition (10).

We also assume in the main text that, conditional on the aggregate labor wedge, individuals

are then on their individual labor-leisure conditions. That is,

ui
ℓ,t(s

t) = −zi
t(s

t)Fℓ,t(1 − Λℓ
t )u

i
c,t(s

t),

which allows us to rewrite the efficiency term simply as

0 =
∫ 1

0

1
λi ∑

t
βt ∑

st

π(st)ui
c,t(s

t)

[
dci

t(s
t)

dτk
− zi

t(s
t)Fℓ,t(1 − Λℓ

t )
dℓi

t(s
t)

dτk

]
di.

Going forward, we denote by

dVi
t (s

t)

dτk
=

dci
t(s

t)

dτk
− zi

t(s
t)Fℓ,t(1 − Λℓ

t )
dℓi

t(s
t)

dτk

the consumption-equivalent welfare gain of individual i at date t in history st from the tariff

perturbation dτk.

We therefore have

0 =
∫ 1

0

1
λi ∑

t
βt ∑

st

π(st)ui
c,t(s

t)
dVi

t (s
t)

dτk
di

=
∫ 1

0
∑

t
∑
st

βtπ(st)ui
c,t(s

t)

ui
c,0

dVi
t (s

t)

dτk
di

=
∫ 1

0
∑

t
∑
st

βt ∑st π(st)ui
c,t(s

t)

ui
c,0

π(st)ui
c,t(s

t)

∑st π(st)ui
c,t(st)

dVi
t (s

t)

dτk
di

where we plugged in for λi = ui
c,0. We have expressed the efficiency gain of the tariff perturba-

tion in terms of three key objects: First, the consumption-equivalent welfare gain dVi
t (s

t)
dτk

records

individual i’s willingness to pay for the allocation change the perturbation induces at date t in

history st. Second, π(st)ui
c,t(s

t)

∑st π(st)ui
c,t(st)

captures individual i’s marginal rate of substitution between a unit

of consumption in history st and a unit of consumption in all histories at date t. Dispersion in

this MRS across histories indicates that individual i is not able to smooth marginal utilities across

histories. Third, βt ∑st π(st)ui
c,t(s

t)

ui
c,0

captures the MRS of individual i between a unit of consumption at

date t (in all histories st) and a unit of consumption at date 0.

Under the assumption of ex ante homogeneous households, which we make in the main text,

we have
βt ∑st π(st)ui

c,t(s
t)

ui
c,0

=
βt ∑st π(st)uj

c,t(s
t)

uj
c,0

= ωt

for all i and j. In other words, all individuals have the same valuation of date t consumption in
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expectation. This would not be the case if individuals were already heterogeneous at date 0. But

under this simplifying assumption, we can now rewrite the Ramsey FOC as

0 = ∑
t

ωt ∑
st

∫ 1

0

π(st)ui
c,t(s

t)

∑st π(st)ui
c,t(st)

dVi
t (s

t)

dτk
di.

One final cross-sectional covariance decomposition then yields

0 = ∑
t

ωt ∑
st

∫ 1

0

dVi
t (s

t)

dτk
di︸ ︷︷ ︸

Aggregate Efficiency

+∑
t

ωt ∑
st

Covi

(
π(st)ui

c,t(s
t)

∑st π(st)ui
c,t(st)

,
dVi

t (s
t)

dτk

)
︸ ︷︷ ︸

Risk-Sharing

since ∫ 1

0

π(st)ui
c,t(s

t)

∑st π(st)ui
c,t(st)

di = 1

when individuals are ex ante homogeneous due to a law of large numbers. We have therefore

decomposed the efficiency gain of the tariff perturbation into an aggregate efficiency component

and a risk-sharing component.

Step 4 (Intertemporal Terms of Trade Manipulation) Finally, we now unpack the aggregate

efficiency gains from the tariff perturbation into a production efficiency gain and a terms of trade

manipulation gain. Aggregate efficiency is given by

∑
t

ωt ∑
st

∫ 1

0

dVi
t (s

t)

dτk
di = ∑

t
ωt ∑

st

∫ 1

0

[
dci

t(s
t)

dτk
− zi

t(s
t)Fℓ,t(1 − Λℓ

t )
dℓi

t(s
t)

dτk

]
di

= ∑
t

ωt
dct

dτk
− ∑

t
ωtFℓ,t(1 − Λℓ

t )∑
st

∫ 1

0
zi

t(s
t)

dℓi
t(s

t)

dτk
di

= ∑
t

ωt
dct

dτk
− ∑

t
ωtFℓ,t(1 − Λℓ

t )
dℓt

dτk

Using the external implementability condition (10), we can rewrite this as

∑
t

ωt

[
dct

dτk
− Fℓ,t(1 − Λℓ

t )
dℓt

dτk

]
= ∑

t
ωt

[
dct

dτk
− Fℓ,t

dℓt

dτk

]
+ ∑

t
ωtFℓ,tΛℓ

t
dℓt

dτk

= ∑
t

ωt
dx∗t
dτk

+ ∑
t

ωtΛℓ
t

dyt

dτk
.

And finally, we use the sequence-space representation of Foreign x∗t = X ∗
t (p) to write

∑
t

ωt ∑
s

∂X ∗
t

∂ps

dps

dτk
+ ∑

t
ωtΛℓ

t
dyt

dτk
.
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Notice that we can rewrite the first term as

∑
t

ωt ∑
s

∂X ∗
t

∂ps

dps

dτk
= ∑

s
∑

t
ωt

∂X ∗
t

∂ps

dps

dτk
= ∑

s
ΛITM

s
dps

dτk
,

where ΛITM
s = ∑t ωt

∂X ∗
t

∂ps
, which concludes the proof.

■

A.5 Proof of Lemma 2

Proof. Most of the proof is presented constructively in the main text. To fill in the missing steps,

notice that

∂ log C∗
k

∂ log pt
=

pt

c∗k

∂C∗
k

∂pt

=
pt

c∗k

pk

βku∗
cc,k

∂λ∗

∂pt
+

pt

c∗k

λ∗

βku∗
cc,k

1k=t

=
pt

c∗k

pk

βku∗
cc,k

λ∗

λ∗
u∗

c,k

u∗
c,k

∂λ∗

∂pt
+

pt

c∗k

pk

pk

u∗
c,k

u∗
c,k

λ∗

βku∗
cc,k

1k=t

=
1
c∗k

u∗
c,k

u∗
cc,k

∂ log λ∗

∂ log pt
+

pt

c∗k

1
pk

u∗
c,k

u∗
cc,k

1k=t

=
1
c∗k

u∗
c,k

u∗
cc,k

∂ log λ∗

∂ log pt
+

1
c∗t

u∗
c,t

u∗
cc,t
1k=t

where we last line follows from noting that the second term only survives when k = t, which allows

us to change the time subscripts. Finally, we define the inverse IES as γ∗
t = − c∗t u∗

cc,t
u∗

c,t
, which leads to

∂ log C∗
k

∂ log pt
= − 1

γ∗
k

∂ log λ∗

∂ log pt
− 1

γ∗
k
1k=t

as in the Lemma.

Next, we denote by p the vector whose t-th entry is ∂ log λ∗

∂ log pt
, and by ϕ the vector whose t-th

entry is − 1
γ∗

t
. Then we have

∂ log C∗
k

∂ log pt
= ϕk1k=t + ϕkρt

or in matrix notation

C = diag(ϕ) + ϕρ′.

Therefore, the log sequence-space Jacobian C is the sum of a diagonal matrix and an outer product
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of two vectors. We denote the former by D = diag(ϕ) and the latter by P = ϕρ′. A matrix formed

by the outer product of two vectors has rank one.

Since we are dealing with infinite vectors and matrices, we work on the space of bounded

sequences

ℓ∞ =
{

z = {zt}t≥0 : ||z||∞ = sup
t≥0

z < ∞
}

We have ϕ ∈ ℓ∞ and ρ ∈ ℓ∞. This implies that their outer product P is bounded on ℓ∞ and of rank

one. Also, notice that κ = ∑t ρt exists.

Finally, consider the case with CRRA consumption preferences and γ∗
t = γ. In that case, we

have

C = − 1
γ

I − 1
γ

1ρ′,

where I is the identity matrix and 1 is the infinite column vector of 1s. This implies that − 1
γ is one

eigenvalue of infinite multiplicity. There can only be at most one additional eigenvalue since C in

this case represents a rank-one shift of a multiple of the identity matrix. This eigenvalue is given by

− 1
γ (1 + κ).

■

A.6 Proof of Proposition 4

Proof. We now prove that the intertemporal tariff formula collapses to the static one presented in

the main text. First, notice that we can write

1
τt

= ∑
k

ωkt
∂ logX ∗

k
∂ log pt

= ∑
k

ωkt
pt

x∗k

∂X ∗
k

∂pt

= −∑
k

ωkt
pt

x∗k

∂C∗
k

∂pt

= −∑
k

ωkt
pt

x∗k

∂C̃∗
k

∂λ∗
∂λ∗

∂pt
− pt

x∗t

∂C̃∗
t

∂pt

All we have to show is that the first term is 0, because from there it immediately follows that

1
τt

= − pt

x∗t

λ∗

βtu∗
cc,t

= − 1
x∗t

λ∗pt

βtu∗
c,t

u∗
c,t

u∗
cc,t

= − 1
x∗t

u∗
c,t

u∗
cc,t

as in the main text.
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To show that the first term is 0 for all t. We have

0 = −∑
k

ωkt
pt

x∗k

∂C̃∗
k

∂λ∗
∂λ∗

∂pt
⇐⇒ 0 = ∑

k
ωkt

pt

x∗k

∂C̃∗
k

∂λ∗ = ∑
k

τk pkx∗k
τt ptx∗t

pt

x∗k

∂C̃∗
k

∂λ∗

And this will be true if and only if

0 = ∑
k

τk pk
∂C̃∗

k
∂λ∗ = ∑

k
τk pk

pk

βku′′(c∗k )
⇐⇒ 0 = ∑

k
τk pk

u′(c∗k )
u′′(c∗k )

,

where we used βku′(c∗k ) = λ∗pk and the fact that λ∗ comes out of the sum.

Next, define

Z = ∑
k

τk pk
u′(c∗k )
u′′(c∗k )

Then we can write the intertemporal tariff formula as

1
τt

= −∂λ∗

∂pt

1
τtx∗t

∑
k

τk pk
∂C̃∗

k
∂λ∗ − pt

x∗t

∂C̃∗
t

∂pt

= −∂λ∗

∂pt

1
τtx∗t

1
λ∗ Z − pt

x∗t

∂C̃∗
t

∂pt

= −∂ log λ∗

∂ log pt

1
τt ptx∗t

Z − 1
x∗t

λ∗pt

βtu′(c∗t )
u′(c∗t )
u′′(c∗t )

= −∂ log λ∗

∂ log pt

1
τt ptx∗t

Z − 1
x∗t

u′(c∗t )
u′′(c∗t )

Therefore, we have

ptx∗t = −∂ log λ∗

∂ log pt
Z − τt pt

u′(c∗t )
u′′(c∗t )

= −∂ log λ∗

∂ log pt
Z +

1
γ∗

t
τt ptc∗t

or simply

τt = γ∗
t

1
ptc∗t

(
ptx∗t +

∂ log λ∗

∂ log pt
Z
)
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We can now plug this into the equation for Z, which yields

Z = −∑
k

1
γ∗

k
τk pkc∗k

= −∑
k

(
pkx∗k +

∂ log λ∗

∂ log pk
Z
)

= −∑
k

pkx∗k − Z ∑
k

∂ log λ∗

∂ log pk

or simply

Z
(

1 + ∑
k

∂ log λ∗

∂ log pk

)
= ∑

k
pkx∗k = −NFA∗

0 ,

which is 0 when NFA∗
0 = 0 as we assume in Section 3.1.

We can also make the argument in a different way. From the Home efficiency condition with

tariff

0 = ∑
k
(1 + τk)pk

∂X ∗
k

∂pt
.

Also from the lifetime budget constraint, we have

0 = x∗t + ∑
k

pk
∂X ∗

k
∂pt

=⇒ x∗t = ∑
k

pk
∂C∗

k
∂pt

Therefore, we have

−x∗t = ∑
k

τk pk
∂C∗

k
∂pt

= ∑
k

τk pk

[
pk

βku′′(c∗k )
∂λ∗

∂pt
+

λ∗

βku′′(c∗k )
1k=t

]

= ∑
k

τk pk
pk

βku′′(c∗k )
∂λ∗

∂pt
+ τt pt

λ∗

βtu′′(c∗t )

And notice that this can be written as

−x∗t =
∂λ∗

∂pt

1
λ∗ ∑

k
τk pk

u′(c∗k )
u′′(c∗k )

+ τt pt
λ∗

βtu′′(c∗t )

=
∂λ∗

∂pt

1
λ∗ Z + τt pt

λ∗

βtu′′(c∗t )
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Separately, notice that fully differentiating the lifetime budget constraint and the FOC yields

x∗t = ∑
k

pk
∂c∗k
∂pt

βku′′(c∗k )
∂c∗k
∂pt

= pk
∂λ∗

∂pt
+ λ∗ ∂pk

∂pt

which lets us solve for

x∗t = ∑
k

pk

[
pk

βku′′(c∗k )
∂λ∗

∂pt
+

λ∗

βku′′(c∗k )
∂pk

∂pt

]

x∗t =
∂λ∗

∂pt
∑

k

p2
k

βku′′(c∗k )
+ pt

λ∗

βtu′′(c∗t )

or simply

∂λ∗

∂pt
=

1

∑k
p2

k
βku′′(c∗k )

(
x∗t − pt

λ∗

βtu′′(c∗t )

)

Now we can put these two together, which yields

−x∗t =
1

∑k
p2

k
βku′′(c∗k )

(
x∗t − pt

λ∗

βtu′′(c∗t )

)
1

λ∗ Z + τt pt
λ∗

βtu′′(c∗t )

=
1

1
λ∗ ∑k pk

u′(c∗k )
u′′(c∗k )

(
x∗t −

u′(c∗t )
u′′(c∗t )

)
1

λ∗ Z + τt
u′(c∗t )
u′′(c∗t )

=
1

∑k pk
u′(c∗k )
u′′(c∗k )

(
x∗t −

u′(c∗t )
u′′(c∗t )

)
Z + τt

u′(c∗t )
u′′(c∗t )

This allows us to solve for the tariff as

τt
u′(c∗t )
u′′(c∗t )

= −x∗t −
1

∑k pk
u′(c∗k )
u′′(c∗k )

(
x∗t −

u′(c∗t )
u′′(c∗t )

)
Z

or simply

τt = −u′′(c∗t )
u′(c∗t )

x∗t −
1

∑k pk
u′(c∗k )
u′′(c∗k )

(
u′′(c∗t )
u′(c∗t )

x∗t − 1
)

Z

Plugging back into the definition of Z completes the proof.

■
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A.7 Proof of Proposition 5

Proof. The proof is presented in the main text. ■

B A Neoclassical Representative Agent Production Economy

This Appendix presents a variant of the representative agent (RA) model of Section 3.1 with

production. We show that the intertemporal export supply function X ∗ and its sequence-space

Jacobian E continue to take the special form discussed in Lemma 2 in this production economy.

B.1 Environment

Households. Home and Foreign are each populated by a representative household whose lifetime

utilities are

V0 = ∑
t

βtu(ct, ℓt) and V∗
0 = ∑

t
βtu(c∗t , ℓ∗t ). (46)

We denote the intertemporal price of the single consumption good by pt. Assuming complete

financial markets allows us to write the consumption-savings problems of both households in

terms of the lifetime budget constraints

0 = ∑
t
((1 + τt)ptct − wtℓt + Tt) and 0 = ∑

t
(ptc∗t − w∗

t ℓ
∗
t ), (47)

where wt and w∗
t denote the local wage rates in both countries, τt is Home’s import tariff, and Tt

is a lump-sum rebate. We assume here for simplicity that both countries’ initial net foreign asset

positions are 0 and that Foreign does not set a tariff.

Households therfore maximize preferences (46) subject to (47). Denoting the Lagrange multi-

pliers on each lifetime budget constraint by λ and λ∗, the associated first-order conditions are

βtuc,t = λ(1 + τt)pt and − uℓ,t

uc,t
=

wt

(1 + τt)pt
(48)

for Home and

βtu∗
c,t = λ∗pt and −

u∗
ℓ,t

u∗
c,t

=
w∗

t
pt

(49)

for Foreign, where we use the shorthand notation uc,t =
∂

∂ct
u(ct, ℓt) and so forth.

Firms. A representative and perfectly competitive firm operates a production technology in each

country that is linear in labor and given by

yt = Atℓt and y∗t = A∗
t ℓ

∗
t , (50)
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where productivities At and A∗
t follow exogenous deterministic paths. We assume that firms at

Home are subject to a subsidy on revenue also given by τt. Profit maximization therefore implies

the optimality conditions

wt = (1 + τt)pt At and w∗
t = pt A∗

t . (51)

Government, market clearing, and competitive equilibrium. The Home government runs a

balanced budget. This requires that tax receipts are equal to rebates and subsidies,

τt ptct = Tt + τt ptyt (52)

in all periods t. In other words, the government taxes imports when ct − yt > 0 and subsidizes

exports when ct − yt < 0.

The market clearing condition for the single consumption good at date t is given by

yt + y∗t = ct + c∗t . (53)

Market clearing for labor in each country is already implicit in our notation since we do not

distinguish between labor demand and supply.

Definition 4 (Competitive Equilibrium). Taking as given sequences A and A∗ as well as Home tariffs τ,
a world competitive equilibrium comprises allocations (c, c∗, ℓ, ℓ∗, y, y∗, T), multipliers (λ, λ∗) and prices
(p, w, w∗) that satisfy production technologies (50), lifetime budget constraints (47), household optimization
in Home (48) and Foreign (49), firm optimization (51), the Home government budget constraint (52), and
market clearing (53).

B.2 Intertemporal Export Supply Elasticities

In the absence of distortions, the Home efficiency condition (12) and optimal tariff formula (13)

apply as-is to this production economy. We start with a constructive derivation of the intertemporal

export supply function X ∗.

The Foreign household problem can then be characterized by the lifetime budget constraint

(47) and the two first-order conditions in (49). We use firm optimality condition (51) to solve for

the Foreign wage w∗
t . The labor-leisure condition then solves for labor supply ℓ∗t as a function of

consumption c∗t and exogenous technology A∗
t . The Euler equation for consumption solves for c∗t

as a function of the contemporaneous price pt and the Lagrange multiplier λ∗. And finally, the

lifetime budget constraint solves for the multiplier λ∗ as a function of the entire sequence of prices

p = {pt}t≥0 after plugging in the two FOCs.

In summary, we can use the Foreign competitive equilibrium conditions to derive sequence-

space representations of the Foreign consumption and labor supply functions, given by c∗t = C∗
t (p)
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and ℓ∗t = L∗
t (p). The consumption function C∗

t (p) maps a time path of prices p into a level of

consumption c∗t at date t that is consistent the budget constraint and optimal behavior of the

Foreign household. The labor supply function L∗
t (p) maps an infinite sequence of prices into the

household’s desired labor supply. Both of these functions are partial equilibrium objects. They are

defined using only the conditions (47) and (49) describing the Foreign household problem and do

not account for general equilibrium adjustments that work through market clearing conditions.

With these two functions in hand, the intertemporal export supply function is simply given by

X ∗
t (p) = A∗

t L∗
t (p)− C∗

t (p), and its sequence-space Jacobian is characterized by

∂X ∗
k

∂pt
= A∗

k
∂L∗

k
∂pt

−
∂C∗

k
∂pt

. (54)

We now show that this sequence-space Jacobian has a special form because Foreign households

are permanent-income consumers. First, notice that plugging the labor supply and consumption

functions into the Foreign household’s labor-leisure condition implies

−u∗
ℓℓ,k

∂L∗
k

∂pt
= A∗

k u∗
cc,k

∂C∗
k

∂pt

where we assume that u(·) is additively separable in consumption and labor supply. In other

words, we can characterize the sequence-space Jacobian of the labor supply function in terms of

that of the consumption function. Plugging back into the previous equation, we have

∂X ∗
k

∂pt
= −

[
(A∗

k )
2 u∗

cc,k

u∗
ℓℓ,k

+ 1
]

∂C∗
k

∂pt
.

Defining the relevant elasticities by

γ∗
t = −

c∗t u∗
cc,t

u∗
c,t

and ϕ∗
t = −

ℓ∗t u∗
ℓℓ,t

u∗
ℓ,t

we can rewrite this as
∂X ∗

k
∂pt

= −
[
(A∗

k )
2 γ∗

k u∗
c,k

ϕ∗
k u∗

ℓ,k

ℓ∗k
c∗k

+ 1
]

∂C∗
k

∂pt
.

Finally, using the Foreign labor-leisure condition, we arrive at

∂X ∗
k

∂pt
=

(
γ∗

k
ϕ∗

k

y∗k
c∗k

− 1
)

∂C∗
k

∂pt
.

Two important takeaways emerge. First, just like in the endowment economy of Section 3.1, the

intertemporal export supply elasticities can be micro-founded in terms of Foreigns intertemporal

consumption function. Second, unlike in Section 3.1, the export response at date k to a price change

at date t may no longer be negatively related to the consumption response ∂C∗
k .
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For example, under a standard CRRA calibration with γ∗
t = ϕ∗

t = 2, the export response

locally around balanced trade is actually 0. Under a trade surplus, with y∗k > c∗k , the export supply

response is positively related to the consumption response. It is only under a trade deficit, with

y∗k < c∗k , that the export supply response is negatively related to the consumption response as in

Section 3.1.

C A New Keynesian Model

C.1 Preferences, Technologies and Resource Constraints

The world economy comprises two large countries, Home and Foreign, and each is populated by a

representative household. There is a single final consumption good that is produced in and traded

by both countries. We study the cashless limit, where a vanishing fraction of transactions in the

two countries must be conducted in Home currency and Foreign currency, respectively. Finally,

time is discrete, with t ∈ {0, 1, . . .}, and we abstract from uncertainty.

Preferences. Households in both regions have direct preferences over the single consumption

good, given by

V0 = ∑
t

βtu(ct, ℓt) and V∗
0 = ∑

t
βtu(c∗t , ℓ∗t )

where ct and c∗t denote consumption in Home and Foreign. Households also supply labor, denoted

ℓt and ℓ∗t . Preferences are otherwise symmetric.

Technologies. Both countries are endowed with technologies to produce the single consumption

good using labor. These are given by

yt = Atℓt and y∗t = A∗
t ℓ

∗
t .

Labor is immobile across countries.

Resource constraints. The resource constraint for the consumption good at date t is given by

ct + c∗t = yt + y∗t .

C.2 Competitive Equilibrium

We now specify how households, firms, labor unions and the government interact in a world

competitive equilibrium. We denote the numeraire price for the consumption good at date t by pt,

and the prices for Home and Foreign currency by pH,t and pF,t, respectively. We will eventually

choose Foreign currency as our numeraire and normalize pF,t = 1, so that pH,t takes on the role of a
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nominal exchange rate, but we will for now keep all prices explicit. Finally, we denote by τt Home’s

import tariff at date t, which is the combination of a consumption tax and a production subsidy.

Asset markets. There are two nominal bonds. A unit of bond purchased at date t matures at

date t + 1 and pays one unit of local currency. We denote the prices at which the Home and

Foreign bonds trade by qH,t and qF,t, respectively. Financial markets are not segmented so that all

households can trade both bonds.

Household problem. Households supply labor and earn the local wage wt in Home and w∗
t in

Foreign, in units of numeraire. In the cashless limit of our economy, the Home household budget

constraint can be written as

qH,tbH,t+1 + qF,tbF,t+1 + (1 + τt)ptct = pH,tbH,t + pF,tbF,t + wtℓt + Tt.

And the Foreign household budget constraint is

qH,tb∗H,t+1 + qF,tb∗F,t+1 + ptc∗t = pH,tb∗H,t + pF,tb∗F,t + w∗
t ℓ

∗
t + T∗

t .

All prices are in units of numeraire. A unit of Home bond purchased at price qH,t at date t pays off

one unit of Home currency at date t + 1, whose numeraire value is pH,t+1.

The problem of a household in Home is therefore to choose sequences {ct, bH,t+1, bF,t+1, ℓt} to

maximize V0, subject to the Home budget constraint, taking as given prices {qg,t, qs,t, pc,t, pg,t, wt}.

Firms. There is a representative firm in each country that operates the production technology and

produces the consumption good using local labor. Firm profits are

Πt = (1 + τt)ptyt − wtℓt and Π∗
t = pty∗t − w∗

t ℓ
∗
t .

The firm problem is to choose labor to maximize profits. It implies the first-order conditions

(1 + τt)pt At = wt and pt A∗
t = w∗

t ,

so that profits are 0.

Unions and labor market structure. We now introduce the key assumption: Wages are sticky

in units of local currency. We follow the standard model of the wage rigidity literature Erceg et al.

(2000). Household labor supply decisions are intermediated by labor unions. A household in Home

supplies ℓk,t units of labor to k ∈ [0, 1] unions. Each labor union is endowed with a technology to

differentiate these work hours into a differentiated labor factor k one-for-one. We abuse notation

and directly denote this differentiated factor by ℓk,t.
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There is a firm in the economy which we call the labor packer. This firm demands differentiated

labor factors ℓk,t and produces a pure intermediate input, which we call aggregate labor. It does so

according to the production technology

ℓt =

( ∫ 1

0
ℓ

ϵ−1
ϵ

k,t dk
) ϵ

ϵ−1

.

This firm then sells aggregate labor as an input to the representative firm at price wt in units of

numeraire. The labor packer pays each union a price wk,t for its differentiated labor variety. Cost

minimization by the labor packer therefore yields a demand function

ℓk,t =

(
wk,t

wt

)−ϵ

ℓt

and an aggregate wage index

wt =

( ∫ 1

0
w1−ϵ

k,t dk
) 1

1−ϵ

.

Union k chooses its wage {wk,t} to maximize the lifetime utility of the representative household.

We model nominal rigidities as follows. At each date t, the union can change its wage wk,t. But

when the new local currency wage deviates from the previous one, the union must pay an adjustment

cost that is passed to the household directly as a utility cost. We refer to local currency wages as

wages in units of local currency rather than numeraire. Home local currency wages are given by

Wk,t ≡
wk,t

pH,t

and we define their growth rate as

1 + πW
k,t =

Wk,t

Wk,t−1
.

We can therefore associate the union problem with the Lagrangian

L = ∑
t

βt
[

u
(

ct({Wk,t}k),
∫ 1

0
ℓk,tdk

)
− δ

2
1

1 + πW
t

∫ 1

0
(πW

k,t)
2dk
]
+ ∑

t
βtλt

[
Wk,t

Wk,t−1
− (1 + πW

k,t)

]
subject to the demand function for ℓk,t, which we simply plug in directly. We scale the adjustment

cost by 1
1+πW

t
, which will allow us to derive a particularly tractable wage Phillips curve. The

first-order condition for Wk,t is

0 = uc,t
∂ct

∂Wk,t
+ uℓ,t

∂ℓk,t

∂Wk,t
+

1
Wk,t−1

λt − βλt+1Wk,t+1
1

Wk,t

1
Wk,t

where
∂ℓk,t

∂Wk,t
= −ϵ

(
wk,t

wt

)−ϵ−1 1
wt

ℓt
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The second optimality condition for πW
k,t is

0 = −δ
1

1 + πW
t

πW
t − λt.

To derive the wage Phillips curve, we have to work out how wage changes affect the Home

household. This requires expressing the household problem in units of local currency. We can first

rewrite the Home household budget constraint in units of numeraire, accounting for the fact that

the household supplies labor to different unions,

qH,tbH,t+1 + qF,tbF,t+1 + (1 + τt)ptct = pH,tbH,t + pF,tbF,t +
∫ 1

0
(1 + τℓ)wk,tℓk,tdk + Tt,

where τℓ is an employment subsidy on union k’s wage payment. When union k pays the household

a total compensation wk,tℓk,t for her labor, then the government pays an additional proportional

subsidy τℓwk,tℓk,t. At the same time, the government pays for this subsidy by taxing households

lump-sum on aggregate labor. But unions take the aggregate government rebate Tt as given.

Rewriting the budget constraint in local currency units yields

qH,t

pH,t
bH,t+1 +

qF,t

pH,t
bF,t+1 +(1+ τt)

pt

pH,t
ct = bH,t +

pF,t

pH,t
bF,t +(1+ τℓ)

∫ 1

0
Wk,t

(
Wk,t

Wt

)−ϵ

ℓtdk+
1

pH,t
Tt.

Finally, we apply the envelope theorem and obtain the income effect on consumption that the union

internalizes when changing wages as

∂ct

∂Wk,t
=

pH,t

(1 + τt)pt
(1 + τℓ)(1 − ϵ)

(
Wk,t

Wt

)−ϵ

ℓt.

Finally, we initialize all unions at the symmetric wage distribution wk,0 = wk′,0 which implies

that unions will always be symmetric ex post as well under Rotemberg adjustment costs, with

wk,t = wt for all k and t. Leveraging this, we can then write the two first-order conditions of the

union problem as

0 = uc,t
pH,t

(1 + τt)pt
(1 + τℓ)(1 − ϵ)ℓt − uℓ,tϵ

1
Wt

ℓt +
1

Wt−1
λt − βλt+1Wt+1

1
Wt

1
Wt

0 = −δ
1

1 + πW
t

πW
t − λt.

From the second condition, we have λt+1 = −δ
πW

t+1
1+πW

t+1
. And plugging this into the first condition

yields

0 = uc,t
wt

(1 + τt)pt
(1 + τℓ)(1 − ϵ)ℓt − uℓ,tϵℓt − δπW

t + δβπW
t+1
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or simply

πW
t = −ϵ

δ

[
uc,t

wt

(1 + τt)pt
(1 + τℓ)

ϵ − 1
ϵ

+ uℓ,t

]
ℓt + βπW

t+1.

This is the exact analog of the continuous time Phillips curve we later derive in Section D. If we

had not scaled the Rotemberg adjustment cost by 1
1+πW

t
, we would have obtain the same Phillips

curve as in Auclert et al. (2024b),

πW
t (1 + πW

t ) = −ϵ

δ

[
uc,t

wt

(1 + τt)pt
(1 + τℓ)

ϵ − 1
ϵ

+ uℓ,t

]
ℓt + βπW

t+1(1 + πW
t+1).

Foreign wage Phillips curve. Crucially, Foreign wages are sticky in Foreign currency rather than

Home currency. So we define the local currency wage in Foreign as

W∗
t =

w∗
t

pF,t
.

Most of the derivation of the Foreign Phillips curve is symmetric. The income effect on consumption

of a household in Foreign is therefore given by

∂c∗t
∂W∗

k,t
=

pF,t

pt
(1 + τℓ)(1 − ϵ)

(W∗
k,t

W∗
t

)−ϵ

ℓ∗t .

We define Foreign inflation as

πW,∗
t =

W∗
t

W∗
t−1

− 1 =
pF,t−1

w∗
t−1

w∗
t

pF,t
− 1 =

1 + πw,∗
t

1 + πF
t

− 1.

This implies a symmetric Phillips curve.

Policy. Fiscal policy in Home comprises four instruments: the import tariff τt, the lump-sum

rebate Tt, and the employment subsidy τℓ. We assume that the Home planner can set tariffs

optimally but must run a balanced budget each period. This requires

τt ptCt = Tt + τt ptyt + τℓwtℓt,

where on the LHS we have tariff revenue and on the RHS total outlays, which comprise the transfer

Tt, the production subsidy to firms, and the employment subsidy to unions.

The Home planner sets monetary policy, i.e., the Home bond price qH,t, optimally. Monetary

policy in Foreign sets the Foreign bond price according to a Taylor rule,

qF,t = Tt(π
W,∗).
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The Taylor rule Tt allows for a flexible dependence of the date t bond price on Foreign nominal

wage inflation πW,∗ = {πW,∗
k }k≥0.

Markets and equilibrium. Five markets must clear in equilibrium. The world goods market

coincides with the resource constraint introduced earlier. Labor market clearing in both countries

is already implicit in our notation, where ℓt and ℓ∗t were used to denote both labor demand and

supply. Finally, asset market clearing requires

bH,t + b∗H,t = 0 and bF,t + b∗F,t = 0.

Under no-arbitrage, households’ portfolio positions in the two bonds is indeterminate. The two

asset market clearing conditions are thus effectively equivalent to a single market clearing condition

in terms of total asset holdings or wealth. In particular, we can multiply the two bond market

clearing conditions by the bond prices, add them up, and arrive at which by adding simply implies

Bt + B∗
t = 0,

where we define Bt = qH,t−1bH,t + qF,t−1b∗F,t and B∗
t = qH,t−1b∗H,t + qF,t−1b∗F,t as total wealth in units

of numeraire. We will drop this market clearing condition by Walras’ law and instead work with

goods market clearing.

Definition 5 (World Competitive Equilibrium). Taking as given exogenous sequences of shocks (A, A∗)

and Home policy (τ, qH), a world competitive equilibrium with sticky wages comprises a Home allocation
(y, c, ℓ), a Foreign allocation (y∗, c∗, ℓ∗), and prices (qF, p, pH, pF, w, w∗) such that households, unions
and firms in both countries optimize and markets clear.

C.3 Optimal Monetary and Tariff Policy

The Home planning problem is to choose monetary and tariff policy (τ, qH) to maximize the

lifetime utility of the representative household, taking as given all the conditions that characterize

world competitive equilibrium. We now present the main result of this Appendix and then provide

a constructive proof.

Proposition 6 (Optimal monetary and tariff policy). Home’s jointly optimal monetary and tariff policy
restores the flexible-wage allocation and sets import tariffs according to the intertemporal tariff formula (13).

To prove Proposition 6, we start with a characterization of the equilibrium and implementability

conditions. The problem of the Home household gives rise to the consumption Euler equation

uc,t =
pH,t+1

qH,t

(1 + τt)pt

(1 + τt+1)pt+1
βuc,t+1,
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as well as the usual no-arbitrage condition, according to which returns on both bonds must be

equalized in units of numeraire. This implies uncovered interest parity (UIP),

qF,t

pF,t+1
=

qH,t

pH,t+1
.

The complete list of equilibrium conditions is therefore given by

yt = Atℓt

y∗t = A∗
t ℓ

∗
t

yt + y∗t = ct + c∗t

0 = Bt + B∗
t

(1 + τt)pt At = wt

pt A∗
t = w∗

t

uc,t =
pH,t+1

qH,t

(1 + τt)pt

(1 + τt+1)pt+1
βuc,t+1

u∗
c,t =

pF,t+1

qF,t

pt

pt+1
βu∗

c,t+1

qF,t

pF,t+1
=

qH,t

pH,t+1

Bt+1 + (1 + τt)ptct =
pH,t

qH,t−1
Bt + wtℓt + Tt

B∗
t+1 + ptc∗t =

pF,t

qF,t−1
B∗

t + w∗
t ℓ

∗
t

πW
t = −ϵ

δ

[
uc,t

wt

(1 + τt)pt
(1 + τℓ)

ϵ − 1
ϵ

+ uℓ,t

]
ℓt + βπW

t+1

πW,∗
t = −ϵ

δ

[
u∗

c,t
w∗

t
pt

(1 + τℓ)
ϵ − 1

ϵ
+ u∗

ℓ,t

]
ℓ∗t + βπW,∗

t+1

πW
t =

pH,t−1

wt−1

wt

pH,t
− 1

πW,∗
t =

pF,t−1

w∗
t−1

w∗
t

pF,t
− 1

Tt = τt pt(ct − yt)

qF,t = Tt(π
W,∗)

where we have already subsumed that part of the fiscal rebate that pays for the employment
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subsidy. We therefore have 17 equations in the 17 unknowns{
yt, y∗t , ℓt, ℓ∗t , ct, c∗t , Bt, B∗

t , Tt, pt, wt, w∗
t , pH,t, pF,t, πW

t , πW,∗
t , qF,t

}
as functions of the exogenous sequences{

At, A∗
t , τt, qH,t

}
.

From here, we get to drop one equation due to Walras’ law, and we still have to make one price

normalization by picking a numeraire. This implies that we get to 16 equations in 16 unknowns.

We now reduce the equations the Home planner must respect as follows. We plug in for yt

and y∗t using the production functions, which yields the world goods market clearing condition in

terms of consumption and labor,

Atℓt + A∗
t ℓ

∗
t = ct + c∗t .

Next, we use the firm optimality conditions to solve out for wages in the two Phillips curves, and

we rewrite them as follows. For Home, we have

−uℓ,t

uc,t

1
At

= 1 − Λℓ
t

where the Home aggregate labor wedge is defined as

Λℓ
t = 1 − (1 + τℓ)

ϵ − 1
ϵ

− ϵ

δ

1
Atℓtuc,t

(πW
t − βπW

t+1)

For Foreign, we have

−
u∗
ℓ,t

u∗
c,t

1
A∗

t
= 1 − Λℓ,∗

t

where the Foreign aggregate labor wedge is defined as

Λℓ,∗
t = 1 − (1 + τℓ,∗)

ϵ − 1
ϵ

− ϵ

δ

1
A∗

t ℓ
∗
t u∗

c,t
(πW,∗

t − βπW,∗
t+1 ).

In other words, we see that the wage Phillips curve put a wedge between the marginal rates

of substitution between consumption and labor, − uℓ,t
uc,t

, and the marginal rates of transformation

between consumption and labor, At. These labor wedges have a constant component, the markup

distortion due to monopolistic competition, and a time-varying component due to non-zero wage

inflation.

Plugging the government budget constraint into the two household budget constraints, we
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arrive at the country-level laws of motion for net foreign asset (NFA) positions,

Bt+1 =
pH,t

qH,t−1
Bt + pt(Atℓt − ct)

B∗
t+1 =

pF,t

qF,t−1
B∗

t + pt(A∗
t ℓ

∗
t − c∗t ).

We see from here that Walras law must hold, since the goods market clearing condition will imply

that Bt+1 + B∗
t+1 = 0, as long as the initial condition satisfies B0 + B∗

0 = 0.

Finally, we drop the asset market clearing condition due to Walras’ law, we drop the NFA

laws of motion since NFA does not appear in other equations, and we choose Foreign currency as

our numeraire, setting pF,t = 1 for all t. This implies that pH,t is the relative price (exchange rate)

between Home and Foreign currencies.

Foreign can therefore be summarized by the following conditions:

u∗
c,t =

1
qF,t

pt

pt+1
βu∗

c,t+1

−
u∗
ℓ,t

u∗
c,t

1
A∗

t
= 1 − Λℓ,∗

t

Λℓ,∗
t = 1 − (1 + τℓ,∗)

ϵ − 1
ϵ

− ϵ

δ

1
A∗

t ℓ
∗
t u∗

c,t
(πW,∗

t − βπW,∗
t+1 )

πW,∗
t =

pt

pt−1

A∗
t

A∗
t−1

− 1

qF,t = Tt(π
W,∗)

This block of equations now implies a representation for Foreign export supply in terms of an

intertemporal export supply function,

x∗t = A∗
t ℓ

∗
t − c∗t = X ∗

t (p).

Taking as given a sequence of world prices p, the firm optimality condition pins down Foreign

wages and therefore wage inflation πW,∗. Wage inflation pins down Foreign monetary policy in

terms of the bond price sequence qF via the Taylor rule. On the household side, this pins down

Foreign consumption c∗. Finally, from the Phillips curve we get the aggregate labor wedges Λℓ,∗

and labor supply ℓ∗.

We are consequently left with the following set of conditions that the Home planner must
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respect,

X ∗
t (p) = ct − Atℓt

uc,t =
pH,t+1

qH,t

1 + τt

1 + τt+1

pt

pt+1
βuc,t+1

qH,t = pH,t+1Q∗
t (p)

−uℓ,t

uc,t

1
At

= 1 − Λℓ
t

Λℓ
t = 1 − (1 + τℓ)

ϵ − 1
ϵ

− ϵ

δ

1
Atℓtuc,t

(πW
t − βπW

t+1)

πW
t =

1 + τt

1 + τt−1

pt

pt−1

At

At−1

pH,t−1

pH,t
− 1

where

qF,t = Q∗
t (p)

represents an intertemporal sequence-space representation for Foreign monetary policy, which also

follows from above. In other words, given Home policy (τ, qH), the above 6 equations solve for

the remaining 6 unknowns (c, ℓ, p, pH, Λℓ, πW).

We can rewrite the Home Euler equation as

uc,t = β
1

Q∗
t (p)

pt

pt+1

1 + τt

1 + τt+1
uc,t+1.

This implies that the Home bond price qH,t only appears in the UIP condition. Therefore, for

any given price sequence p, the Home planner can implement any desired Home currency price

sequence pH by setting monetary policy appropriately. And we can drop UIP as an implementability

condition.

Next, we use the Euler equation to solve out for cum-tariff prices in the definition of wage

inflation, which yields

πW
t =

At

At−1

pH,t−1

pH,t

uc,t

βuc,t+1
Q∗

t (p)− 1.

As a result, the import tariff τ now only appears in the consumption Euler equation. This implies

that, for any given price sequence p and long-run consumption level css, the planner can pick

import tariffs τ to implement a desired consumption sequence c. Since tariffs no longer appear

in any of the other conditions, we can therefore drop the Euler equation as an implementability

condition. We therefore arrive at the following characterization of implementability.

Lemma 3 (Implementability). Taking as given TFP sequence A, as well as the intertemporal export supply
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and monetary policy functions for Foreign, X ∗(p) and Q∗(p), sequences (c, ℓ, p, pH , Λℓ, πW) form part of
a world competitive equilibrium if and only if

X ∗
t (p) = ct − Atℓt

−uℓ,t

uc,t

1
At

= 1 − Λℓ
t

Λℓ
t = 1 − (1 + τℓ)

ϵ − 1
ϵ

− ϵ

δ

1
Atℓtuc,t

(πW
t − βπW

t+1)

πW
t =

At

At−1

pH,t−1

pH,t

uc,t

βuc,t+1
Q∗

t (p)− 1.

We are now ready to characterize Home’s optimal monetary and tariff policy. Notice that the

Home currency price pH only appears in the determination of wage inflation πW . Using monetary

policy, the planner can therefore implement any desired sequence of wage inflation. Dropping the

fourth equation as an implementability condition, notice that wage inflation then only appears

in the definition of the labor wedge. Therefore, the Home planner can pick any desired sequence

of labor wedges Λℓ, by appropriately choosing wage inflation and monetary policy. We can thus

also drop the third equation as an implementability condition. This leaves us with the first two

equations. Finally, by the same argument, notice that the labor wedge now only appears in the

second equation. And since the planner can choose it freely, we can also drop the sequence equation

as an implementability condition.

We have therefore arrived at a characterization of implementability conditions in terms of just

X ∗
t (p) = ct − Atℓt,

exactly as in Section 2.3. This implies that the solution to the Home planning problem will satisfy

the efficiency condition (12) for intertemporal terms of trade, as well as the classic MRS = MRT

efficiency condition between consumption and labor. The latter implies that

Λℓ
t = 0

at the optimal allocation for all t. This concludes the proof.

C.4 Discussion

Proposition 6 shows that the Home planner can implement the efficient allocation with monetary

and tariff policy. Intuitively, the planner has two targets and exactly two instruments. The targets

are (1) closing the labor wedge, i.e., production efficiency, and (2) terms of trade manipulation.

The Home planner uses monetary policy to close the labor wedge, and then sets import tariffs to
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target the desired intertemporal terms of trade. Optimal monetary policy is to ensure nominal

wage stability.

If monetary policy was constrained, the planner would be unable to implement the efficient

allocation. This would put us in the environment of Section 2.5. The optimal second-best tariff

would then trade off terms of trade manipulation against production efficiency.

When monetary policy can be set optimally to achieve Home production efficiency, however,

our intertemporal tariff formula (13) directly applies to this economy and characterizes the optimal

import tariff. Intertemporal export supply elasticities, summarized by the export supply function

X ∗(p) and its log sequence-space Jacobian E , are a sufficient statistic for the optimal tariff, together

with tariff revenue weights. The determination of Foreign’s intertemporal export supply elasticities

in this New Keynesian model is different from the environment of Section 3.1 for two reasons:

First, we here allow for production, so that export supply is now governed both by household

consumption demand and labor supply,

∂X ∗
k

∂pt
= A∗

k
∂L∗

k
∂pt

−
∂C∗

k
∂pt

.

Second, the Foreign economy now features distortions in the form of nominal wage rigidity.

This implies that the Foreign export supply function X ∗
t (p) is shaped by local business cycle

conditions in Foreign. The Home planner exploits this, internalizing that intertemporal export

supply elasticities now interact with business cycle conditions. Also, whereas in Section 3.1 we

derived X ∗
t (p) as a partial equilibrium object, representing households’ decision problems given

prices p, the intertemporal export supply function is a general equilibrium object here. It encodes

the general equilibrium determination of Foreign labor wedges Lℓ,∗, Foreign wage inflation πW,∗

via the Phillips curve, and Foreign monetary policy qF via the Taylor rule.

D Quantitative Appendix

We work in continuous time to characterize and numerically solve the Ramsey problem for optimal

second-best tariffs. In this Appendix, we briefly recast the quantitative model of Section 5 in

continuous time. Then we characterize implementability conditions for the Ramsey problem. We

define the standard Ramsey problem as well as the augmented timeless one.

D.1 Recursive Representation of the Household Problem

The problem of a household living in Home at date t, with wealth a and individual productivity

z, can be written recursively in continuous time in terms of the Hamilton-Jacobi-Bellman (HJB)

equation

ρVt(a, z) = u(ct(a, z))− v(ℓt)+ (rta+ et(z)− ct(a, z))∂aVt(a, z)+λ(Vt(a, z′)−Vt(a, z))+ ∂tVt(a, z).
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This equation holds in the interior of the state space (a, z) ∈ [a, ∞)× {zL, zH}. On the boundary at

a, the value function is characterized by the usual state constrained boundary condition

u′(rta + et(z)) ≤ ∂aVt(a, z)

for all z. For convenience, we also introduce the shorthand notation

st(a, z) = rta + et(z)− ct(a, z)

for the household’s savings policy function.

The household takes as given a sequence of real interest rates rt, which we discuss further

below, as well as the union-intermediated sequence of labor supply ℓt. As in the main text, we write

the household problem directly in terms of total real wealth, implicitly subsuming the portfolio

choice problem between Home and Foreign bonds, which gives rise to the usual no-arbitrage (UIP)

condition. Finally, recall that wealth a here is in units of Home CPI (in Home currency), which we

define next.

Consumption. The consumption policy function ct(a, z) is implicitly defined by the first-order

condition

u′(ct(a, z)) = ∂aVt(a, z).

Given a rate of real consumption, the household’s demand functions are given by

cj,t(a, z) = αj
Pj,t

Pt
ct(a, z) and cjω,t(a, z) = θjω

(
(1 + τjω,t)pjω,t

Pj,t

)−ηj

cj,t(a, z),

where cj,t(a, z) denotes consumption of good j, which itself is a bundle of varieties cjω,t. We denote

by pjω,t the Home-currency price of good j variety ω at date t. We denote by θjω the Home

household’s CES weight on good j’s variety ω, which by assumption is simply θjH = 1 − θj and

θjF = θj. All households in Home face the same consumer price index (CPI) defined in units of

Home currency as

Pt = ∑
j

αj log
Pj,t

αj
where Pj,t =

(
∑
ω

θjω((1 + τjω,t)pjω,t)
1−ηj

) 1
1−ηj

is the effective price of good j across varieties.

Income. The household’s real income is given by

et(z) = z
Wtℓt + Tt + Πt

Pt
,
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where we assume that all income is proportional to the household’s individual productivity z,

which follows a two-state Markov chain with z ∈ {zL, zH} and transition rate λ. We denote by

wt =
Wt
Pt

the real wage rate in Home, which we further discuss below. Tt is a lump-sum government

rebate in units of Home currency, and Πt represent total corporate profits in Home.

Foreign. We characterize the recursive representation of the Foreign household problem in terms

of the state variables (a, z), where a here refers to total wealth in units of Foreign CPI (in Foreign

currency). The problem of a household living in Foreign at date t, with wealth a and individual

productivity z, can be represented by the HJB

ρV∗
t (a, z) = u(c∗t (a, z))− v(ℓ∗t )+ (r∗t a+ e∗t (z)− c∗t (a, z))∂aV∗

t (a, z)+λ(V∗
t (a, z′)−V∗

t (a, z))+ ∂tV∗
t (a, z).

It is therefore completely symmetric to the Home household problem, except that the household

takes as given labor supply ℓ∗t , real interest rates r∗t , and income

e∗t (z) = z
W∗

t ℓ
∗
t + T∗

t + Π∗
t

P∗
t

,

which differ between Home and Foreign.

The Foreign household’s demand functions are given by

c∗j,t(a, z) = α∗
j

P∗
j,t

P∗
t

c∗t (a, z) and c∗jω,t(a, z) = θ∗jω

( p∗jω,t

P∗
j,t

)−η∗
j

c∗j,t(a, z),

where p∗jω,t =
pjω,t
Et

denotes the Foreign-currency price of good j variety ω and the exchange rate Et

maps the Home-currency price to the Foreign-currency price. Foreign’s CPI is defined as

P∗
t = ∑

j
α∗

j log
P∗

j,t

α∗
j

where P∗
j,t =

(
∑
ω

θ∗jω(p∗jω,t)
1−η∗

j

) 1
1−η∗j

.

D.2 Kolmogorov Forward Equations

We denote Home and Foreign’s joint densities over household wealth and labor productivities at

date t by gt(a, z) and g∗t (a, z). We also refer to these as the cross-sectional household distributions.

Taking as given initial distributions g0(a, z) and g∗0(a, z), their laws of motion are characterized

by Kolmogorov forward equations. For Home, we have

∂tgt(a, z) = −∂a

[
st(a, z)gt(a, z)

]
+ λ

[
gt(a, z′)− gt(a, z)

]
,

and for Foreign we have symmetrically

∂tg∗t (a, z) = −∂a

[
s∗t (a, z)g∗t (a, z)

]
+ λ

[
g∗t (a, z′)− g∗t (a, z)

]
.
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This leaves the question of how the initial distributions g0(a, z) and g∗0(a, z) are determined.

We discuss this next.

D.3 Initial Distributions and Revaluation Effects

We characterize the household problems and the joint densities in terms of real wealth in units

of country-specific CPI. At time 0, prices in this economy may jump either because the Ramsey

planner announces a new Ramsey plan or because of the realization of an MIT shock. In other

words, the distribution is not predetermined and therefore pinned down at date 0 in terms of real

wealth. Instead, it is predetermined in terms of households’ holdings of physical asset shares.

We start by considering Home. Denote bH and bF the number of Home and Foreign bonds

held by a household in Home. With bonds instantly maturing, the Home bond pays 1 unit of

domestic currency and the Foreign bond pays 1 unit of Foreign currency, which is converted into

E0 units of Home currency. Finally, we deflate by Home CPI, so that a = bH+E0bF
P0

. Now denote the

initial joint density over asset positions by g̃(bH, bF, z).
We now obtain the appropriate initial condition for the joint density over real wealth and

labor productivities via a change of variables. Let ξ : R2 → R be the function ξ(bH, bF) =
bH+E0bF

P0
.

Then for any Borel set A ∈ R and any z, we define g0 via∫
A

g0(a, z)da =
∫∫

ξ−1(A)
g̃(bH, bF, z) dbH dbF.

So g0 is the unique density that makes the wealth-density match the asset-share-density. Another

and more intuitive way to write this is simply as

g0(a, z) =
∫∫

R2
g̃(bH, bF, z) · δ

(
a − bH + E0bF

P0

)
dbH dbF,

where δ(·) is the Diract delta function. Intuitively, the RHS just assigns all mass that corresponds

to states where real wealth is equal to a given asset shares to g0(a, z). Notice that this mapping

encodes the relevant revaluation effects that may occur at date 0 because of either exchange rate or

CPI jumps.

The argument for finding the initial distribution g∗0(a, z) is symmetric.

D.4 Labor Unions

We now give a detailed description of our model’s labor market structure, focusing on Home as

Foreign is symmetric. Households supply labor to each of k ∈ [0, 1] labor unions. A household’s

total hours of work are ℓt =
∫ 1

0 ℓk,tdk. Each union pays the nominal wage Wk,t in units of Home-
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currency CPI. The real income term et(z) in the HJB of Appendix D.1 therefore becomes

et(z) = z
1
Pt

( ∫ 1

0
Wk,tℓk,tdk + Πt + Tt

)
Union k ∈ [0, 1] transforms hours into a differentiated labor service according to the aggregation

technology

Lk,t =
∫∫

zℓk,tgt(a, z) da dz,

where Lk,t is in units of effective labor.

Rationing. As is standard practice in the wage rigidity literature (Erceg et al., 2000; Auclert et al.,

2024b), unions ration labor across households, so that all households work the same hours. This

implies Lk,t = ℓk,t
∫∫

zgt(a, z) da dz = ℓk,t, where we normalize
∫∫

zgt(a, z) da dz = 1 as in the main

text.

Labor packer. Unions sell their differentiated labor services to a labor packer. This packer operates

the CES aggregation technology

ℓt =

( ∫ 1

0
L

ϵw−1
ϵw

k,t dk
) ϵw

ϵw−1

,

where ϵw is the elasticity of substitution between differentiated labor inputs. The labor packer then

sells this homogeneous labor factor to the firms. The standard cost minimization problem implies

Lk,t =

(
Wk,t

Wt

)−ϵw

ℓt and Wt =

( ∫ 1

0
W1−ϵw

k,t dk
) 1

1−ϵ

.

Labor supply schedule. Wages are fully flexible. We assume that union k chooses the sequence of

nominal wages Wk,t to maximize the objective

max
Wk,t

∫ ∞

0
e−ρdt

[
u
( ∫∫

ct(a, z; Wk,t)gt(a, z) da dz
)
− v
( ∫ 1

0
ℓk,t dk

)]
dt,

where the union internalizes that its wage policy Wk,t affects the household’s consumption choice

and direct labor supply, subject to the labor packer’s demand function. Since union k is small, it

takes as given other prices as well as the cross-sectional household distribution.

The first-order condition for Wk,t is therefore given by

0 = u′(Ct)
∫

∂ct(a, z; Wk,t)

∂Wk,t
gt(a, z) da dz + ϵwv′(ℓt)

ℓt

Wt
.
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By the envelope theorem, we have

∂ct(a, z; Wk,t)

∂Wk,t
=

1
Pt
(1 + τu)(1 − ϵw)zℓt.

Therefore, we arrive at the aggregate labor supply schedule

0 =
1
Pt
(1 + τu)(1 − ϵw)ℓtu′(Ct) + ϵwv′(ℓt)

ℓt

Wt
,

or simply

v′(ℓt) =
ϵw − 1

ϵw (1 + τu)wtu′(Ct),

where wt =
Wt
Pt

.

D.5 Firm Problem

The production function of firm k in sector j at Home is given by

yjH,t(k) = AjH,tℓjH,t(k),

and its nominal profits are

ΠjH,t(k) = pjH,t(k)yjH,t(k)− (1 − τ
f
jH,t)WtℓjH,t(k),

where the firm takes as given the employment subsidies τ
f
jH,t and the aggregate nominal wage Wt.

Nominal marginal cost is therefore

MCjH,t =
(1 − τ

f
jH,t)Wt

AjH,t

so that we can rewrite profits as ΠjH,t(k) = (pjH,t − MCjH,t)yjH,t. Profits and marginal costs in

Foreign are defined symmetrically except in terms of the Foreign-currency prices p∗jF,t(k).

Dynamic pricing problem. We assume that firms face a quadratic Rotemberg adjustment cost

when changing prices in units of Home currency. Define πjH,t(k) = ṗjH,t(k)/pjH,t(k) as the

instantaneous rate of price inflation. Then we define the firm’s dynamic pricing problem as

max
πjH,t(k)

∫ ∞

0
e−ρt 1

pjH,t

[
(1 − mcjH,t(k))pjH,t(k)yjH,t(k)− Λ(πjH,t(k))

]
dt,
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where the cost of adjusting prices at rate πjH,t(k) is given by

Λ(πjH,t(k)) =
χj

2
πjH,t(k)2 pjH,tyjH,t.

The problem for Foreign firms is symmetric.

Lemma 4. The New Keynesian Phillips curves in Home production sector j characterizes the evolution of
sectoral inflation according to

π̇jH,t = ρπjH,t −
ϵj

χj

(
mcjH,t −

ϵj − 1
ϵj

)
.

The Phillips curve for Foreign-price inflation in Foreign production sector j is given by

π̇∗
jF,t = ρπ∗

jF,t −
ϵ∗j
χ∗

j

(
mc∗jF,t −

ϵ∗j − 1

ϵ∗j

)
.

Here Foreign inflation is defined as

π∗
jF,t =

ṗ∗jF,t

p∗jF,t
=

ṗjF,t

pjF,t
− Ėt

Et
= πjF,t − πe

t .

Proof. Since in equilibrium, all firms are symmetric, we will drop the j indexation for simplicity.

Denote p = Pt(j), P = Pt, Y = Yt, π = πt, χ = χ, W = Wt, taking P as given, the firm’s problem in

recursive form is

ρJ(p, t) = max
π

{( p
P
− mc

) ( p
P

)−ϵ
Y − χs

2
π2Y + Jp(p, t)pπ + Jt(p, t)

}
where J is the corresponding value function of the maximization problem. The first order conditions

of the recursive form are given by

Jp(p, t)p = χπY

(ρ − π) Jp(p, t) = −
( p

P
− mc

)
ϵ
( p

P

)−ϵ−1 Y
P
+
( p

P

)−ϵ Y
P
+ Jpp(p, t)pπ + Jtp(p, t)

In a symmetric equilibrium we will have p = P, and hence

Jp(p, t) =
χπY

P

(ρ − π) Jp(p, t) = −(1 − mc)ϵ
Y
P
+

Y
P
+ Jpp(p, t)pπ + Jtp(p, t)
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Differentiating the first equation with respect to time, we get

Jpp(p, t) ṗ + Jpt(p, t) =
χYπ̇

P
+

χẎπ

P
− χπY

P
Ṗ
P

and plugging in the second equation, we get

(ρ − π)
χπY

P
= −(1 − mc)ϵ

Y
P
+

Y
P
+

χYπ̇

P
+

χẎπ

P
− χπY

P
Ṗ
P

Putting it together, we have

π̇t =

(
ρ − Ẏt

Yt

)
π − (mct −

ϵ − 1
ϵ

)
ϵ

χ

■

D.6 Equilibrium and Implementability

Government. Fiscal policy, monetary policy and tariff policy are exactly as described in the main

text. The Taylor rule in continuous time becomes simply

it = rss + ϕππt,

where we set ϕy = 0 for simplicity. Foreign’s Taylor rule is symmetric.

Interest rates and wages. Household budget constraints depend on the real interest rates (r, r∗)

and real wages (w, w∗). Real wages are defined in terms of domestic CPI, so wt =
Wt
Pt

and w∗
t = W∗

t
P∗

t
.

Real interest rates are defined as

rt = it − πt and r∗t = i∗t − π∗
t .

Equilibrium. The definition of competitive equilibrium is stated in the main text for given initial

distributions g0(a, z) and g∗0(a, z), which we can derive from given asset holding distributions

g̃(bH, bF, z) and g̃∗(bH, bF, z) as explained in Appendix D.3.
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We now summarize the equilibrium conditions. At the macro level for Home, we have

yjH,t = AjH,tℓjH,t

v′(ℓt) =
ϵw − 1

ϵw (1 + τu)wtu′(Ct)

Πt = ∑
j

(
pjH,tyjH,t − (1 − τ

f
jH,t)WtℓjH,t

)

mcjH,t =
(1 − τ

f
jH,t)Wt

AjH,t pjH,t

π̇jH,t = ρπjH,t −
ϵj

χj

(
mcjH,t −

ϵj − 1
ϵj

)
rt = it − πt

ℓt = ∑
j
ℓjH,t

∑
j

τjF,t pjF,tCjF,t = Tt + ∑
j

τ
f
jH,tWtℓjH,t + τuWtℓt

it = rss + ϕππt

yjH,t = CjH,t + C∗
jH,t

as well as UIP for exchange rates

1 + it = (1 + i∗t )
Ėt

Et
.
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For Foreign, we have

y∗jF,t = A∗
jF,tℓ

∗
jF,t

v′(ℓ∗t ) =
ϵw − 1

ϵw (1 + τu,∗)w∗
t u′(C∗

t )

Π∗
t = ∑

j
p∗jF,t(1 − mc∗jF,t)y

∗
jF,t

mc∗jF,t =
(1 − τ

f ,∗
jF,t)W

∗
t

A∗
jF,t p∗jF,t

π̇∗
jF,t = ρπ∗

jF,t −
ϵ∗j
χ∗

j

(
mc∗jF,t −

ϵ∗j − 1

ϵ∗j

)
r∗t = i∗t − π∗

t

ℓ∗t = ∑
j
ℓ∗jF,t

0 = T∗
t + ∑

j
τ

f ,∗
jF,tW

∗
t ℓ

∗
jF,t + τu,∗W∗

t ℓ
∗
t

i∗t = r∗ss + ϕππ∗
t

y∗jF,t = CjF,t + C∗
jF,t

where

π∗
jF,t =

ṗ∗jF,t

p∗jF,t
=

ṗjF,t

pjF,t
− Ėt

Et
= πjF,t − πe

t .

We have the aggregation equations for consumption

Ct =
∫∫

ct(a, z)gt(a, z) da dz

Cj,t = αj
Pj,t

Pt
Ct

Cjω,t = θjω

(
(1 + τjω,t)pjω,t

Pj,t

)−ηj

Cj,t
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and

C∗
t =

∫∫
c∗t (a, z)g∗t (a, z) da dz

C∗
j,t = α∗

j

P∗
j,t

P∗
t

C∗
t

C∗
jω,t = θ∗jω

( p∗jω,t

P∗
j,t

)−η∗
j

C∗
j,t

And the price indices are

Pt = ∑
j

αj log
Pj,t

αj

Pj,t =

(
∑
ω

θjω((1 + τjω,t)pjω,t)
1−ηj

) 1
1−ηj

P∗
t = ∑

j
α∗

j log
P∗

j,t

α∗
j

P∗
j,t =

(
∑
ω

θ∗jω(p∗jω,t)
1−η∗

j

) 1
1−η∗j

.

Sequence-space representation of the household problem. Notice that the Home household’s

problem can be written in terms of the sequence of real interest rates r and the earnings function

et(z), which is given by

et(z) = zwtℓt + zTt + zΠt

= zwtℓt + zTt + z ∑
j

pjH,t

Pt
yjH,t − z ∑

j
wtℓjH,t + z ∑

j
τ

f
jH,twtℓjH,t

= zwtℓt + z
(

∑
j

τjF,t pjF,tCjF,t − ∑
j

τ
f
jH,tWtℓjH,t

)
+ z ∑

j

pjH,t

Pt
yjH,t − zwtℓt + z ∑

j
τ

f
jH,twtℓjH,t

= z
(

∑
j

τjF,t pjF,tCjF,t − ∑
j

τ
f
jH,tWtℓjH,t

)
+ z ∑

j

pjH,t

Pt
yjH,t + z ∑

j
τ

f
jH,twtℓjH,t

= z ∑
j

τjF,t pjF,t

Pt
CjF,t + z ∑

j

pjH,t

Pt
yjH,t

= zYt + zτt Mt,
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where we define real GDP as

Yt = ∑
j

pjH,t

Pt
yjH,t

and real aggregate imports as

Mt = ∑
j

pjF,t

Pt
CjF,t,

and where we impose the restriction of uniform tariffs, τjF,t = τt, which we currently use in our

numerical experiments.

In other words, the Home household problem admits a sequence space representation in terms

of

ct(a, z) = Ct(a, z; r, Z),

where Zt = Yt + τt Mt is aggregate income plus tariff revenue. In other words, we can write the

household’s savings policy function simply as

st(a, z) = rta + zZt − ct(a, z).

To arrive at a sequence-space representation of aggregate Home consumption, we have to be

careful about the revaluation effects that show up in the wealth distribution at date 0 as a function

of E0 and P0. Therefore, we have the aggregate consumption function

Ct = Ct(r, Z, E0, P0).

Working towards implementability. We are therefore left with the Home macro conditions

v′
(

∑
j

yjH,t

AjH,t

)
=

ϵw − 1
ϵw (1 + τu)wtu′(Ct)

π̇jH,t = ρπjH,t −
ϵj

χj

( (1 − τ
f
jH,t)wt

AjH,t

Pt

pjH,t
−

ϵj − 1
ϵj

)
rt = rss + (ϕπ − 1)πt

yjH,t = CjH,t + C∗
jH,t

it = i∗t + πe
t
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and similarly for Foreign

v′
(

∑
j

y∗jF,t

A∗
jF,t

)
=

ϵw − 1
ϵw (1 + τu)w∗

t u′(C∗
t )

π̇∗
jF,t = ρπ∗

jF,t −
ϵj

χj

( (1 − τ
f ,∗
jF,t)w

∗
t

A∗
jF,t

P∗
t

p∗jF,t
−

ϵj − 1
ϵj

)
r∗t = r∗ss + (ϕπ − 1)π∗

t

y∗jF,t = CjH,t + C∗
jH,t

Next, we simplify the goods market clearing conditions. For Home, we have

CjH,t = (1 − θj)

(
pjH,t

Pt

)−ηj

αj
Pj,t

Pt
Ct

CjF,t = θj

(
(1 + τt)pjF,t

Pt

)−ηj

αj
Pj,t

Pt
Ct

and for Foreign

C∗
jH,t = θ∗j

( p∗jH,t

P∗
t

)−η∗
j

α∗
j

P∗
j,t

P∗
t

C∗
t

C∗
jF,t = (1 − θ∗j )

( p∗jF,t

P∗
t

)−η∗
j

α∗
j

P∗
j,t

P∗
t

C∗
t

And so therefore we get for Home-produced goods

yjH,t = (1 − θj)

(
pjH,t

Pt

)−ηj

αj
Pj,t

Pt
Ct + θ∗j

( p∗jH,t

P∗
t

)−η∗
j

α∗
j

P∗
j,t

P∗
t

C∗
t

and for Foreign-produced goods

y∗jF,t = θj

(
(1 + τt)pjF,t

Pt

)−ηj

αj
Pj,t

Pt
Ct + (1 − θ∗j )

( p∗jF,t

P∗
t

)−η∗
j

α∗
j

P∗
j,t

P∗
t

C∗
t

We therefore arrive at the following characterization of macro-implementability.

Lemma 5 (Macro Implementability). Taking as given TFP, policy and aggregate consumption C and C∗

in both countries, the allocation yjω and prices (pjω, w, w∗) form part of a world competitive equilibrium if
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and only if the following conditions are satisfied:

v′
(

∑
j

yjH,t

AjH,t

)
=

ϵw − 1
ϵw (1 + τu)wtu′(Ct)

v′
(

∑
j

y∗jF,t

A∗
jF,t

)
=

ϵw − 1
ϵw (1 + τu)w∗

t u′(C∗
t )

π̇jH,t = ρπjH,t −
ϵj

χj

( (1 − τ
f
jH,t)wt

AjH,t

Pt

pjH,t
−

ϵj − 1
ϵj

)

π̇∗
jF,t = ρπ∗

jF,t −
ϵj

χj

( (1 − τ
f ,∗
jF,t)w

∗
t

A∗
jF,t

P∗
t

p∗jF,t
−

ϵj − 1
ϵj

)

yjH,t = (1 − θj)

(
pjH,t

Pt

)−ηj

αj
Pj,t

Pt
Ct + θ∗j

( p∗jH,t

P∗
t

)−η∗
j

α∗
j

P∗
j,t

P∗
t

C∗
t

y∗jF,t = θj

(
(1 + τt)pjF,t

Pt

)−ηj

αj
Pj,t

Pt
Ct + (1 − θ∗j )

( p∗jF,t

P∗
t

)−η∗
j

α∗
j

P∗
j,t

P∗
t

C∗
t

as well as

rss + ϕππt = r∗ss + ϕππ∗
t + πe

t

Pt = ∑
j

αj log
Pj,t

αj

Pj,t =

(
∑
ω

θjω((1 + τjω,t)pjω,t)
1−ηj

) 1
1−ηj

P∗
t = ∑

j
α∗

j log
P∗

j,t

α∗
j

P∗
j,t =

(
∑
ω

θ∗jω(p∗jω,t)
1−η∗

j

) 1
1−η∗j

,

where πjH,t = ṗjH,t/pjH,t and π∗
jF,t = ṗjF,t/pjF,t, where p∗jω,t = pjω,t/Et, and where πe

t = Ėt/Et.

Intuitively, the Phillips curves pin down inflation and therefore prices at the goods level, which in

turn gives us the aggregate price indices. The union optimality conditions solve for the equilibrium

real wage. UIP solves for the exchange rate. And finally the goods market clearing conditions solve

for the aggregate demand for each good and therefore its output.

The above implementability Lemma characterizes the world economy at the macro level in

terms of aggregate consumption. It therefore only remains to characterize the determination of

aggregate consumption, which we do in the next Lemma.
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Lemma 6 (Micro Implementability). Taking as given initial asset-share distributions g̃0(bH, bF, z) and
g̃∗0(bH, bF, z), paths of real interest rates (r, r∗), paths of aggregate income plus tariff revenue (Z, Z∗),
paths of labor supply (ℓ, ℓ∗), as well as initial CPI and exchange rates (P0, P∗

0 , E0), aggregate consumption
sequences C and C∗ are consistent with household behavior if and only if the following equations are satisfied:

ρVt(a, z) = u(ct(a, z))− v(ℓt) + st(a, z)∂aVt(a, z) + λ(Vt(a, z′)− Vt(a, z)) + ∂tVt(a, z)

ρV∗
t (a, z) = u(c∗t (a, z))− v(ℓ∗t ) + s∗t (a, z)∂aV∗

t (a, z) + λ(V∗
t (a, z′)− V∗

t (a, z)) + ∂tV∗
t (a, z)

u′(ct(a, z)) = ∂aVt(a, z)

u′(c∗t (a, z)) = ∂aV∗
t (a, z)

∂tgt(a, z) = −∂a

[
st(a, z)gt(a, z)

]
+ λ

[
gt(a, z′)− gt(a, z)

]
∂tg∗t (a, z) = −∂a

[
s∗t (a, z)g∗t (a, z)

]
+ λ

[
g∗t (a, z′)− g∗t (a, z)

]
where st(a, z) = rta + zZt − ct(a, z) and s∗t (a, z) = r∗t a + zZ∗

t − c∗t (a, z), as well as the initialization
conditions

g0(a, z) =
∫∫

R2
g̃0(bH, bF, z) · δ

(
a − bH + E0bF

P0

)
dbH dbF

g∗0(a, z) =
∫∫

R2
g̃∗0(bH, bF, z) · δ

(
a − bH/E0 + bF

P∗
0

)
dbH dbF

and the aggregation definitions

Ct =
∫∫

ct(a, z)gt(a, z) da dz

C∗
t =

∫∫
c∗t (a, z)g∗t (a, z) da dz.

D.7 Flexible Price Allocation

In this subsection, we characterize the flexible price (or flexprice) allocation. Monetary policy can

implement this allocation in our model when supported by a fiscal policy that sets time-varying

corporate employment subsidies in order to equalize labor wedges across sectors. Once sectoral

labor wedges are equalized, monetary policy can set interest rates so that the aggregate labor wedge

in each economy is 0.

In this case, the macro and micro implementability Lemmas simplify as follows.

Lemma 7 (Implementability: Flexible Prices). Suppose that monetary and fiscal policy implement the
flexprice allocation (or consider the limit χj → 0 for all j). Taking as given initial asset-share distribu-
tions g̃0(bH, bF, z) and g̃∗0(bH, bF, z), Home tariffs, as well as sequences of TFP, an aggregate allocation
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(yjω, y∗
jω), prices (w, w∗, r, r∗), value and policy functions {Vt(a, z), V∗

t (a, z), ct(a, z), c∗t (a, z)} as well as
joint densities {gt(a, z), g∗t (a, z)} form part of a competitive equilibrium if and only if

v′
(

∑
j

yjH,t

AjH,t

)
= wtu′(Ct)

v′
(

∑
j

y∗jF,t

A∗
jF,t

)
= w∗

t u′(C∗
t )

pjH,t =
Wt

AjH,t

p∗jF,t =
W∗

t
A∗

jF,t

yjH,t = (1 − θj)

(
pjH,t

Pt

)−ηj

αj
Pj,t

Pt
Ct + θ∗j

( p∗jH,t

P∗
t

)−η∗
j

α∗
j

P∗
j,t

P∗
t

C∗
t

y∗jF,t = θj

(
(1 + τt)pjF,t

Pt

)−ηj

αj
Pj,t

Pt
Ct + (1 − θ∗j )

( p∗jF,t

P∗
t

)−η∗
j

α∗
j

P∗
j,t

P∗
t

C∗
t

where the price indices are defined as before, and

ρVt(a, z) = u(ct(a, z))− v(ℓt) + st(a, z)∂aVt(a, z) + λ(Vt(a, z′)− Vt(a, z)) + ∂tVt(a, z)

ρV∗
t (a, z) = u(c∗t (a, z))− v(ℓ∗t ) + s∗t (a, z)∂aV∗

t (a, z) + λ(V∗
t (a, z′)− V∗

t (a, z)) + ∂tV∗
t (a, z)

u′(ct(a, z)) = ∂aVt(a, z)

u′(c∗t (a, z)) = ∂aV∗
t (a, z)

∂tgt(a, z) = −∂a

[
st(a, z)gt(a, z)

]
+ λ

[
gt(a, z′)− gt(a, z)

]
∂tg∗t (a, z) = −∂a

[
s∗t (a, z)g∗t (a, z)

]
+ λ

[
g∗t (a, z′)− g∗t (a, z)

]
where st(a, z) = rta + zZt − ct(a, z) and s∗t (a, z) = r∗t a + zZ∗

t − c∗t (a, z), as well as the initialization
conditions

g0(a, z) =
∫∫

R2
g̃0(bH, bF, z) · δ

(
a − bH + E0bF

P0

)
dbH dbF

g∗0(a, z) =
∫∫

R2
g̃∗0(bH, bF, z) · δ

(
a − bH/E0 + bF

P∗
0

)
dbH dbF
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D.8 The Ramsey Problem for Optimal Tariffs

We compute optimal tariffs under a utilitarian welfare criterion from the perspective of date 0,

W0 =
∫∫ [

u(ct(a, z))− v(ℓt)

]
gt(a, z) da dz.

The standard Ramsey problem can therefore be associated with the following Lagrangian:

L =
∫ ∞

0
e−ρt

{ ∫∫ {
u(ct(a, z))gt(a, z)− v(ℓt)gt(a, z)

+ ϕt(a, z)
[
− ρVt(a, z) + u(ct(a, z))− v(ℓt) + st(a, z)∂aVt(a, z) + λ(Vt(a, z′)− Vt(a, z)) + ∂tVt(a, z)

]

+ ϕ∗
t (a, z)

[
− ρV∗

t (a, z) + u(c∗t (a, z))− v(ℓ∗t ) + s∗t (a, z)∂aV∗
t (a, z) + λ(V∗

t (a, z′)− V∗
t (a, z)) + ∂tV∗

t (a, z)
]

+ χt(a, z)
[

u′(ct(a, z))− ∂aVt(a, z)
]

+ χ∗
t (a, z)

[
u′(c∗t (a, z))− ∂aV∗

t (a, z)
]

+ λt(a, z)
[
− ∂tgt(a, z)− ∂a

[
st(a, z)gt(a, z)

]
+ λ

[
gt(a, z′)− gt(a, z)

]]

+ λ∗
t (a, z)

[
− ∂tg∗t (a, z)− ∂a

[
s∗t (a, z)g∗t (a, z)

]
+ λ

[
g∗t (a, z′)− g∗t (a, z)

]]

+ ξ(a, z)
[
− g0(a, z) +

∫∫
R2

g̃0(bH, bF, z) · δ

(
a − bH + E0bF

P0

)
dbH dbF

]

+ ξ∗(a, z)
[
− g∗0(a, z) +

∫∫
R2

g̃∗0(bH, bF, z) · δ

(
a − bH/E0 + bF

P∗
0

)
dbH dbF

]}
da dz

+ . . .

88



. . . + ϑt

[
− v′

(
∑

j

yjH,t

AjH,t

)
+

ϵw − 1
ϵw (1 + τu)wtu′(Ct)

]

+ ϑ∗
t

[
− v′

(
∑

j

y∗jF,t

A∗
jF,t

)
+

ϵw − 1
ϵw (1 + τu)w∗

t u′(C∗
t )

]

+ ∑
j

θj,t

[
− π̇jH,t + ρπjH,t −

ϵj

χj

( (1 − τ
f
jH,t)wt

AjH,t

Pt

pjH,t
−

ϵj − 1
ϵj

)]

+ ∑
j

θ∗j,t

[
− π̇∗

jF,t + ρπ∗
jF,t −

ϵj

χj

( (1 − τ
f ,∗
jF,t)w

∗
t

A∗
jF,t

P∗
t

p∗jF,t
−

ϵj − 1
ϵj

)]

+ ∑
j

µj,t

[
− yjH,t + (1 − θj)

(
pjH,t

Pj,t

)−ηj

αj
Pj,t

Pt
Ct + θ∗j

( p∗jH,t

P∗
j,t

)−η∗
j

α∗
j

P∗
j,t

P∗
t

C∗
t

]

+ ∑
j

µ∗
j,t

[
− y∗jF,t + θj

(
(1 + τt)pjF,t

Pj,t

)−ηj

αj
Pj,t

Pt
Ct + (1 − θ∗j )

( p∗jF,t

P∗
j,t

)−η∗
j

α∗
j

P∗
j,t

P∗
t

C∗
t

]

+ φt

[
− rss − ϕππt + r∗ss + ϕππ∗

t + πe
t

]

+ κt

[
− Pt + ∑

j
αj log

Pj,t

αj

]

+ κ∗t

[
− P∗

t + ∑
j

α∗
j log

P∗
j,t

α∗
j

]

+ ∑
j

κj,t

[
− Pj,t +

(
∑
ω

θjω((1 + τjω,t)pjω,t)
1−ηj

) 1
1−ηj
]

+ ∑
j

κ∗j,t

[
− P∗

j,t +

(
∑
ω

θ∗jω(p∗jω,t)
1−η∗

j

) 1
1−η∗j
]

where it is understood that πjH,t = ṗjH,t/pjH,t and π∗
jF,t = ṗjF,t/pjF,t, where p∗jω,t = pjω,t/Et, and

where πe
t = Ėt/Et, as well as

Ct =
∫∫

ct(a, z)gt(a, z) da dz

C∗
t =

∫∫
c∗t (a, z)g∗t (a, z) da dz.

D.9 Ramsey Optimality Conditions

We now characterize the Ramsey optimality conditions which define the Ramsey plan.
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FOC for distribution. The FOC for the Home distribution defines an HJB for the social value of a

household in state (a, z) at date t,

ρλt(a, z) = ∂tλt(a, z) + st(a, z)∂aλt(a, z) + λ(λt(a, z′)− λt(a, z))

+ u(ct(a, z))− v(ℓt) + ϑtwtu′′(Ct)ct(a, z)

+ ∑
j

αj

[
(1 − θj)µt

(
pjH,t

Pt

)−ηj

+ θjµ
∗
t

(
(1 + τt)pjF,t

Pt

)−ηj]Pj,t

Pt
ct(a, z)

where the first line on the RHS summarizes the continuation value and the second and third lines

represent the social flow payoff. The difference between the private HJB and this social HJB consists

of two terms, the last two terms of the social flow payoff.

The FOC for the Foreign distribution, on the other hand, is given by

ρλ∗
t (a, z) = ∂tλ

∗
t (a, z) + s∗t (a, z)∂aλ∗

t (a, z) + λ(λ∗
t (a, z′)− λ∗

t (a, z))

+ ϑ∗
t w∗

t u′′(C∗
t )c

∗
t (a, z) + ∑

j
α∗

j

[
θ∗j µt

( p∗jH,t

P∗
t

)−η∗
j

+ (1 − θ∗j )µ
∗
t

( p∗jF,t

P∗
t

)−ηj]P∗
j,t

P∗
t

c∗t (a, z)

Here, we can see that the Home Ramsey planner does not place direct welfare weight on Foreign

households. Instead, the valuation λ∗
t (a, z) is driven entirely by the implementability conditions.

FOC for value function. Next, the FOCs for the Home and Foreign private values are given by

∂tϕt(a, z) = −AT
t ϕt(a, z) + ∂aχt(a, z)

and

∂tϕ
∗
t (a, z) = −(A∗

t )
Tϕ∗

t (a, z) + ∂aχ∗
t (a, z),

where AT
t and (A∗

t )
T denote the adjoints of the Home and Foreign generators. The multipliers

ϕt(a, z) and ϕ∗
t (a, z) solve Kolmogorov forward equations, where ∂aχt(a, z) and ∂aχ∗

t (a, z) act as

forcing terms.

FOC for consumption. The last set of optimality conditions at the micro level are the FOCs for

consumption. For Home, we have

−χt(a, z)
gt(a, z)

u′′(ct(a, z)) = u′(ct(a, z))− ∂aλt(a, z) + ϑtwtu′′(Ct)

+ ∑
j

αj

[
(1 − θj)µt

(
pjH,t

Pt

)−ηj

+ θjµ
∗
t

(
(1 + τt)pjF,t

Pt

)−ηj]Pj,t

Pt
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where we used the envelope theorem. And for Foreign, we have

−χ∗
t (a, z)

g∗t (a, z)
u′′(c∗t (a, z)) = u′(c∗t (a, z))− ∂aλ∗

t (a, z) + ϑ∗
t w∗

t u′′(C∗
t )

+ ∑
j

α∗
j

[
θ∗j µt

( p∗jH,t

P∗
t

)−η∗
j

+ (1 − θ∗j )µ
∗
t

( p∗jF,t

P∗
t

)−η∗
j
]P∗

j,t

P∗
t

FOC for sectoral production. For output of good j in Home, we have

0 = µj,t + ϑtv′′(ℓt)
1

AjH,t

and for good j in Foreign, we have symmetrically

0 = µ∗
j,t + ϑ∗

t v′′(ℓ∗t )
1

A∗
jH,t

FOC for tariffs. For Home import tariff τt, the FOC is given by

0 = ∑
j

κj,t

(
∑
ω

θjω p
1−ηj
jω,t

) 1
1−ηj

− ∑
j

µ∗
j,tαjθjηj

(
(1 + τt)pjF,t

Pt

)−ηj−1 pjF,t

Pj,t

Pj,t

Pt
Ct

+
∫∫

Mt

[
ϕt(a, z)∂aVt(a, z) + gt(a, z)∂aλt(a, z)

]
da dz

In our calibration we set the elasticity of substitution ηj = η to be uniform across sectors. Also

recall that aggregate Home imports are defined as Mt = ∑j
pjF,t
Pt

CjF,t. Therefore, we have

0 =
1

1 + τt
∑

j
κj,tPj,t − η

1
1 + τt

∑
j

µ∗
j,tθj

(
(1 + τt)pjF,t

Pt

)−η

Cj,t

+
∫∫

Mt

[
ϕt(a, z)∂aVt(a, z) + gt(a, z)∂aλt(a, z)

]
da dz

which becomes

0 =
1

1 + τt
∑

j
κj,tPj,t − η

1
1 + τt

∑
j

µ∗
j,tCjF,t

+
∫∫

Mt

[
ϕt(a, z)∂aVt(a, z) + gt(a, z)∂aλt(a, z)

]
da dz

91



And this allows us to solve for tariffs as

1 + τt =
η ∑j µ∗

j,tCjF,t − ∑j κj,tPj,t∫∫
Mt

[
ϕt(a, z)∂aVt(a, z) + gt(a, z)∂aλt(a, z)

]
da dz
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