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1 Introduction

Understanding why welfare gains and losses arise is critical to assess the impact of shocks and the
desirability of policy interventions. This paper tackles this question by introducing a decomposition
of welfare assessments that applies to economies with heterogeneous individuals and disaggregated
production. This approach — which we refer to as welfare accounting — is useful to i) identify and
quantify the origins of welfare gains and losses induced by changes in allocations, technologies, or
endowments and ii) characterize efficiency conditions.

The distinguishing feature of the welfare accounting decomposition is the fact that it is solely
based on preferences, technologies, and resource constraints. It does not rely on assumptions about
individual optimizing behavior, firm objectives, budget constraints, prices, or equilibrium notions.
This characteristic is important since it allows us to systematically quantify and compare the
sources of welfare gains across very different economic environments, e.g., competitive, strategic,
search, bargaining, contracting, etc., as we highlight in our applications.

Welfare Accounting Decomposition. We consider a static economy with heterogeneous
individuals who consume goods and supply factors. Goods are produced using other goods
and factors. The first main contribution of this paper is to introduce a welfare accounting
decomposition of welfare assessments under general social welfare functions. We initially separate
welfare assessments into i) (Kaldor-Hicks) efficiency, which we study in the body of the paper since
it is invariant to the choice of social welfare function, and ii) redistribution, which we study in the
Appendix.1

We then decompose efficiency gains into exchange and production efficiency. Theorem 1
decomposes exchange efficiency into i) cross-sectional consumption efficiency, which measures
welfare gains associated with reallocating consumption across individuals, for given aggregate
consumption, and ii) cross-sectional factor supply efficiency, which measures welfare gains from
reallocating factor supply across individuals, for given aggregate factor supply.

Theorem 2 decomposes production efficiency, which comprises allocative efficiency gains due to
adjusting intermediate inputs and factors as well as technical efficiency gains from primitive changes
in technologies and endowments. Regarding intermediate inputs, cross-sectional intermediate input
efficiency measures the welfare gains from reallocating intermediate inputs across uses, for given
aggregate intermediate use, while aggregate intermediate input efficiency measures the welfare
gains from adjusting the share of good supply that is consumed instead of used in production,
for given aggregate good supply. Regarding factors, cross-sectional factor use efficiency measures
the welfare gains from reallocating factors across uses, for given aggregate factor use, while aggregate

1The efficiency/redistribution decomposition leverages the results of Dávila and Schaab (2024). That paper takes
the mapping between allocations and policies or shocks as given. Here, we exploit production technologies and
resource constraints to identify the primitive origins of welfare gains and losses.
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factor efficiency measures the welfare gains from adjusting factor supply. Finally, the technology,
good endowment, and factor endowment change components measure the direct welfare gains from
primitive changes in technologies or endowments.

The welfare accounting decomposition identifies the variables that translate changes in
allocations, technologies, and endowments into welfare changes. First, we have MRS (marginal
rate of substitution) and AMRS (aggregate MRS), which measure the social value of increasing
individual or aggregate consumption or factor supply, respectively. Second, we have MWP

(marginal welfare products) and AMWP (aggregate MWP ), which measure the social value of
increasing the particular or aggregate use of an input or factor in production. At last, we have MSV

(marginal social value of goods), which measure the social value of having an additional unit of a
particular good. MSV ’s are central objects for welfare accounting, because they solely determine
welfare gains from pure technological change and govern marginal welfare products, which in turn
determine each component of production efficiency.

Efficiency Conditions. The second main contribution is to provide a complete characterization
of efficiency conditions for disaggregated production economies with heterogeneous individuals,
generalizing the classical efficiency conditions in Lange (1942) and Mas-Colell et al. (1995).
Leveraging the welfare accounting decomposition, Theorems 3 and 4 characterize the necessary
conditions for exchange and production efficiency. Exchange efficiency requires the equalization
of MRS across those individuals who consume a good or supply a factor. Production efficiency
requires the equalization of MWP across the uses of an input or a factor and the equalization of
AMWP with AMRS for mixed goods and factors with positive elastic supply, with inequalities
for pure intermediate and pure final goods.

A central takeaway from this new characterization is that properly accounting for non-negativity
constraints in allocations is critical, even for interior decisions. In particular, the fact that some
non-negativity constraints are binding somewhere in the economy impacts the characterization of
efficiency conditions for decisions in which non-negativity constraints are not binding. Formally, we
show that the classical efficiency conditions (MRS = MRT ) fail to hold when pure intermediate
goods are involved, while the conditions that we identify in terms of MWP and MRS remain
valid. Our new characterization also illustrates how computing efficiency conditions in production
economies is significantly harder than efficiently allocating goods across individuals, especially in
economies that feature pure intermediates since they require the computation of an inverse matrix.
This result allows us to speak to the socialist calculation debate (Lange, 1936; Lerner, 1944; Hayek,
1945) in Section 4.4.

Competitive Economies. Until Section 5, our results make no assumptions about individual
behavior, budget constraints, prices, or equilibrium notions. In Section 5, we specialize the welfare
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accounting decomposition to competitive economies with wedges, in which prices reveal relevant
information for welfare accounting.

The third main contribution of this paper is a characterization of the marginal social value
(MSV ) of goods in competitive economies with wedges. The MSV of a good equals its competitive
price augmented by an aggregate wedge term that captures average distortions in consumption and
intermediate input use. Intuitively, the MSV of a good that ultimately increases the supply of
goods that are under-produced (over-produced) due to the presence of wedges is higher (lower)
than its price. This characterization allows to i) present a new converse result to Hulten’s theorem
that has been missing from the existing literature, ii) qualify the conditions under which Hulten’s
theorem holds, and iii) characterize the relation between marginal revenue product and marginal
welfare product equalization.

The converse Hulten’s theorem identifies a condition on wedges that ensures that prices equal
the MSV of a good, regardless of whether an economy is frictionless or not. We show that Hulten’s
theorem fails to hold only in non-interior efficient economies, applying to interior efficient economies
and to all frictionless competitive economies. This result further underscores the importance of
carefully analyzing non-negativity constraints in disaggregated economies. We also show that
Hulten’s theorem is at its core a result about efficiency (via production efficiency), only becoming
a result about output or welfare under specific circumstances. This result expands on Bigio and
La’O (2020), who have already shown that Hulten’s theorem is valid for efficiency, rather than
output, in an environment with a single individual and elastic factor supply. At last, we also show
that efficiency requires the equalization of marginal welfare products across uses of an intermediate
input or a factor, while competition only enforces the equalization of marginal revenue products.

Applications. Finally, we illustrate how the welfare accounting decomposition introduced in this
paper can be put to use to identify the origins of welfare gains and losses in four workhorse models
in macroeconomics.

Our first application shows how an increase in tariffs contributes negatively to exchange
efficiency via cross-sectional consumption efficiency in the simplest endowment economy
(Armington, 1969). Our second application shows how the efficiency gain induced by an
improvement in a matching technology in a Diamond-Mortensen-Pissarides (DMP) model is due
to cross-sectional factor use efficiency gains large enough to compensate for aggregate intermediate
input efficiency losses due to increased vacancy postings. This application illustrates how to use
the welfare accounting decomposition in a random search economy, which differs substantially from
competitive economies. Our third application illustrates how an increase in markup dispersion
generates cross-sectional factor use efficiency losses in Hsieh and Klenow (2009) economy.

Our final application shows how to use the welfare accounting decomposition to identify the
welfare gains from optimal monetary stabilization policy in a macroeconomic model with household
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and sectoral heterogeneity. We compute the optimal monetary policy response to a technology
shock in a static, multi-sector heterogeneous-agent New Keynesian model with a rich input-output
production structure. We contrast the efficiency welfare gains from stabilization policy with its
impact on redistribution and decompose the former into its production efficiency components.
Quantitatively, we show that “cross-sectional” production efficiency terms are more important
than “aggregate” terms in a standard calibration of the New Keynesian model.

Related Literature. Our characterization of efficiency conditions is closely related to classical
studies of efficiency — see Lange (1942) or, for a modern treatment, Section 16.F of Mas-Colell et al.
(1995). While existing work has assumed that all goods are final or mixed, we show that allowing
for pure intermediate goods substantially changes the nature of efficiency conditions. Even though
it is understood that particular efficiency conditions ensure exchange and production efficiency, this
literature has not explored welfare decompositions that allow to quantitatively separate the sources
of efficiency gains for a given perturbation.

The welfare accounting decomposition relates to the vast literature on growth accounting and
productivity measurement that follows Solow (1957) and includes Hall (1990), Basu (1995), Basu
and Fernald (1997, 2002), Basu et al. (2006), Basu et al. (2022), and Baqaee and Farhi (2020),
among many others. The unique feature of our decomposition is the fact that it is exclusively based
on preferences, technologies, and resource constraints, making no assumptions about individual
behavior, budget constraints, prices, or equilibrium notions. This contrasts our results with Baqaee
and Farhi (2020), who present a decomposition based on markups, prices, and cost minimization.

Our results build on the production networks literature.2 A central result of this literature
is Hulten’s theorem (Hulten, 1978), which characterizes the aggregate impact of technological
change in terms of prices (Domar weights). Instead of imposing a competitive structure, we
provide a characterization of the impact of technological change exclusively based on preferences
and technologies, identifying the MSV of goods as the relevant object. By specializing the
MSV of goods to competitive environments, we are able to i) present a new converse Hulten’s
theorem, characterizing the conditions under which Hulten’s theorem applies even for economies
with frictions, and ii) qualify the conditions under which Hulten’s theorem applies. Liu (2019)
presents a statistic that summarizes the social value of subsidizing inputs and factors. While
related, our characterization of MSV differs because it i) makes no assumptions about optimizing
behavior, budget constraints, or prices, and ii) considers a perturbation in the level of output rather
than price subsidies.

2This literature includes, among many others, Gabaix (2011), Jones (2011), Acemoglu et al. (2012), Liu (2019),
Bigio and La’O (2020), Acemoglu and Azar (2020), La’O and Tahbaz-Salehi (2022), and Kopytov et al. (2022). By
emphasizing the critical role played by pure intermediate goods, our results connect to the recent work on global
value chains — see Antràs and Chor (2022) for a recent survey.
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2 Environment and Social Welfare

We first introduce preferences, technologies, and resource constraints, and then define feasible
allocations and perturbations. We conclude this section by describing how to separate efficiency
from redistribution considerations when making welfare assessments.

2.1 Preferences, Technologies, and Resource Constraints

We consider a static economy populated by a finite number I ≥ 1 of individuals, indexed by
i ∈ I = {1, . . . , I}. There are J ≥ 1 goods, indexed by j, ℓ ∈ J = {1, . . . , J} and F ≥ 0 factors,
indexed by f ∈ F = {1, . . . , F}. Goods are produced using goods and factors as inputs, while
factors are directly supplied by individuals. Goods and factors may also appear as (predetermined)
endowments.

An individual i derives utility from consuming goods and (dis)utility from supplying factors,
according to the utility function

(Preferences) V i = ui
({
cij
}

j∈J
,
{
nif,s

}
f∈F

)
, (1)

where cij denotes individual i’s final consumption of good j and nif,s denotes individual i’s supply
of factor f (the superscript s stands for supply).

Goods are produced using technologies that take goods and factors as inputs. The production
technology for good j, denoted by Gj (·) ≥ 0, is given by

(Technologies) yj,s = Gj
({
xjℓ
}

ℓ∈J
,
{
njf,d

}
f∈F

; θ
)
, (2)

where yj,s denotes the amount produced (output) of good j, xjℓ denotes the amount of good ℓ used
in the production of good j, and njf,d denotes the amount of factor f used in the production of
good j (the superscript d stands for demand). We use the index ℓ ∈ J to refer to goods used as
intermediates. We parametrize Gj (·; θ) by θ to consider perturbations to technology, as described
below.

The resource constraint for good j is

(Resource Constraints: Goods) yj,s + ȳj,s (θ) = cj + xj , (3)

where cj =
∑

i c
ij represents the total amount of good j consumed (aggregate consumption),

xj =
∑

ℓ x
ℓj represents the amount of good j used as an intermediate input in production (aggregate

intermediate use), and ȳj,s (θ) =
∑

i ȳ
ij,s (θ) represents the aggregate endowment of good j, where

ȳij,s (θ) denotes individual i’s endowment of good j. We parametrize ȳj,s (θ) and ȳij,s (θ) by θ to
consider perturbations to goods’ endowments. When needed, we denote the aggregate supply of

5



good j by yj = yj,s + ȳj,s (θ).
The resource constraint for factor f is

(Resource Constraints: Factors) nf,s + n̄f,s (θ) = nf,d, (4)

where nf,s =
∑

i n
if,s and nf,d =

∑
j n

jf,d respectively represent the aggregate elastic supply and
the aggregate factor use of factor f , and n̄f,s (θ) =

∑
i n̄

if,s (θ) represents the aggregate endowment
of factor f , where n̄if,s (θ) denotes individual i’s endowment of factor f . We parametrize n̄f.s (θ)
and n̄if,s (θ) by θ to consider perturbations to factor endowments. When needed, we denote the
aggregate supply of factor f by nf = nf,s + n̄f,s (θ).

2.2 Feasible Allocations and Perturbations

Here we define a feasible allocation. Non-negativity constraints are critical for our results.

Definition. (Feasible allocation). An allocation
{
cij , nif,s, xjℓ, njf,d, yj,s

}
is feasible if equations

(2) through (4) hold and the non-negativity constraints cij ≥ 0, nif,s ≥ 0, xjℓ ≥ 0, njf,d ≥ 0, and
yj,s ≥ 0 are satisfied.

We assume that preferences and technologies are differentiable and that all variables are smooth
functions of a perturbation parameter θ ∈ [0, 1], so derivatives such as dcij

dθ or dnjf,d

dθ are well-defined.
We describe (standard) regularity conditions on preferences and technologies in the Appendix.

Feasible perturbations dθ have a dual interpretation. First, a perturbation may capture
exogenous changes in technologies or endowments, but also changes in policies (e.g., taxes, subsidies,
transfers, etc.) or any other primitive of a fully specified model (e.g., trade costs, markups,
bargaining power, etc.). Under this interpretation, the mapping between allocations and θ emerges
endogenously and accounts for equilibrium effects. Second, a perturbation may alternatively
capture changes in feasible allocations directly chosen by a planner. This second interpretation
is useful to characterize the set of efficient allocations, as in Section 4.

2.3 Social Welfare: Efficiency vs. Redistribution

We consider welfare assessments for welfarist planners, that is, planners with a social welfare
function W (·) given by

(Social Welfare Function) W = W
(
V 1, . . . , V i, . . . , V I

)
, (5)
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where ∂W
∂V i > 0, ∀i, and where individual utilities V i are defined in (1).3 A welfare assessment can

be expressed as
dW

dθ
=
∑

i

∂W
∂V i

dV i

dθ
=
∑

i

∂W
∂V i

λi
dV i

dθ

λi
, (6)

where λi is an individual normalizing factor that allows us to express individual welfare gains
or losses in units of a common welfare numeraire. In particular, since the units of λi are
dim

(
λi
)

= utils of individual i
units of numeraire , individual welfare gains or losses dV i

dθ /λ
i are measured in units of

the common welfare numeraire. The only restriction when choosing the welfare numeraire is that
λi must be strictly positive for all individuals.4

Lemma 1 derives Dávila and Schaab (2024)’s efficiency/redistribution decomposition in our
environment. This is the unique decomposition in which a normalized welfare assessment can be
expressed as Kaldor-Hicks efficiency, ΞE , and its complement, ΞRD.

Lemma 1. (Efficiency/Redistribution Decomposition) A normalized welfare assessment for a
welfarist planner can be decomposed into efficiency and redistribution components, ΞE and ΞRD,
as

dW λ

dθ︸ ︷︷ ︸
Welfare

Assessment

=
dW
dθ

1
I

∑
i

∂W
∂V iλi

=
∑

i

ωi
dV i

dθ

λi
=

∑
i

dV i

dθ

λi︸ ︷︷ ︸
ΞE (Efficiency)

+ CovΣ
i

[
ωi,

dV i

dθ

λi

]
︸ ︷︷ ︸

ΞRD (Redistribution)

, (7)

where ωi =
∂W
∂V i λi

1
I

∑
i

∂W
∂V i λi

and where CovΣ
i [·, ·] = I ·Covi [·, ·] denotes a cross-sectional covariance-sum

among all individuals.

The efficiency component ΞE corresponds to Kaldor-Hicks efficiency, that is, it is the sum of
individual willingness-to-pay for the perturbation in units of the welfare numeraire. Hence,
perturbations in which ΞE > 0 can be turned into Pareto improvements if transfers are feasible and
costless. The redistribution component ΞRD captures the equity concerns embedded in a particular
social welfare function: ΞRD is positive when individuals relatively favored in a perturbation are
relatively preferred by the planner, that is, have a higher ωi.

Two properties of this decomposition are worth highlighting. First, the efficiency component
is invariant to i) the choice of social welfare function and ii) preference-preserving utility
transformations, hence our focus on efficiency, relegating the study of the redistribution component
to the Appendix. Second, efficient allocations feature a weakly negative efficiency component
(ΞE ≤ 0) for any feasible perturbation given endowments and technologies. This property allows
us to use ΞE to characterize the set of efficient allocations in Section 4.

3The welfarist approach is widely used because it is Paretian, that is, it concludes that Pareto-improving
perturbations are desirable, and because nonwelfarist approaches violate the Pareto principle (Kaplow and Shavell,
2001).

4For instance, if good 1 is chosen as welfare numeraire, then λi = ∂ui

∂ci1 , ∀i. Alternatively, if a nominal unit (dollars)
exists, it can alternatively be used as welfare numeraire.
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3 Welfare Accounting: Efficiency

This section introduces the welfare accounting decomposition that identifies and quantifies the
origins of efficiency gains and losses. The efficiency component of a welfare assessment, ΞE , can be
decomposed into exchange and production efficiency, ΞE,X and ΞE,P , as follows:

ΞE︸︷︷︸
Efficiency

= ΞE,X︸ ︷︷ ︸
Exchange
Efficiency

+ ΞE,P︸ ︷︷ ︸
Production
Efficiency

, (8)

where both ΞE,X and ΞE,P can be further decomposed, as illustrated in Figure 1 and explained in
detail in the remainder of this section.

3.1 Exchange Efficiency

Working with shares, rather than levels, is useful to distinguish gains due to reallocation from those
due to changes in aggregates. Formally, changes in individual consumption, cij , and factor supply,
nif,s, can be expressed as

dcij

dθ
= dχij

c

dθ
cj + χij

c

dcj

dθ
and dnif,s

dθ
= dχif,s

n

dθ
nf,s + χif,s

n

dnf,s

dθ
, (9)

where individual i’s consumption share of good j is given by χij
c = cij/cj , and individual i’s factor

supply share of factor f is given by χif,s
n = nif,s/nf,s.5

Exchange efficiency captures efficiency gains associated with the reallocation of consumption
and factor supply among individuals.

Theorem 1. (Exchange Efficiency) Exchange efficiency, ΞE,X , can be decomposed into i) cross-
sectional consumption efficiency and ii) cross-sectional factor supply efficiency, as

ΞE,X =
∑

j

CovΣ
i

[
MRSij

c ,
dχij

c

dθ

]
cj

︸ ︷︷ ︸
Cross-Sectional

Consumption Efficiency

−
∑

f

CovΣ
i

[
MRSif

n ,
dχif,s

n

dθ

]
nf,s

︸ ︷︷ ︸
Cross-Sectional

Factor Supply Efficiency

where individual i’s marginal rates of substitution between good j and the numeraire, MRSij
c , and

between factor f and the numeraire, MRSif
n , are given by

MRSij
c =

∂ui

∂cij

λi
and MRSif

n = −
∂ui

∂nif,s

λi
. (10)

Cross-sectional consumption efficiency measures the contribution to efficiency due to reallocating
5All definitions of shares in the body of the paper assume that denominators are positive. See Section B of the

Appendix for formal definitions when denominators are zero.
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consumption of good j from individuals with low to high MRSij
c , for given aggregate consumption

cj . Analogously, cross-sectional factor supply efficiency measures the contribution to efficiency due
to reallocating the supply of factor f from individuals with high to low MRSif

n , for given aggregate
(elastic) supply of factor, nf,s.

Corollary 1 presents several properties of practical relevance that exchange efficiency satisfies.

Corollary 1. (Properties of Exchange Efficiency)

(a) (Single Individual) In economies with a single individual (I = 1), exchange efficiency is zero.

(b) (No Elastic Factor Supply) In economies in which factors are not elastically supplied, so
nf,s = 0 for all factors, cross-sectional factor supply efficiency is zero.

(c) (Equalized MRSij
c or MRSif

n ) If marginal rates of substitution for good j (factor f) are
identical across individuals for all goods (factors) with cj > 0 (nf,s > 0), then cross-sectional
consumption (factor supply) efficiency is zero.

Note that exchange efficiency and redistribution are completely different notions, even though both
require individual heterogeneity. In particular, the choice of social welfare function does not affect
exchange efficiency but it directly impacts redistribution.

3.2 Production Efficiency

To distinguish gains due to reallocation from those due to changes in aggregates, we define good
ℓ’s i) intermediate share, ϕℓ

x = xℓ/yℓ, which represents the share of good ℓ’s aggregate supply yℓ

devoted to production; ii) intermediate-use share used to produce good j, χjℓ
x = xjℓ/xℓ, which

represents the share of good ℓ’s aggregate intermediate use devoted to the production of good j;
and iii) intermediate-supply share used to produce j by ξjℓ = χjℓ

x ϕ
ℓ
x = xjℓ/yℓ, as the product of the

two.
Hence, changes in intermediate use are given by

dxjℓ

dθ
= dξjℓ

dθ
yℓ + ξjℓdy

ℓ

dθ
, where dξjℓ

dθ
= dχjℓ

x

dθ
ϕℓ

x + χjℓ
x

dϕℓ
x

dθ
. (11)

We also define the factor use share of factor f used to produce good j, χjf,d
n = njf,d/nf,d, so changes

in factor use shares are given by

dnjf,d

dθ
= dχjf,d

n

dθ
nf,d + χjf,d

n

dnf,d

dθ
. (12)

3.2.1 Network Propagation: Goods Inverse Matrix

To study production efficiency it is necessary to understand how perturbations propagate through
the production network of goods. Lemma 2 introduces the goods inverse matrix Ψy, which
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characterizes the ultimate change in the aggregate supply of goods induced by unit impulses in
the supply of goods.6

Lemma 2. (Goods Inverse Matrix). Changes in good j’s aggregate supply dyj

dθ can be expressed in
terms of changes in intermediate-supply shares dξjℓ

dθ , changes in factor use dnjf,d

dθ , changes in the
good endowment dȳj,s

dθ , and changes in technology ∂Gj

∂θ , as

dyj

dθ
=
∑

ℓ

∂Gj

∂xjℓ
ξjℓdy

ℓ

dθ︸ ︷︷ ︸
Propagation

+
∑

ℓ

∂Gj

∂xjℓ

dξjℓ

dθ
yℓ +

∑
f

∂Gj

∂njf,d

dnjf,d

dθ
+ dȳj,s

dθ
+ ∂Gj

∂θ︸ ︷︷ ︸
Impulse

. (13)

Equivalently, in matrix form,

dy

dθ
= Ψy︸︷︷︸

Propagation

(
Gx

dξ

dθ
y + Gn

dn̊d

dθ
+ dȳs

dθ
+ Gθ

)
︸ ︷︷ ︸

Impulse

where Ψy = (IJ − Gxξ)−1︸ ︷︷ ︸
Goods Inverse

, (14)

where dy
dθ and dȳs

dθ respectively denote the J × 1 vectors of dyj

dθ and dȳj,s

dθ , and Ψy = (IJ − Gxξ)−1

defines the J × J goods inverse matrix. The remaining matrices are defined in Appendix A.

Lemma 2 characterizes how the aggregate supply of goods ultimately changes in response to the four
“impulse” terms of equation (13), which represent the first-round impact of the perturbation on the
supply of goods. A perturbation that changes intermediate-supply shares by dξjℓ

dθ raises at impact
the amount of good ℓ used as input for good j in proportion to yℓ, which in turn increases output
at impact by ∂Gj

∂xjℓ . Similarly, a perturbation that changes the use of factor f in the production of
good j by dnjf,d

dθ increases output at impact by ∂Gj

∂njf,d . Changes in the endowment or the technology
used to produce good j simply increase aggregate supply at impact by dȳj,s

dθ or ∂Gj

∂θ , respectively.
Such first-round changes in the level of aggregate supply in turn induce further changes in the

level of intermediate inputs, which in turn induce further changes in aggregate supply. These knock-
on effects through the production network are captured by the goods inverse matrix Ψy. Under
minimal regularity conditions — described in the Appendix — Ψy admits the series representation

Ψy = (IJ − Gxξ)−1 = IJ + Gxξ + (Gxξ)2 + (Gxξ)3 + . . . . (15)

The first term in the expansion, IJ , represents the first round of aggregate supply changes just
described. As aggregate supply adjusts, the level of intermediate inputs xjℓ changes in proportion to
the intermediate-supply share ξjℓ, or ξ in matrix form. In turn, changes in the level of intermediate

6We introduce two related propagation matrices in the Appendix: the intermediate inverse matrix Ψx, which
characterizes network propagation for changes in the level of intermediates; and the proportional goods inverse
matrix Ψ̃y = ŷ−1Ψyŷ, where ŷ = diag(y), which characterizes network propagation for proportional impulses in the
supply of goods.
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inputs translate into a second round of changes in aggregate supply in proportion to the marginal
products of each input ∂Gj

∂xjℓ , or Gx in matrix form. This explains the second term Gxξ in (15),
which generates knock-on effects in proportion to (Gxξ)2 and so on.

The following remark highlights how the goods inverse matrix differs from propagation matrices
identified in the literature.

Remark 1. (Goods Inverse Matrix is Purely Technological) While propagation matrices abound in
the study of models with rich production structures — see e.g. Carvalho and Tahbaz-Salehi (2019)
— the goods inverse matrix introduced in Lemma 2 is distinct in the sense that it is purely a
technological object. That is, Ψy is exclusively based on production technologies. This is important
because Ψy will be a key input when characterizing efficiency conditions in Section 4. In competitive
economies, the goods inverse matrix Ψy will be related to well-known Leontief-style inverses that
depend on prices (and wedges), as explained in Section 5.

3.2.2 Defining AMRS, MSV , MWP , and AMWP

Decomposing production efficiency requires defining the sets of variables that translate changes
in allocations, technologies, and endowments into welfare changes: AMRS, MSV , MWP , and
AMWP .

Definition. (Aggregate Marginal Rate of Substitution). The aggregate marginal rate of substitution
(AMRS) between good j and the numeraire and between factor f and the numeraire is given by

AMRSj
c =

∑
i

χij
c MRSij

c and AMRSf
n =

∑
i

χif,s
n MRSif,s

n . (16)

The aggregate marginal rate of substitution for good j corresponds to the efficiency gain associated
with increasing aggregate consumption of good j by a unit, making individuals consume in
proportion to their consumption shares. The aggregate marginal rate of substitution for factor
f corresponds to the welfare cost associated with increasing the aggregate supply of factor f by a
unit, making individuals supply the factor in proportion to their factor supply shares.

Definition. (Marginal Social Value of Goods). The marginal social value of good j, MSV j
y , is

defined as the j’th element of the 1 × J vector MSV y, given by

MSVy = AMRScϕcΨy, (17)

where AMRSc is a 1 × J vector of AMRSj
c ; ϕc is the J × J diagonal matrix of aggregate

consumption shares, with ϕj
c = cj

yj ; and Ψy is the J × J goods inverse matrix defined in (14).

The marginal social value of good j captures the efficiency gain associated with having an additional
unit of that good. While a unit impulse in the supply of goods generates an ultimate increase in the
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aggregate supply of goods given by the goods inverse matrix Ψy, only the aggregate consumption
share ϕc is consumed by individuals. And AMRSc captures the gain associated with increasing
aggregate consumption, so the marginal social value of an impulse in the supply of goods is the
product of these three objects. The definition of MSV highlights that the social value of a good
emanates from the final consumption — potentially of other goods — it ultimately generates.

Definition. (Marginal Welfare Product). The marginal welfare products (MWP ) of input ℓ and
factor f for technology j are given by

MWP jℓ
x = MSV j

y

∂Gj

∂xjℓ
and MWP jf

n = MSV j
y

∂Gj

∂njf,d
. (18)

Marginal welfare products capture the efficiency gain associated with using an input or factor in
the production of a good. Marginal increases in xjℓ or njf,d increase output at impact by their
technological marginal products, ∂Gj

∂xjℓ and ∂Gj

∂njf,d . As just described, the social value of a unit impulse
in the supply of goods is summarized by the marginal social value of goods, MSV j

y . Hence, marginal
welfare products of inputs and factors are given by the product of physical marginal products and
the marginal social value of the goods produced.

Definition. (Aggregate Marginal Welfare Product). The aggregate marginal welfare product
(AMWP ) of good j and factor f , respectively, are given by

AMWP ℓ
x =

∑
j

χjℓ
x MWP jℓ

x and AMWP f
n =

∑
j

χjf,d
n MWP jf

n . (19)

The aggregate marginal welfare product for good ℓ corresponds to the efficiency gain associated with
increasing the aggregate intermediate use of good ℓ in proportion to the intermediate use shares.
The aggregate marginal welfare product for factor f corresponds to the welfare gain associated
with increasing the use of factor f in proportion to the factor use shares.

3.2.3 Production Efficiency Decomposition

Production efficiency gains ultimately correspond to higher aggregate consumption and lower
aggregate factor supply, since ΞE,P is given by

ΞE,P =
∑

j

AMRSj
c

dcj

dθ
−
∑

f

AMRSf
n

dnf,s

dθ
.

Part of the contribution of Theorem 2 is to express changes in aggregate consumption net of factor
supply costs in terms of changes in the allocation of intermediates and factors (allocative efficiency),
and primitive changes in technologies and endowments (technical efficiency).
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Theorem 2. (Production Efficiency). Production efficiency ΞE,P can be decomposed into i)
cross-sectional intermediate input efficiency, ii) aggregate intermediate input efficiency, iii) cross-
sectional factor use efficiency, iv) aggregate factor efficiency, v) technology change, vi) good
endowment change, and vii) factor endowment change, as

ΞE,P =

Intermediate Input Efficiency︷ ︸︸ ︷∑
ℓ

CovΣ
j

[
MWP jℓ

x ,
dχjℓ

x

dθ

]
xℓ

︸ ︷︷ ︸
Cross-Sectional

Intermediate Input Efficiency

+
∑

ℓ

(
AMWP ℓ

x −AMRSℓ
c

) dϕℓ
x

dθ
yℓ

︸ ︷︷ ︸
Aggregate

Intermediate Input Efficiency

+

Factor Efficiency︷ ︸︸ ︷∑
f

CovΣ
j

[
MWP jf

n ,
dχjf,d

n

dθ

]
nf,d

︸ ︷︷ ︸
Cross-Sectional

Factor Use Efficiency

+
∑

f

(
AMWP f

n −AMRSf
n

) dnf,s

dθ︸ ︷︷ ︸
Aggregate

Factor Efficiency

+
∑

j

MSV j
y

∂Gj

∂θ︸ ︷︷ ︸
Technology

Change

+
∑

j

MSV j
y

dȳj,s

dθ︸ ︷︷ ︸
Good Endowment

Change

+
∑

f

AMWP f
n

dn̄f,s

dθ︸ ︷︷ ︸
Factor Endowment

Change

.

Each component of the production efficiency decomposition quantifies the contribution to Kaldor-
Hicks efficiency of changes in allocations or primitives. Cross-sectional components correspond to
covariances across uses, measuring gains from reallocating intermediate inputs or factors from low
to high marginal welfare product uses, for given levels of aggregate intermediate use or factor use.

The aggregate intermediate input efficiency component measures the gains from adjusting the
share of aggregate goods supply devoted to final consumption relative to production, for a given
level of aggregate goods supply. Hence, for good ℓ it is shaped by the product of the difference
AMWP ℓ

x − AMRSℓ
c and the change in the intermediate use share, dϕℓ

x
dθ y

ℓ. The aggregate factor
efficiency component measures the gains from adjusting the elastic supply of factors. Hence, for
factor f it is shaped by the product of the difference between AMWP f

n −AMRSf
n and the change

in the factor supply, dnf,s

dθ .
The final three components measure welfare gains due to primitive changes in technology and

endowments, for given allocations. The gain from changes in the technology or endowment of good
j is given by its marginal social value, MSV j

y . The gain from changes in the endowment of factor
f is simply given by the marginal gain associated with increasing factor use, AMWP f

n .
Corollary 2 presents several properties that production efficiency satisfies.

Corollary 2. (Properties of Production Efficiency)

(a) (Single Good Economies) In economies with a single good (J = 1), cross-sectional
intermediate input efficiency and cross-sectional factor use efficiency are zero.
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(b) (No Intermediate Input Economies) In economies with no intermediate goods (xjℓ = ξjℓ = 0),
cross-sectional and aggregate intermediate input efficiency are zero.

(c) (Fixed Factor Supply Economies) In economies in which all factors are in fixed supply
(dnf,s

dθ = 0), aggregate factor efficiency is zero.

(d) (Specialized Intermediate/Factor Economies) In economies in which all intermediate inputs
(factors) are specialized with χjℓ

x = 1 (χjf
n = 1) for some j, cross-sectional intermediate input

(factor use) efficiency is zero.

(e) (Equalized MWP jℓ
x or MWP jf

n ) If marginal welfare products for good ℓ (factor f) are
identical across uses for all goods (factors) with xℓ > 0 (nf,d > 0), then cross-sectional
intermediate (factor use) efficiency is zero.

3.3 Insights from Welfare Accounting Decomposition

We highlight three insights that emerge from the welfare accounting decomposition.

Remark 2. (Technological and Preference Origins of Gains and Losses). Theorems 1 and 2 trace the
origins of efficiency gains and losses under any perturbation to changes in the allocation of resources
and to primitive changes in technology and endowments. Since this decomposition is purely based
on preferences, technologies, and resource constraints, it is useful to quantify, compare, and contrast
different economic environments, e.g. competitive, strategic, search, bargaining, contracting, etc.

Remark 3. (Social Value of Technology). Theorem 2 identifies the efficiency gains from pure
technological change with MSV j

y , without making assumptions about the individual behavior,
budget constraints, prices, or equilibrium notions. The technology change component of the welfare
accounting decomposition is always positive if technology improves since MSV j

y > 0. However, a
technological improvement can feature a negative efficiency component if its impact on allocative
efficiency is sufficiently negative, which can only happen at inefficient allocations.

Remark 4. (Shares). By design, the allocative efficiency components of the welfare accounting
decomposition are written in terms of changes in allocation shares, with the exception of aggregate
factor efficiency. Working with shares allows us to separate changes due to reallocation (holding
consumption, factor supply, goods supply, intermediate input use, or factor use fixed) from changes
in aggregates (aggregate factor supply, technology, or endowments). But this separation is not
possible working with levels. Our results can be seen as an application of the non-envelope theorem
result in Dávila and Schaab (2023) that exploits the linearity of resource constraints.
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4 Pareto Efficient Allocations

In this section, we leverage the welfare accounting decomposition to characterize the set of Pareto
efficient allocations.

4.1 Efficiency Conditions

An allocation is Pareto efficient if there is no feasible perturbation in which any of the allocative
efficiency components in Theorems 1 and 2 is positive. While a version of the exchange efficiency
conditions in Theorem 3 already appears in Mas-Colell et al. (1995), the production efficiency
conditions in Theorem 4 are novel, yielding a new set of insights.

Theorem 3. (Efficiency Conditions: Exchange Efficiency). An efficient allocation satisfies the
following exchange efficiency conditions:

(a) (Cross-sectional consumption efficiency) For goods with cj > 0, it must be that MRSij
c =

AMRSj
c , ∀i s.t. χij

c > 0; and MRSij
c ≤ AMRSj

c , ∀i s.t. χij
c = 0.

(b) (Cross-sectional factor supply efficiency) For factors with nf,s > 0, it must be that MRSif
n =

AMRSf
n, ∀i s.t. χif,s

n > 0; and MRSif
n ≥ AMRSf

n, ∀i s.t. χif,s
n = 0.

Pareto efficiency requires the equalization of MRSij
c across all consumers of good j, with MRSij

c

potentially lower for individuals for whom cij = 0. Otherwise, it is feasible and welfare-improving
to reallocate consumption from low to high MRSij

c individuals, for given aggregate consumption
cj . At the corner where individual i does not consume good j, it is not feasible to reallocate
consumption away from individual i, even though marginal rates of substitution are not equalized.
The same logic applies to factor supply.

Theorem 4. (Efficiency Conditions: Production Efficiency). An efficient allocation satisfies the
following production efficiency conditions:

(a) (Cross-sectional intermediate input efficiency) For goods with xℓ > 0, it must be that
MWP jℓ

x = AMWP ℓ
x, ∀j s.t. χjℓ

x > 0; and MWP jℓ
x ≤ AMWP ℓ

x, ∀j s.t. χjℓ
x = 0.

(b) (Aggregate intermediate input efficiency) For goods with yℓ > 0, it must be that
maxj

{
MWP jℓ

x

}
≤ AMRSℓ

c, ∀ℓ s.t. ϕℓ
x = 0; AMWP ℓ

x = AMRSℓ
c, ∀ℓ s.t. ϕℓ

x ∈ (0, 1);

and AMWP ℓ
x ≥ maxi

{
MRSiℓ

c

}
, ∀ℓ s.t. ϕℓ

x = 1.

(c) (Cross-sectional factor use efficiency) For factors with nf,d > 0, it must be that MWP jf
n =

AMWP f
n , ∀j s.t. χjf

n > 0; and MWP jf
n ≤ MWP f

n , ∀j s.t. χjf
n = 0.

(d) (Aggregate factor efficiency) For factors with nf,d > 0, it must be that AMWP f
n = AMRSf

n,
∀f s.t. nf,s > 0; and AMWP f

n ≤ mini

{
MRSif

n

}
, ∀f s.t. nf,s = 0.
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Pareto efficiency requires the equalization of MWP jℓ
x across all uses of good ℓ in production.

Otherwise, it is feasible and welfare-improving to reallocate intermediate inputs from low to high
MWP jℓ

x uses, for given aggregate intermediate input use xℓ. When good ℓ is not used to produce
good j, MWP jℓ

x must be weakly lower. The same logic applies to the allocation of a factor across
uses in 4c).

Pareto efficiency also requires the equalization of the marginal rate of substitution from
consuming good ℓ with its marginal welfare product as an input for mixed goods with ϕℓ

x ∈ (0, 1),
with inequalities for pure final (ϕℓ

x = 0) and pure intermediate goods (ϕℓ
x = 1). Similarly, efficiency

requires the equalization of the marginal welfare product of elastic factor f with its marginal rate of
substitution, which captures the utility cost of supplying the factor, whenever a factor is elastically
supplied.

Theorems 3 and 4 highlight that carefully incorporating non-negativity constraints is critical to
characterize efficiency conditions in disaggregated economies. These issues become more relevant at
finer levels of disaggregation, since heterogeneous individuals typically do not consume most goods
and production networks with heterogeneous producers become increasingly sparse. We elaborate
on these issues in the remainder of this section.

4.2 Classical Efficiency Conditions: Interior Economies

Section 16.F of Mas-Colell et al. (1995) summarizes the classical efficiency conditions — typically
traced back to Lange (1942). Theorems 3 and 4 generalize these classical conditions to general
environments with disaggregated production.

Definition. (Classical Efficiency Conditions). The classical (production) efficiency conditions for
an intermediate link jℓ and a factor link jf hold if

MRSij
c

∂Gj

∂xjℓ
= MRSiℓ

c and MRSij
c

∂Gj

∂njf,d
= MRSif

n . (20)

Critically, the classical approach exclusively studies interior production economies, in which every
good is mixed and used in the production of every other good, i.e., χjℓ

x ∈ (0, 1) and ϕℓ
x ∈ (0, 1) . In

that case, the classical efficiency conditions in (20) imply i) equalized marginal rates of substitution
across individuals, ii) equalized marginal rates of transformation (MRT ) across goods, and iii) the
equalization of MRS with MRT . Corollary 3 shows that classical efficiency conditions are a special
case of Theorems 3 and 4 in interior economies.

Corollary 3. (Interior economies). In interior economies, the efficiency conditions of Theorems
3 and 4 collapse to those in Section 16.F of Mas-Colell et al. (1995).

Next, we show that the classical efficiency conditions are typically invalid in disaggregated
production economies that are not interior.
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4.3 Failure of Classical Efficiency Conditions: Non-Interior Economies

What then distinguishes the conditions for production efficiency in non-interior economies, and
why do the classical conditions not apply to these environments?

Consider increasing xjℓ, the use of good ℓ in the production of good j. Assuming this is a
feasible perturbation, efficiency requires that its social cost — the marginal social value of good
ℓ — is equalized with its social benefit — the marginal social value of good j multiplied by the
marginal product ∂Gj

∂xjℓ . The classical efficiency conditions (20) use marginal rates of substitution
to measure the social benefit (20 LHS) and cost (20 RHS). This is appropriate for interior efficient
economies where all goods are mixed, since MSV = MRS for final goods as we showed above.
When j or ℓ is a pure intermediate, however, marginal rates of substitution no longer represent
the good’s marginal social value, even at an efficient allocation. Since pure intermediates are not
consumed, efficiency requires their MRS to be lower than their MSV . The marginal social value of
a pure intermediate instead derives from the consumption value it eventually generates downstream
as it is used in the production of other goods throughout the network.

There is a second, more mechanical reason why the classical efficiency conditions do not extend
to non-interior economies. If good ℓ is not used in the production of good j, efficiency at the jℓ
link then requires that MWP jℓ

x be lower than the marginal social value of good ℓ.
We summarize the implications of Theorems 3 and 4 for non-interior economies in two

corollaries. Corollary 4 concludes that the classical efficiency conditions hold at the level of an
intermediate input link whenever that link itself is interior.

Corollary 4. (Classical Efficiency Conditions Hold for Interior Links). The classical efficiency
conditions hold for the jℓ and jf links when

(a) a mixed good ℓ is used to produce a mixed (or a pure final) good j,
(b) an elastically supplied factor f is used to produce a mixed (or a pure final) good j.

Intuitively, the classical efficiency conditions (20) extend to all interior links jℓ and jf because the
MSV of mixed goods coincides with their MRS, even when there are non-interior links elsewhere
in the network. Corollary 5 characterizes the scenarios in which the classical conditions fail to hold.

Corollary 5. (Scenarios in which Classical Efficiency Conditions Do Not Hold). The classical
efficiency conditions generically fail to hold for links jℓ and jf that feature pure intermediate
goods, i.e.,

(a) a mixed good ℓ is used to produce a pure intermediate good j,
(b) a pure intermediate good ℓ is used to produce any good j,
(c) a factor f is used to produce a pure intermediate good j.
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i = 1 j = 1 j = 2 j = 3 f = 1

fixed

(a) Example 1

f = 1

fixed

j = 3

j = 1

j = 2

i = 1

(b) Example 2

Figure 2: Scenarios in which Classical Efficiency Conditions Do Not Hold

Note: This figure illustrates Corollary 5 in two simple scenarios. The left panel shows a mixed good (good 3) used to
produce a pure intermediate (good 2), as well as a a pure intermediate (good 2) used to produce a final good (good
1). The right panel shows a factor used to produce both a pure intermediate (good 3) and a final good (good 1).

Trivially, the classical conditions also fail to hold for links jℓ and jf when good ℓ and factor f are
not used in the production of good j.

The first and third items of Corollary 5 highlight that the classical efficiency conditions may fail
at links in which the efficiency conditions take the form of an equality, as long as an intermediate
good is produced. This observation implies that properly characterizing production efficiency is
more subtle than simply considering a set of inequalities, as in the case of exchange efficiency.

We illustrate Corollary 5 in two simple examples — see also Figure 2.

Example 1. (Pure Intermediates). Example 1 features a single individual (I = 1), three
goods (J = 3), and a single factor in fixed supply (F = 1). The individual’s preferences are
V 1 = u1 (c11, c13), which implies that MRS12 = 0. Technologies for each of the goods are
y1 = G1 (x12), y2 = G2 (x23), and y3 = G3

(
n31,d

)
, which already imposes that many marginal

products are zero, e.g., ∂G1

∂x13 = 0.

The welfare accounting decomposition for this economy only features aggregate intermediate
input efficiency: exchange efficiency is zero since I = 1, cross-sectional intermediate input and factor
use efficiency are zero since all inputs and factors are specialized, and aggregate factor efficiency is
zero since the single factor is in fixed supply.7 Plugging into Theorem 2,

ΞE = ΞE,P =
∑

ℓ

(
AMWP ℓ

x −AMRSℓ
c

) dϕℓ
x

dθ
yℓ =

MRS11
c

∂G1

∂x12
∂G2

∂x23︸ ︷︷ ︸
AMW P 3

x

−MRS13
c︸ ︷︷ ︸

AMRS3
c

 dϕ3
x

dθ
y3.

7Formally, we assume here that the efficient production structure is as in Figure 2a. The full set of efficiency
conditions also features inequalities to ensure that, for example, it is not efficient to consume good 2 or use it in the
production of good 3.
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For the mixed good 3 with ϕ3
x ∈ (0, 1), aggregate intermediate input efficiency requires that

AMWP 3
x = AMRS3

c , or equivalently MRS11
c

∂G1

∂x12
∂G2

∂x23 = MRS13
c . The classical efficiency condition

would instead require MRS12
c

∂G2

∂x23 = MRS13
c , which is invalid since good 2 is a pure intermediate

and MRS11
c

∂G1

∂x12 > MRS12
c = 0. At the efficient allocation, the classical condition would lead one

to conclude good 3’s intermediate use is inefficiently high. This illustrates Corollary 5a.
This example also illustrates Corollary 5b since it features a pure intermediate (good 2) that

is used in the production of another good. Since ϕ2
x = 1, aggregate intermediate input efficiency

requires that MRS11
c

∂G1

∂x12 > MRS12 = 0, i.e., the consumption value of good 2 must be lower than
its production value. The classical efficiency condition MRS11

c
∂G1

∂x12 = MRS12
c would lead one to

conclude that, at the efficient allocation, MSV 2
y = AMWP 2

x = AMRS2
c , which would be incorrect.

Example 2. (Factor Used to Produce Pure Intermediate). Example 2 features one individual
(I = 1), three goods (J = 3), and one factor in fixed supply (F = 1). Preferences are
V 1 = u1 (c11, c12) and technologies for each of the goods are y1 = G1

(
n11,d

)
, y2 = G2 (x23),

and y3 = G3
(
n31,d

)
.

The welfare accounting decomposition for this economy only features cross-sectional factor use
efficiency: exchange efficiency is zero since I = 1, cross-sectional intermediate input efficiency is
zero since all inputs are specialized, aggregate factor efficiency is zero since the single factor is
in fixed supply, and aggregate intermediate input efficiency is zero since ϕ1

c = ϕ2
x = ϕ3

x = 1 by
construction. Therefore,

ΞE = ΞE,P = CovΣ
j

[
MWP j1

n ,
dχj1,d

n

dθ

]
n1,d =

(
MSV 1

y

∂G1

∂n11,d

dχ11,d
n

dθ
+MSV 3

y

∂G3

∂n31,d

dχ31,d
n

dθ

)
n1,d,

where MSV 1
y = MRS11

c and MSV 3
y = MRS12

c
∂G2

∂x23 . Since labor is in fixed supply but used in
the production of two goods, a feasible perturbation is dχ11,d

n
dθ = −dχ31,d

n
dθ . Cross-sectional factor

use efficiency therefore requires that MRS11
c

∂G1

∂n11,d = MRS12
c

∂G2

∂x23
∂G3

∂n11,d . The classical efficiency
condition would instead associate the marginal social value of pure intermediate good 3 with its
MRS and require MRS11

c
∂G1

∂n11,d = MRS13
c

∂G3

∂n31,d . Since MRS12
c

∂G2

∂x23 > MRS13
c = 0 at the efficient

allocation, the classical condition would lead one to conclude the use of labor in the production of
good 3 is inefficiently high, illustrating Corollary 5c.

We conclude the study of non-interior economies with a remark that highlights the importance
of characterizing efficiency conditions in terms of MWP and MRS instead of MRS and MRT .

Remark 1. (MWP ⋛ MRS generalizes MRS ⋛ MRT ). One central takeaway from this section
is that MWP and MRS are the appropriate objects to characterize efficiency conditions, rather
than MRS and MRT , as in the classical approach. For instance, when good ℓ is mixed or factor

20



f is in elastic supply, efficiency requires that

MWP jℓ
x = MRSiℓ

c and MWP jf
n = MRSif

n , (21)

for all i such that χij
c > 0 and for all j such that χjℓ

x > 0, but the classical efficiency conditions
in (20) would not be valid if j is a pure intermediate. More generally, the correct inequalities that
characterize production efficiency — see Theorem 2 — can be written in terms of MWP and MRS,
but not MRS and MRT .

4.4 Planning Problem, Lagrange Multipliers, and Socialist Calculation Debate

We have emphasized that the welfare accounting decomposition can be leveraged to derive efficiency
conditions directly. Equivalently, each allocative efficiency component maps directly into an
optimality condition of the planning problem.

Definition. (Planning Problem). The planning problem — formally stated in Appendix E.2
— maximizes the social welfare function in (5), with preferences V i defined in (1), subject to
technologies and resource constraints, as well as non-negativity constraints.

There are two reasons why studying the planning problem is useful. First, it provides an
equivalent characterization of the efficiency conditions in Theorems 3 and 4. As we show in the
Appendix, the restriction to feasible perturbations that underlies our characterization of efficiency
conditions is implied by the Kuhn-Tucker multipliers on the constraints of the planning problem.
Second, and more importantly for this paper, the planning problem provides a justification for the
welfare accounting decomposition. As we show in the Appendix, each of the components of the
decomposition can be interpreted as a particular perturbation of the planning problem.

Two implications of our new characterization of efficiency conditions are worth highlighting.

Remark 2. (MSV j
y and AMWP f

n as Lagrange Multipliers on Resource Constraints). The planning
problem provides an interpretation of the technology change (and good endowment change) and
factor endowment change components of the welfare accounting decomposition in terms of the
Lagrange multipliers on goods and factors resource constraints: ζj

y and ζf
n , since ζj

y = MSV j
y

when yj ̸= 0 and ζf
n = AMWP f

n when nf,d ̸= 0. To our knowledge, our results provide the
first characterization of the Lagrange multipliers of the planning problem in general disaggregated
economies.

Remark 3. (Socialist Calculation Debate with Intermediate Goods). Our characterization of
efficiency conditions directly speaks to the socialist calculation debate, which discusses the feasibility
of central planning — see e.g. Lange (1936), Lerner (1944), or Hayek (1945). Our results illustrate
how computing efficiency conditions in production economies is significantly harder than efficiently
allocating goods across individuals, especially in economies that feature pure intermediates. In
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particular, our results imply that computing MSV j
y for pure intermediates requires knowledge of

the entire production network — to compute the goods inverse matrix Ψy — while computing
MSV j

y for mixed or pure final goods only requires knowledge of aggregate individual valuations
via marginal rates of substitution. Intuitively, the value of goods that are consumed by individuals
can be ascertained from individual valuations, even when these goods also used to produce, while
pure intermediates only derive value once eventually consumed.

This observation can be used to support the hypothesis that the losses associated with planning
increase with the complexity of production networks, in particular when these feature pure
intermediate goods. It is thus not a a surprise that Friedman and Friedman (1980) chose a pencil
— a good with a complex production structure that relies on pure intermediates — as the example
to praise the virtues of competitive markets.

5 Competitive Economies

Our results so far have made no assumptions about the individual behavior, budget constraints,
prices, or notions of equilibrium. We now specialize the welfare accounting decomposition to
competitive economies with and without wedges. This provides new insights by shedding light on
the relation between efficiency and competition and by relating prices and wages to the welfare
determinants that we have identified in this paper.

5.1 Competitive Equilibrium with Wedges

We now assume that individuals maximize utility and technologies are operated with the objective
of minimizing costs and maximizing profits. To allow for distortions, we saturate all choices with
wedges, which we take as primitives. For simplicity, we set ȳj,s = 0.

Individual i faces a budget constraint of the form

∑
j

pj
(
1 + τ ij

c

)
cij =

∑
f

wf
(
1 + τ if,s

n

) (
nif,s + n̄if,s

)
+
∑

j

νijπj + T ij , (22)

where pj denotes the price of good j, wf denotes factor f ’s per unit compensation, νijπj denotes the
profit associated with the operation of technology j received by individual i, and T ij is a lump-sum
transfer that rebates wedges back to individuals. Individual i faces individual-specific consumption
and factor supply wedges τ ij

c and τ if,s
n .

Firms operate technologies to minimize costs, which defines the cost functions

Cj
(
yj ;
{
wf
}

f
,
{
pℓ
}

ℓ

)
= min

njf,d,xjℓ

∑
f

wf
(
1 + τ jf,d

n

)
njf,d +

∑
ℓ

pℓ
(
1 + τ jℓ

x

)
xjℓ, (23)

subject to equation (2), facing technology-specific factor wedges τ jf,d
n and technology-specific
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intermediate input wedges τ jℓ
x . We assume that the supply of good j can be expressed as the

solution to a profit maximization problem given by

πj = max
yj

pj
(
1 + τ j

y

)
yj − Cj

(
yj ;
{
wf
}

f
,
{
pℓ
}

ℓ

)
, (24)

where τ j
y denotes a markup wedge for technology j.

The definition of competitive equilibrium with wedges is standard, so we include it in the
Appendix. In a competitive equilibrium, individuals equalize marginal rates of substitution with
prices or wages cum wedges, while firms equalize marginal revenue products with marginal costs cum
wedges, whenever non-negative constraints are slack. We can compactly represent the optimality
conditions in matrix form as

MRSc ≤ p (1c + τc)
MRSn ≥ w (1ns + τns)

and
pGx ≤ p (1x + τx)
pGn ≤ w (1nd + τnd) ,

(25)

where all matrices are defined in Appendix A. The matrices τ x and τnd include markup wedges τ j
y

in addition to intermediate input use wedges τ jℓ
x and factor use wedges τ jf,d

n .
We refer to economies with no wedges (τ ij

c = τ if,s
n = τ jℓ

x = τ jf,d
n = τ j

y = 0) as frictionless
competitive economies. In these economies, the First Welfare Theorem holds, so any competitive
equilibrium allocation is efficient. Conditions (25) link prices to marginal rates of substitution and
(physical) marginal products, an insight that we exploit repeatedly in this section.

5.2 MSV and Converse Hulten’s Theorem

Characterizing the marginal social value of goods in competitive economies with wedges is critical
because it directly determines the efficiency gains from technology change as well as marginal
welfare products, which in turn govern all production efficiency components.

Theorem 5. (MSV in Competitive Economies with Wedges). In competitive economies with
wedges, the marginal social value of goods, defined via a 1 × J matrix MSV y, is given by

MSVy = p + pτ̄yΨy where τ̄y = ϕxτ̄x + ϕcτ̄c, (26)

where p denotes the 1 × J vector of prices, τ̄x and τ̄c denote J × J diagonal matrices of aggregate
intermediate input and consumption wedges, with elements given by τ̄ j

x =
∑

ℓ χ
ℓj
x τ

ℓj
x and τ̄ j

c =∑
i χ

ij
c τ

ij
c , ϕx and ϕc are J × J diagonal matrices of aggregate intermediate use and consumption

shares, τ̄ y defines the aggregate goods wedge, and Ψy is the goods inverse matrix defined in (14).

Equation (26) shows that the marginal social value of goods equals the vector of prices augmented
by a term that captures the average of the aggregate wedges in consumption and intermediate
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input use.8 Aggregate consumption and intermediate input use wedges are weighted averages of
individual consumption wedges, τ̄ j

c =
∑

i χ
ij
c τ

ij
c , and intermediate input use wedges, τ̄ j

x =
∑

ℓ χ
ℓj
x τ

ℓj
x .

The aggregate goods wedge is in turn a weighted average of the two.
In order to understand why MSVy takes this form in competitive economies, it is useful to start

from its definition, MSVy = AMRScϕcΨy, and proceed gradually. First, using the optimality
conditions for individual consumption, MSVy can be written as

MSVy = pϕcΨy + (AMRSc − p)︸ ︷︷ ︸
pτ̄c

ϕcΨy. (27)

Intuitively, a unit impulse in aggregate supply ultimately increases aggregate consumption by
ϕcΨy, for given allocation shares and factor supplies. The social value of this change in aggregate
consumption can be split into its market value and the deviation between the true social value,
given by AMRSc, and the market value. This difference is precisely determined the aggregate
consumption wedge, τ̄c.

Next, the market value of the change in aggregate consumption, can be expressed as

pϕcΨy = p + (pGxχx − p)︸ ︷︷ ︸
pτ̄x

ϕxΨy. (28)

Intuitively, the ultimate change in aggregate consumption induced by a unit impulse in aggregate
supply, ϕcΨy, can be expressed as the ultimate change in aggregate supply net of aggregate
intermediate use.

Formally, (28) uses the following physical identity, which follows from (15):

ϕcΨy = Ψy − ϕxΨy = IJ + GxξΨy − ϕxΨy = IJ + (Gxχx − IJ) ϕxΨy,

where the ultimate change in aggregate supply, Ψy, is decomposed into the unit impulse, IJ , and
knock-on effects, GxξΨy. Hence, the ultimate market value of a unit impulse in aggregate supply
corresponds to the sum of the market value of the impulse, given by p, and the market value of the
knock-on effects net of aggregate intermediate use, given by pGxχx −p. This difference is precisely
determined by the aggregate intermediate input wedge, τ̄ x.

Combining (27) and (28), we can reformulate (26) as

MSVy = p + (pGxχx − p)︸ ︷︷ ︸
=pτ̄x

ϕxΨy + (AMRSc − p)︸ ︷︷ ︸
=pτ̄c

ϕcΨy.

This expression illustrates that aggregate consumption (intermediate input use) of good j is too
8In sum form, we can express an element of MSVy as MSV ℓ

y = pℓ +
∑

j
pj τ̄ j

yψ
jℓ
y , where τ̄ j

y = ϕj
cτ̄

j
c + ϕj

xτ̄
j
x.
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low when τ̄ j
c > 0 (τ̄ j

x > 0), and aggregate supply of good j is too low when τ̄ j
y = ϕj

cτ̄
j
c + ϕj

xτ̄
j
x > 0.

Hence, the marginal social value of goods that ultimately increase the aggregate supply of goods
with positive aggregate goods wedges is higher than the price.

While prices capture the marginal social value of goods in frictionless competitive economies
— see Corollary 7 below, Theorem 5 allows us to establish a converse result that has been missing
from the existing literature, and that we state as Corollary 6.

Corollary 6. (Converse Hulten’s Theorem: Condition for MSVy = p) The condition that ensures
MSVy = p is that aggregate goods wedges are zero, that is,

τ̄y = ϕcτ̄c + ϕxτ̄x = 0. (29)

While frictionless competition guarantees that (29) is satisfied, this condition may also hold
otherwise, possibly at inefficient allocations. In particular, prices will capture the marginal social
value of goods as long as aggregate goods wedges are zero, even when intermediate input and
consumption wedges are non-zero (τx ̸= 0 and τc ̸= 0) and the competitive equilibrium is inefficient.
Aggregate goods wedges can be zero when aggregate consumption and intermediate use wedges
cancel out, or when both are zero. In turn, aggregate consumption and intermediate use wedges
can be zero when its elements cancel out, or when all its constituents are zero. For cancellations
to occur, it must be that some wedges are positive and other negative.

5.3 Hulten’s Theorem Revisited

Theorem 5 allows us to revisit the impact of technology changes in the frictionless competitive case.
This is the widely studied Hulten’s theorem (Hulten, 1978), a result that has played a prominent
role in the study of the macroeconomic impact of microeconomic shocks and growth accounting
(Gabaix, 2011; Acemoglu et al., 2012; Bigio and La’O, 2020; Baqaee and Farhi, 2020).

Corollary 7. (Hulten’s Theorem Revisited). In frictionless competitive economies, the efficiency
impact of a proportional Hicks-neutral technology change j is

1∑
j p

jcj
ΞE = pjyj∑

j p
jcj︸ ︷︷ ︸

Sales Share

, (30)

where pjyj∑
j

pjcj is the Domar weight or sales share of good j in
∑

j p
jcj.

Corollary 7 provides a general Hulten-like result that applies to frictionless competitive economies
with heterogeneous individuals, elastic factor supplies, arbitrary preferences and technologies, and
arbitrary social welfare functions. Its generality allows us to systematically present the many
qualifications associated with this result in three remarks.
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Remark 1. (Normalizations behind Domar Weights). Comparing Theorem 5 and Corollary 7
highlights why Hulten’s theorem is typically stated in terms of Domar weights. First, considering
proportional Hicks-neutral technology shocks implies that ∂Gj

∂θ = yj , which ensures that the
numerator of the Domar weight in (30) is pjyj . Second, Hulten’s theorem is typically stated
using nominal GDP as numeraire, which ensures that the denominator of the Domar weight in (30)
is
∑

j p
jcj . These are valid normalizations that transform the condition MSV j

y = pj into a Domar
weight.

Remark 2. (Welfare vs. Efficiency vs. Production Efficiency vs. Output). In economies with a
single individual (I = 1) and in which supplying factors causes no disutility (∂ui/∂nif,s = 0),
changes in final output, production efficiency, efficiency, and welfare coincide, which justifies the
typical formulation of Hulten’s theorem in terms of final output. Corollary 7 highlights that Hulten’s
theorem is at its core a result about efficiency (via production efficiency). Why is this the case?
In economies with a single individual, redistribution and exchange efficiency are zero, so efficiency
and welfare coincide and are exclusively determined by production efficiency.9 And when supplying
factors causes no disutility, there is no need to subtract the social cost of supplying factors to
transform final output changes into welfare changes, so production efficiency exclusively captures
changes in final output (i.e. aggregate consumption).

Remark 3. (Efficient vs. Frictionless Competitive vs. Efficient Interior Economies). Corollary 7
states that Hulten’s Theorem applies to frictionless competitive economies, rather than efficient
economies, as often formulated. One reason that may explain why Hulten’s theorem is often
formulated in terms of efficiency is that prior to the results in Section 4 there had been no
general characterization of efficiency conditions that dealt with non-interior allocations. Why is this
relevant? When an allocation is efficient, all allocative efficiency components are necessarily zero,
which guarantees that efficiency gains are exclusively due to technology and endowment changes.
But efficiency is not enough to guarantee that MSVy = p. The converse Hulten’s Theorem shows
that this occurs when τ̄ y = 0, a condition that holds in frictionless competitive economies, but that
need not hold in efficient economies. That is, there may exist efficient non-interior allocations in
which τ̄ y ̸= 0 and Hulten’s theorem does not hold. This occurs because in efficient non-interior
allocations input prices need not reflect marginal welfare products. Therefore, while Hulten’s
theorem applies to i) frictionless competitive economies and ii) efficient interior allocations, it can
fail in efficient non-interior allocations. We illustrate this possibility in Example 3.

Example 3. (Failure of Hulten’s Theorem in Non-Interior Efficient Equilibrium). We consider the
same environment as in Example 1, and focus on a technology change for good 2, so ∂G2

∂θ ̸= 0. For
simplicity, we set all wedges to zero, with the exception of τ12

x ̸= 0. The competitive equilibrium of
9In fact, Bigio and La’O (2020) have already shown that Hulten’s theorem is valid for efficiency in an I = 1

environment with elastic labor supply.
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this economy is efficient, with the relevant efficiency condition here being MRS11
c

∂G1

∂x12 > 0. In this
case, competition ensures that p1 ∂G1

∂x12 = p2 (1 + τ12
x

)
. But note that

MSV 2
y = MRS11

c

∂G1

∂x12 = p1 ∂G
1

∂x12 = p2
(
1 + τ12

x

)
̸= p2,

so prices do not capture the marginal social value of goods and Hulten’s theorem fails in this
efficient economy. This example illustrates that τ̄2

y = τ̄2
x = τ12

x = 0 is the condition that ensures
MSV 2

y = p2, not efficiency. Baqaee and Farhi (2020) already provide an example analogous to
this one in which Hulten’s theorem fails, justifying this failure in that revenue- and cost-based
Domar weights are not equal. Our result complement theirs in the sense that we establish that
this failure of Hulten’s in efficient economies can only occur at non-interior allocations. Our result
further underscores the importance of carefully dealing with non-interior allocations when studying
disaggregated economies.

5.4 Marginal Revenue Product vs. Marginal Welfare Product

In frictionless competitive economies, marginal revenue products are equalized across all uses and
the cross-sectional factor use efficiency component is zero. However, equalization of marginal
revenue products is not sufficient to ensure that the cross-sectional factor use efficiency component
is zero in competitive economies with wedges, even when factor use wedges are zero. A similar logic
applies to cross-sectional input efficiency. Why is this the case?

As explained in Section 4, efficiency requires the equalization of marginal welfare products
across uses of a factor, while competition when factor use wedges are zero ensures the equalization
of marginal revenue products across uses. If MSV j

y ̸= pj for some goods that use a particular
factor, the marginal welfare products of that factor won’t be equalized across uses, allowing for
cross-sectional factor use efficiency to be non-zero. We illustrate this possibility in Example 4.

Example 4. (Marginal Welfare Product vs. Marginal Revenue Product). We consider the same
environment as in Example 2. All wedges are zero except τ23

x ̸= 0. In this case, competition
ensures that MRS11

c = p1 and MRS12
c = p2, as well as p1 ∂G1

∂n11,d = w1 and p3 ∂G3

∂n31,d = w1. The only
equilibrium condition with a wedge is p2 ∂G2

∂x23 =
(
1 + τ23

x

)
p3. Consequently, competition implies

that marginal revenue products are equalized across uses, so MRP 11
n = MRP 31

n . Therefore,

p1 ∂G1

∂n11,d
= p3 ∂G3

∂n31,d
=⇒ p1 ∂G1

∂n11,d
= 1

1 + τ23
x

p2 ∂G
2

∂x23
∂G3

∂n31,d
.

However, this condition is inconsistent with cross-sectional factor use efficiency,

p1 ∂G1

∂n11,d
= p2 ∂G

2

∂x23
∂G3

∂n31,d
,
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which requires the equalization of marginal welfare products. This discrepancy is due to the fact
that marginal social value of good 3 does not equal its price, since τ̄3

y = τ23
x > 0.

6 Applications

In this section, we illustrate how the welfare accounting decomposition can be used to trace the
origins of welfare gains to changes in allocations and primitives in four workhorse models in
macroeconomics and trade. Our first application shows how an increase in tariffs contributes
negatively to exchange efficiency via cross-sectional consumption efficiency in the simplest
endowment economy (Armington, 1969). This application also illustrates subtle patterns in
redistribution. Our second application shows how the efficiency gain induced by an improvement in
a matching technology in a Diamond-Mortensen-Pissarides (DMP) model is due to cross-sectional
factor use efficiency gains that are large enough to compensate for aggregate intermediate input
efficiency losses due to an increase in vacancy postings. This application illustrates how to use the
welfare accounting decomposition in economies that are not competitive. Our third application
illustrates how an increase in markup dispersion generates cross-sectional factor use efficiency
losses in a Hsieh and Klenow (2009) economy. Our final application shows how to use the welfare
accounting decomposition to identify the welfare gains from optimal monetary stabilization policy
in a macroeconomic model with household and sectoral heterogeneity.

6.1 Armington (1969) Model

Environment. We consider the simplest Armington (1969) economy, which has I = 2 individuals
(here representing countries), J = 2 goods, and F = 2 inelastically supplied factors.10 Each country
produces a single good with their domestic factor — normalized so that n̄if,s = 1 — but consumes
both goods. Country i has preferences given by

V i =

∑
j

(
cij
)σ−1

σ

 σ
σ−1

,

and faces the budget constraint

∑
j

pj
(
1 + τ ij

)
cij = wif +

∑
j

T ij , where T ij = pjτ ijcij . (31)

Since the iceberg costs τ ij are rebated they should be interpreted as tariffs rather than physical costs,
although it is straightforward to consider the alternative case. Goods are competitively produced

10As we show in the Appendix, this economy is isomorphic to an economy without factors in which each country
has a predetermined endowment of their home good.
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(c) Hsieh-Klenow Model

Figure 3: Welfare Accounting Decomposition: Applications

Note: This figure illustrates the welfare accounting decomposition for the first three applications. The top panel
shows that an increase in tariffs decreases exchange efficiency through cross-sectional consumption efficiency in an
Armington model. It also show that cross-sectional consumption redistribution is positive, since the tariff increase
hurts more the country with lower consumption. The bottom left panel shows that the efficiency gain induced by an
improvement in a matching technology in a DMP model is due to cross-sectional factor use efficiency gains that are
large enough to compensate for aggregate intermediate input efficiency losses due to increase vacancy postings. The
bottom right panel shows that all welfare losses due to the increase in the dispersion of wedges/markups — typically
referred to as misallocation — are attributed to production efficiency via cross-sectional factor use efficiency in Hsieh
and Klenow (2009) economy.
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according to constant returns to scale technologies — which justifies the absence of profits in (31)
— given by

y1 = A1n11,d and y2 = A2n22,d,

so each country uses the domestic factor to exclusively produce the domestic good. An
equilibrium is characterized by allocations cij , prices pj , and wages wif such that both countries
choose consumption optimally, countries produce competitively, and all markets clear. Resource
constraints in this economy are given by

∑
i c

ij = yj , ∀j, and nf,d = n̄f,s = 1, ∀f .
Our parameterization assumes that σ = 2, A1 = 1, A2 = 50, τ ii = 0, and τ ij = τ ji = τ . We

use aggregate world consumption as welfare numeraire, and assume that the planner has a social
welfare function given by

∑
i

(
V i
)σ−1

σ .

Results. The top panel in Figure 3 illustrates the welfare impact of a multilateral increase in
tariffs τ — see also Figure OA-4. The welfare accounting decomposition yields insights for both
efficiency and redistribution.

First, a multilateral increase in tariffs always features a negative exchange efficiency component,
due to cross-sectional consumption efficiency. This occurs because the increase in tariffs reallocates
consumption toward each country’s domestic good, which is the one with a relatively lower MRSij

c

as long as τ > 0. Note that ΞE,X = 0 at τ = 0, since this economy is efficient in the absence of
tariffs.

Second, an increase in tariffs eventually makes both countries worse off, but initially benefits
country 2, because p2/p1 increases in equilibrium. Since country 2 is more productive and consumes
more of both goods than country 1 in equilibrium, the planner attaches a lower individual weight
to country 2, so ω1 > ω2. Hence, initially, the increase in tariffs benefits the country relatively less
preferred by the planner and harms redistribution, with ΞRD < 0. However, once tariffs are large
enough, further increases in tariffs make both countries worse off. Around τ ≈ 1.2, the marginal
increase in τ hurts country 2 disproportionately more. From this level of tariffs onwards, ΞRD > 0,
since country 1 — the relatively preferred by the planner — is hurt by less.

6.2 DMP Model

Environment. We consider a stylized version of the textbook labor search model, as in e.g.
Pissarides (2000). We consider a two date economy, t ∈ {0, 1}, populated by a single/representative
individual (I = 1) endowed with a unit supply of labor (F = 1), which can be used in technology
j = 1 (unemployment) or j = 2 (employment). Each of these technologies produces perfectly
substitutable goods (or equivalently, a single final good), so the preferences of the representative
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individual can be written as

V = c0 + βc1, where ct = c1
t + c2

t , (32)

where cj
t denotes consumption of the good produced by technology j at date t. Both technologies

have constant returns to scale and are given by

y1
t = G1

t

(
n1

t

)
= z1n1

t = z1χ1
t,n and y2

t = G2
t

(
n2

t

)
= z2n2

t = z2χ2
t,n, (33)

where χ1
t,n and χ2

t,n respectively denote the employment and unemployment rates, and where
z2 > z1.

Moreover, there exists a third “vacancy-generating” technology (J = 3) at date 0 that takes the
final good and generates vacancies, as follows

y3
t = vt = G3

t (xt) = 1
κt
xt, (34)

where κt captures the marginal cost of vacancy posting. Vacancies can be interpreted as a good that
no individual desires to consume, which means that in a first-best environment vacancies should
be zero. Hence, the resource constraints in this model can be expressed as

y1
t + y2

t = ct + xt and χ1
t,n + χ2

t,n = 1. (35)

Equation (32) through (35) are sufficient to characterize the efficiency conditions for this economy.
Since z2 > z1, efficiency requires full employment, with χ1

t,n = 0 and χ2
t,n = 1, as well as, vt = 0.

However, we consider a standard random search equilibrium in which employment only adjusts
according to

χ1
t+1,n − χ1

t,n = φ
(
1 − χ1

t,n

)
−m

(
χ1

t,n, vt

)
,

where φ denotes the job destruction rate and the matching function m (·) is given by

m
(
χ1

t,n, vt

)
= µ

(
χ1

t,n

)α
(vt)1−α .

As usual in this class of models, labor market tightness is defined as θt = vt

χ1
t,n

. We formally describe
the (standard) characterization of the equilibrium in the Online Appendix and describe the welfare
impact of a change in the matching technology µ. Our parameterization assumes that β = 0.99,
z1 = 0, z2 = 1, η = 0.5, α = 0.7, φ = 0.036, b0 = b1 = 0, κ0 = 0.1, with χ1

0,n = 0.037.

Results We consider a standard search equilibrium in this economy — see Online Appendix —
and explore the welfare implications of improvements in the matching technology µ. The effects are
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illustrated in the bottom left panel in Figure 3 — see also Figure OA-5. Several insights emerge.
First, the technology change component of the welfare accounting decomposition is zero even

though the matching technology improves. This occurs because the matching technology does not
change the production frontier of the economy, and it is simply a mechanism to determine how
factors of production are allocated. Second, as the matching technology improves, firms post more
vacancies at date 0, which translates into higher employment at date 1. The increase in employment
drives the positive cross-sectional factor use efficiency component — as discussed above, at the first-
best, unemployment should be zero. However, the additional vacancies posted make the aggregate
intermediate input efficiency component negative. This occurs because posting vacancies entails
using a technology that produces no final output, and it only contributes to reallocating factors,
something that could be done freely in the absence of search frictions.

Hence, even though the improvement in the matching technology generates welfare efficiency
gains, the welfare accounting decomposition shows that these gains combine positive and negative
effects. More generally, this application illustrates how adjustment cost functions will typically
generate a negative aggregate intermediate input efficiency component.

6.3 Hsieh and Klenow (2009) Model

Environment. We consider a simplified version of the Hsieh and Klenow (2009) economy, with
a representative individual (I = 1) — whose index we drop — and a single final good, which we
index by j = 1. Individual preferences are given by

V = u
(
c1
)
,

where the final good is produced according to the technology

y1 =

 J∑
j=2

(
x1j
) ϵ−1

ϵ

 ϵ
ϵ−1

where ϵ denotes the elasticity of substitution between the J − 1 intermediate inputs. Each
intermediate input j ≥ 2 is produced according to the technology

yj = Ajnj1,d,

where a single factor not elastically supplied (F = 1) — whose index we also drop — can be used to
produce the different intermediates. Formally, resource constraints in this economy can be written
as

c1 = y1, yj = x1j , ∀j ≥ 2, and
J∑

j=2
χj,d

n = 1.
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If the final good is produced competitively, and the intermediate inputs are chosen under
monopolistic competition subject to wedges τ j (which can be interpreted as markups) the
equilibrium factor use shares χj,d

n , can be expressed as

χj,d
n =

(
Aj
)ϵ−1 (

τ j
)−ϵ∑J

j=2 (Aj)ϵ−1 (τ j)−ϵ ,

Our parameterization — designed to mimic Hsieh and Klenow (2009) — assumes that(
logAj , log τ j

)
∼ N

(
µA, µτ , σ

2
A, σ

2
τ , στA

)
, where µA = 0.5, µτ = 1.1, σA = 0.95, στ = 0.63,

στA = 0.36, J = 211, 304, and ϵ = 3. We explore the welfare implications of an increase in markup
dispersion through στ .

Results. The bottom left panel in Figure 3 illustrates the welfare impact of a change in markup
dispersion — typically referred to as misallocation. Since all intermediate inputs in this economy are
fully specialized and there is a single final good, no welfare changes are attributed to intermediate
input efficiency. And since the single factor is fixed, aggregate factor efficiency is also zero. Hence,
all welfare losses due to the increase in the dispersion of markups are attributed to production
efficiency via cross-sectional factor use efficiency. Given our calibration of the model, chosen to
mimic Hsieh and Klenow (2009), these effects are quantitatively large. Since there is a single
representative individual, both exchange efficiency and redistribution are zero.

6.4 New Keynesian Model

This application shows how the welfare accounting decomposition can be used to identify the welfare
gains from optimal monetary stabilization policy. To that end, we develop a static, multi-sector
heterogeneous agent New Keynesian model with an input-output production network — a static
“HANK-IO” model (Schaab and Tan, 2023). This model builds on La’O and Tahbaz-Salehi (2022)
and Rubbo (2023) but allows for household heterogeneity in addition to sectoral heterogeneity.

Environment. There are I (types of) households indexed by i. Each has mass µi, with
∑

i µ
i = 1.

There are N production sectors indexed by j. Each comprises a continuum of firms indexed by
ℓ ∈ [0, 1]. Each firm produces a distinct good, indexed by jℓ.

The preferences of household i are given by

V i = 1
1 − γ

(ci)1−γ − 1
1 + φ

(ni)1+φ , where (36)

ci =

∑
j

(Γij
c )

1
ηc (cij)

ηc−1
ηc


ηc

ηc−1

and cij =
(∫ 1

0
(cijℓ)

ϵj −1
ϵj dℓ

) ϵj

ϵj −1
,
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where ci denotes a final consumption aggregator, cij denotes a sectoral consumption aggregator,
and cijℓ is household i ’s consumption of good jℓ. Each household is endowed with a unique labor
factor and ni denotes hours of work. The household budget constraint is given by

∑
j

∫ 1
0 p

jℓcijℓdℓ =
W ini +T i, where pjℓ is the price of good jℓ, W i is the wage paid to factor i, and T i is a lump-sum
transfer that accounts for profits. Household optimization implies

(
ni
)φ (

ci
)γ = W i/P i.

Firm ℓ in sector j produces according to the nested CES production technology

yjℓ = Aj

(
(1 − ϑj)

1
η (njℓ)

η−1
η + (ϑj)

1
η (xjℓ)

η−1
η

) η
η−1

, where njℓ =
(∑

i

(Γji
w)

1
ηw (njℓi)

ηw−1
ηw

) ηw
ηw−1

, (37)

xjℓ =
(∑

ℓ

(Γjℓ
x )

1
ηx (xjℓℓ)

ηx−1
ηx

) ηx
ηx−1

and xjℓℓ =
(∫ 1

0
(xjℓℓℓ′)

ϵℓ−1
ϵℓ dℓ′

) ϵℓ

ϵℓ−1
.

We denote by Aj a sector-specific, Hicks-neutral technology shifter, ϑj governs sector j′’s
intermediate input share, and η is the elasticity of substitution between labor and inputs. Firm ℓ

in sector j uses a bundle of labor njℓ that is itself a CES aggregate of its use of labor factors i, njℓi.
It also uses a bundle of intermediate inputs xjℓ, which is a CES aggregate of sectoral bundles xjℓℓ,
where xjℓℓℓ′ denotes firm jℓ ’s use of good ℓℓ′ in production.

Firms are monopolistically competitive. They choose labor and inputs to minimize costs, and
prices to maximize profits. Each firm ℓ is small and takes as given aggregate and sectoral variables.
Profits are Πjℓ =

(
1 − τ j

)
pjℓyjℓ −

∑
ℓ

∫ 1
0 p

ℓℓ′
xjℓℓℓ′

dℓ′ −
∑

iW
injℓi =

(
1 − τ j

)
pjℓyjℓ −mcjyjℓ, where

τ j is a revenue tax. Marginal cost mcj is uniform across firms in each sector as we show in Appendix
G.4.1. If prices are flexible, firms set prices as a markup over marginal cost, pjℓ = pj = ϵj

ϵj−1
1

1−τ jmc
j .

To introduce nominal rigidities, we assume that only a fraction δj ∈ [0, 1] of firms in sector j can
reset their prices in response to a shock. Otherwise, prices remain fixed at some initial level p̄j ,
which we specify in the Appendix. The sectoral price distribution is thus given by

pjℓ =


ϵj

ϵj−1
1

1−τ jmc
j for ℓ ∈

[
0, δj

]
p̄j for ℓ ∈

(
δj , 1

]
.

(38)

We model monetary policy by assuming that aggregate nominal expenditures are constrained by
a cash-in-advance constraint of the form

∑
j

∫ 1
0 p

jℓyjℓdℓ ≤ M , where M is the monetary policy
instrument. Finally, the markets for goods and labor factors have to clear, requiring

yjℓ =
∑

i

µic
ijℓ +

∑
ℓ

∫ 1

0
xℓℓ′jℓdℓ′ and µini =

∑
j

∫ 1

0
njℓidℓ. (39)

We formally define competitive equilibrium in Appendix G.4.2.
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Figure 4: Welfare Accounting Decomposition: New Keynesian Model

Note: This figure illustrates the welfare accounting decomposition for the New Keynesian application when varying
monetary policy in response to an unanticipated positive technology shock.

Calibration. We calibrate a model with N = 66 sectors and I = 10 household types,
corresponding to deciles of the income distribution, as in Schaab and Tan (2023). We use data from
the Consumer Expenditure Survey to calibrate Γij

c so the model matches consumption expenditure
shares. Similarly, we use data from the American Community Survey and the BEA’s I-O and GDP
tables to calibrate ϑj , Γjℓ

x , and Γji
w so the model matches sectoral input-output data and payroll

shares. We calibrate ϵj to match sectoral markup data from Baqaee and Farhi (2020) and δj to
match Pasten et al. (2017)’s data on sectoral price rigidities. We allow revenue taxes τ j to offset
initial markups and study the case with τ j = 0 in Appendix G.4.4. Finally, we assume an equal-
weighted utilitarian social welfare function. Appendix G.4.3 presents a detailed discussion of our
calibration.

Results. We study monetary policy in response to a 2% technology shock that is uniform across
sectors. When households and sectors are symmetric, Divine Coincidence holds and there exists
an optimal monetary policy M∗ that closes output and inflation gaps. Through the lens of the
welfare accounting decomposition, Divine Coincidence implies that each allocative efficiency term
of Theorems 1 and 2 is zero. We discuss this case in Appendix G.4.4.

When households and sectors are heterogeneous, Divine Coincidence fails. Figure 4 plots the
welfare accounting decomposition, treating M as the perturbation parameter (θ).11 The left panel
decomposes welfare gains (yellow) into gains from efficiency (blue) and redistribution (green). The
blue line intersects 0 at around MAE = 0.974, which is the policy that maximizes efficiency.

11Even though households are heterogeneous, exchange efficiency is zero because goods and factor supply markets
are frictionless.
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Redistribution is negative at this point, indicating that the redistribution motive of the utilitarian
social welfare function calls for a more contractionary policy (lower M).

The right panel decomposes efficiency into its four allocative efficiency components: cross-
sectional and aggregate factor and intermediate input efficiency. Several additional insights emerge.
First, factor and input efficiency are both quantitatively important determinants of the production
efficiency gains from monetary policy. Second, at MAE = 0.974, aggregate (light blue) and cross-
sectional (green) input efficiency are negative. These two motives call for more contractionary
policy. Third, aggregate (yellow) and cross-sectional (red) factor use efficiency are positive at
MAE = 0.974, calling for more expansionary policy. The policy that maximizes efficiency trades
off and balances these considerations.

It is well understood that stabilizing inflation (which maps to cross sectional factor use efficiency)
is more important than stabilizing the output gap (which maps to aggregate factor efficiency) for
welfare in standard calibrations of the New Keynesian model (Rotemberg and Woodford, 1997;
Woodford, 2003). Our results preserve this conclusion and also show that the cross-sectional
component also dominates the aggregate component for intermediate input efficiency. Lastly,
Appendix G.4.4 illustrates the role of revenue taxes. When they are not available to offset initial
markup distortions, aggregate input and factor efficiency become quantitatively more important
and call for expansionary policy.

7 Conclusion

This paper introduces a welfare accounting decomposition that can be used to identify and quantify
the origins of welfare gains and losses induced by changes in allocations or primitive changes in
technologies or endowments. The distinguishing feature of this decomposition is the fact that it is
written solely in terms of preferences, technologies, and resource constraints, making no reference to
prices, budget constraints, or equilibrium notions. For that reason, it is also useful to characterize
the set of Pareto efficient allocations, which allows us to provide a new characterization of efficiency
conditions in disaggregated production economies with heterogeneous individuals that carefully
accounts for non-interior solutions, extending classical efficiency results. In competitive economies,
prices and wedges contain information about the elements that determine the decomposition, in
particular, the marginal social value of goods. We illustrate the use of the welfare accounting
decomposition through several minimal examples and four applications to workhorse models in
macroeconomics and trade.

In the Appendix, we extend our results to dynamic stochastic economies without accumulation
technologies. In ongoing work, we extend the approach of this paper to economies with accumulation
technologies, which opens a new set of nontrivial considerations.
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Online Appendix
A Matrix Definitions
This section defines all matrices used in the body of the paper and in this Appendix. To simplify the
exposition, we represent all matrices for the I = 2, J = 3, F = 2 case, although we define matrix dimensions
for the general case. For clarity, we typically use L to denote the number of intermediate inputs, although
L = J .

Allocations. We collect consumption allocations, cij , and individual endowments of goods, ȳij,s, in the
IJ × 1 vectors c̊ and ˚̄ys, as well as intermediate uses, xjℓ, in the JL× 1 vector x̊, given by

c̊ =



c11

c21

c12

c22

c13

c23


IJ×1

, ˚̄ys =



ȳ11,s

ȳ21,s

ȳ12,s

ȳ22,s

ȳ13,s

ȳ23,s


IJ×1

, x̊ =



x11

x21

x31

x12

x22

x32

x13

x23

x33


JL×1

.

Similarly, we collect factor uses, njf,d, in the JF × 1 vector n̊d, and elastic factor supplies, nif,s, and
individual endowments of factors, n̄if,s, in the IF × 1 vectors n̊s and ˚̄ns, given by

n̊d =



n11,d

n21,d

n31,d

n12,d

n22,d

n32,d


JF ×1

, n̊s =


n11,s

n21,s

n12,s

n22,s


IF ×1

, ˚̄ns =


n̄11,s

n̄21,s

n̄12,s

n̄22,s


IF ×1

.

Aggregate allocations. We collect aggregate consumption, cj , aggregate intermediate use, xj ,

aggregate produced supply, yj,s, aggregate endowment, ȳj,s, and aggregate supply, yj , of goods in J × 1
vectors c, x, ys, ȳs, and y given by

c =

 c1

c2

c3


J×1

, x =

 x1

x2

x3


J×1

, ys =

 y1,s

y2,s

y3,s


J×1

, ȳs =

 ȳ1,s

ȳ2,s

ȳ3,s


J×1

, y =

 y1

y2

y3


J×1

.

Similarly, we collect aggregate use, nf,d, aggregate elastic supply nf,s, aggregate endowment, n̄f,s, and
aggregate supply, nf , of factors in F × 1 vectors nd, ns, n̄s, and n given by

nd =
(
n1,d

n2,d

)
F ×1

, ns =
(
n1,s

n2,s

)
F ×1

, n̄s =
(
n̄1,s

n̄2,s

)
F ×1

, n =
(
n1

n2

)
F ×1

.
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Aggregates satisfy

c = 1c̊c, x = 1xx̊, ys = 1ys ẙs, ȳs = 1ȳs˚̄ys, nd = 1ndn̊d ns = 1nsn̊s, n̄s = 1n̄s˚̄ns,

where we define the following matrices of zeros and ones:

1c = 1ys = 1ȳs =

 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1


J×IJ

, 1x =

 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1


J×JL

1nd =
(

1 1 1 0 0 0
0 0 0 1 1 1

)
F ×JF

, 1ns = 1n̄s =
(

1 1 0 0
0 0 1 1

)
F ×IF

.

We can thus write resource constraints (3) and (4) as

y = c + x and n = nd, where y = ys + ȳs and n = ns + n̄s.

Allocation shares. We collect consumption shares, χij
c , in a IJ × J matrix χc, factor use shares, χjf,d

n ,
in a JF × F matrix χnd , and factor supply shares, χif,s

n , in a IF × F matrix, χns , given by

χc =



χ11
c 0 0
χ21

c 0 0
0 χ12

c 0
0 χ22

c 0
0 0 χ13

c

0 0 χ23
c


IJ×J

, χnd =



χ11,d
n 0
χ21,d

n 0
χ31,d

n 0
0 χ12,d

n

0 χ22,d
n

0 χ32,d
n


JF ×F

, χns =


χ11,s

n 0
χ21,s

n 0
0 χ12,s

n

0 χ22,s
n


IF ×F

.

We collect intermediate-use shares, χjℓ
x , and intermediate-supply shares, ξjℓ, in JL× J matrices χx and ξ,

given by

χx =



χ11
x 0 0
χ21

x 0 0
χ31

x 0 0
0 χ12

x 0
0 χ22

x 0
0 χ32

x 0
0 0 χ13

x

0 0 χ23
x

0 0 χ33
x


JL×J

, ξ =



ξ11 0 0
ξ21 0 0
ξ31 0 0
0 ξ12 0
0 ξ22 0
0 ξ32 0
0 0 ξ13

0 0 ξ23

0 0 ξ33


JL×J

.

We collect aggregate consumption and aggregate intermediate shares, ϕj
c and ϕj

x, in J×J diagonal matrices,
ϕc and ϕx, given by

ϕc =

 ϕ1
c 0 0

0 ϕ2
c 0

0 0 ϕ3
c


J×J

, ϕx =

 ϕ1
x 0 0

0 ϕ2
x 0

0 0 ϕ3
x


J×J

,

where ϕc + ϕx = IJ , and
c = ϕcy and x = ϕxy.
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We can thus write

c̊ = χcc, n̊d = χndnd, n̊s=χnsns, x̊ = χxx = ξy, ξ = χxϕx.

Note that
1cχc = IJ , 1nsχns = IF , 1ndχnd = IF , 1xχx = IJ , 1xξ = ϕx,

where IJ and IF denote identity matrices of dimensions J and F respectively.

Marginal products/technology change. We collect marginal products of intermediates in a J×JL
matrix Gx, marginal products of factors in a J × JF matrix Gn, and technology changes in a J × 1 vector
Gθ, given by

Gx =

 ∂G1

∂x11 0 0 ∂G1

∂x12 0 0 ∂G1

∂x13 0 0
0 ∂G2

∂x21 0 0 ∂G2

∂x22 0 0 ∂G2

∂x23 0
0 0 ∂G3

∂x31 0 0 ∂G3

∂x32 0 0 ∂G3

∂x33


J×JL

Gn =

 ∂G1

∂n11,d 0 0 ∂G1

∂n12,d 0 0
0 ∂G2

∂n21,d 0 0 ∂G2

∂n22,d 0
0 0 ∂G3

∂n31,d 0 0 ∂G3

∂n32,d


J×JF

, Gθ =

 ∂G1

∂θ
∂G2

∂θ
∂G3

∂θ


J×1

.

Marginal rates of substitution. We collect marginal rates of substitution in 1 × IJ and 1 × IF

vectors MRSc and MRSn, given by

MRSc =
(
MRS11

c MRS21
c MRS12

c MRS22
c MRS13

c MRS23
c

)
1×IJ

MRSn =
(
MRS11

n MRS21
n MRS12

n MRS22
n

)
1×IF

.

The 1 × J and 1 × F vectors of aggregate marginal rates of substitution, AMRSc and AMRSn, can be
written as

AMRSc = MRScχc and AMRSn = MRSnχns .

Marginal social value of goods. We collect the marginal social value of goods in 1×J vector MSVy,
given by

MSVy =
(
MSV 1

y MSV 2
y MSV 3

y

)
1×J

, where MSVy = AMRScϕcΨy.

Marginal welfare products. We collect marginal welfare products in 1 × JL and 1 × JF vectors
MW Px and MW Pn, given by

MW Px = MSVyGx, and MW Pn = MSVyGn.

The 1 × J and 1 × F vectors of aggregate marginal welfare products, AMW Px and AMW Pn, can be
written as

AMW Px = MW Pxχx and AMW Pn = MW Pnχnd .
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Goods inverse matrix. We define the elements of the J × J goods inverse Ψy as follows:

Ψy =

 ψ11
y ψ12

y ψ13
y

ψ21
y ψ22

y ψ23
y

ψ31
y ψ32

y ψ33
y


J×J

, where Ψy = (IJ − Gxξ)−1
.

Competitive economies. In competitive economies, we collect prices pj in the 1 × J vector p and
wages wf in 1 × F vector w, given by

p =
(
p1 p2 p3

)
1×J

, w =
(
w1 w2

)
1×F

.

We also collect consumption wedges in a J × IJ vector, τc, factor supply wedges in a F × IF vector, τns ,
intermediate use wedges in a J × JL vector, τx, and factor demand wedges in a F × JF , τnd , given by

τc =

 τ11
c τ21

c 0 0 0 0
0 0 τ12

c τ22
c 0 0

0 0 0 0 τ13
c τ23

c


J×IJ

, τns =
(
τ11,s

n τ21,s
n 0 0

0 0 τ12,s
n τ22,s

n

)
F ×IF

,

τx =


τ11

x −τ1
y

1+τ1
y

τ21
x −τ2

y

1+τ2
y

τ31
x −τ3

y

1+τ3
y

0 0 0 0 0 0

0 0 0 τ12
x −τ1

y

1+τ1
y

τ22
x −τ2

y

1+τ2
y

τ32
x −τ3

y

1+τ3
y

0 0 0

0 0 0 0 0 0 τ13
x −τ1

y

1+τ1
y

τ23
x −τ2

y

1+τ2
y

τ33
x −τ3

y

1+τ3
y


J×JL

,

τnd =


τ11,d

n −τ1
y

1+τ1
y

τ12,d
n −τ1

y

1+τ1
y

0 0 0 0

0 0 τ21,d
n −τ2

y

1+τ2
y

τ22,d
n −τ2

y

1+τ2
y

0 0

0 0 0 0 τ31,d
n −τ3

y

1+τ3
y

τ32,d
n −τ3

y

1+τ3
y


F ×JF

.

We use Ic and Ix to denote the following J × J indicator matrices:

Ic =

 1
[
c1 > 0

]
0 0

0 1
[
c2 > 0

]
0

0 0 1
[
c3 > 0

]


J×J

, Ix =

 1
[
x1 > 0

]
0 0

0 1
[
x2 > 0

]
0

0 0 1
[
x3 > 0

]


J×J

.

We use and Ins to denote the following F × F indicator matrix:

Ins =
(

1
[
n1,s > 0

]
0

0 1
[
n2,s > 0

] )
F ×F

.

We collect aggregate supply, aggregate consumption, and prices in J×J diagonal matrices ŷ, ĉ, and p̂, given
by

ŷ = diag (y) =

 y1 0 0
0 y2 0
0 0 y3


J×J

, ĉ = diag (c) =

 c1 0 0
0 c2 0
0 0 c3


J×J

, p̂ = diag (p) =

 p1 0 0
0 p2 0
0 0 p3


J×J

.

In parallel to the definition of marginal welfare products, we define marginal revenue products as MRP jℓ
x =

pj ∂Gj

∂xjℓ and MRP jf
n = pj ∂Gj

∂njf,d . In matrix form, MRPx = pGx and MRPn = pGn.
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B Shares Definitions
Here we provide formal definitions of shares that apply also when denominators can take zero value. We
define individual i’s consumption share of good j, χij

c , and individual i’s factor supply share of factor f ,
χif,s

n , as

χij
c :=


cij

cj if cj > 0
dcij

dθ
dcj

dθ

if cj = 0 and dcj

dθ > 0

0 if cj = 0 and dcj

dθ = 0

and χif,s
n :=


nif,s

nf,s if nf,s > 0
dnif,s

dθ
dnf,s

dθ

if nf,s = 0 and dnf,s

dθ > 0

0 if nf,s = 0 and dnf,s

dθ = 0.

Individual consumption shares χij
c represent either the share of aggregate consumption cj consumed by

individual i, when cj > 0, or the share of the change in aggregate consumption dcj/dθ consumed by individual
i, when cj = 0 and dcj/dθ > 0. Individual factor supply shares χif,s

n are defined analogously.
We define good ℓ’s intermediate share, ϕℓ

x, and the intermediate-use share of good ℓ used to produce
good j, χjℓ

x , as

ϕℓ
x :=


xℓ

yℓ if yℓ > 0
dxℓ

dθ
dyℓ

dθ

if yℓ = 0 and dyℓ

dθ > 0

0 if yℓ = 0 and dyℓ

dθ = 0

and χjℓ
x :=


xjℓ

xℓ if xℓ > 0
dxjℓ

dxℓ if xℓ = 0 and dxℓ

dθ > 0
0 if xℓ = 0 and dxℓ

dθ = 0.

Good ℓ’s intermediate share, ϕℓ
x, represents either the share of good ℓ’s aggregate supply yℓ devoted to

production, when yℓ > 0, or the share of the change in good ℓ’s aggregate supply dyℓ

dθ devoted to production,
when yℓ = 0 and dyℓ

dθ > 0. Its complement defines the aggregate consumption share ϕℓ
c = 1 − ϕℓ

x. The
intermediate-use share of good ℓ, χjℓ

x , represents either the share of good ℓ’s aggregate intermediate use
devoted to the production of good j, when xℓ > 0, or its counterpart in changes when xℓ = 0 and dxℓ

dθ > 0.
Depending on ϕℓ

x, good ℓ can be i) pure final, when ϕℓ
x = 0; ii) pure intermediate, when ϕℓ

x = 1; or iii)
mixed, when ϕℓ

x ∈ (0, 1). Equivalently, good ℓ can be i) final when ϕℓ
x ∈ [0, 1) or ii) intermediate, when

ϕℓ
x ∈ (0, 1], with mixed goods being simultaneously final and intermediate. These categorizations are only

meaningful when yℓ > 0 or dyℓ

dθ > 0. Depending on χjℓ
x , an intermediate input ℓ is i) specialized, when χjℓ

x = 1
for some j; or diversified, when χjℓ

x ∈ (0, 1) for some j.
Finally, we also define the intermediate-supply share of good ℓ by ξjℓ = χjℓ

x ϕ
ℓ
x, which corresponds to xjℓ

yℓ

when yℓ > 0 or to its counterpart in changes when yℓ = 0 and dyℓ

dθ > 0. These definitions of shares ensure
that changes in intermediate use can be expressed as

dxjℓ

dθ
= dξjℓ

dθ
yℓ + ξjℓ dy

ℓ

dθ
, where dξjℓ

dθ
= dχjℓ

x

dθ
ϕℓ

x + χjℓ
x

dϕℓ
x

dθ
, (OA1)

even when yℓ = 0 and xℓ = 0. Expression (OA1) initially decomposes level changes in the use xjℓ of good
ℓ in the production of good j into two terms. First, changes in the intermediate-supply share dξjℓ

dθ change
xjℓ in proportion to good ℓ’s aggregate supply yℓ. Second, changes in good ℓ’s aggregate supply dyℓ

dθ change
xjℓ in proportion to the intermediate-supply share ξjℓ. In turn, changes in the intermediate-supply share
dξjℓ

dθ can occur either due to reallocation of good ℓ across different intermediate uses — a change in the
intermediate-use share χjℓ

x — or due to reallocation from consumption to production — a change in the
intermediate share ϕℓ

x.
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At last, we define the factor use share of factor f used to produce good j, χjf,d
n , as

χjf,d
n :=


njf,d

nf,d if nf,d > 0
dnjf,d

dθ
dnf,d

dθ

if nf,d = 0 and dnf,d

dθ > 0

0 if nf,d = 0 and dnf,d

dθ = 0.

The factor use share χjf,d
n represents the share of factor f ’s aggregate use nf,d devoted to the production

of good j, or its counterpart in changes when nf,d = 0 and dnf,d

dθ > 0. In this case, equation (OA1) ensures
that changes in factor use can be expressed as

dnjf,d

dθ
= dχjf,d

n

dθ
nf,d + χjf,d

n

dnf,d

dθ
, (OA2)

even when njf,d = 0. Equation (OA2) decomposes level changes in the use njf,d of factor f in the production
of good j into a change in the factor use share, dxjf

n

dθ , and a change in the aggregate factor use, df,d
n

dθ . A factor
f is i) specialized, when χjf,d

n = 1 for some j; or diversified, when χjf,d
n ∈ (0, 1) for some j. The fact

that reformulating the model in terms of shares is useful is a consequence of the linearity of the resource
constraints, as explained in Dávila and Schaab (2023).

C Proofs and Derivations
To simplify the exposition, we assume throughout that i) consumption is (weakly) desirable but supplying
factors is not, i.e., ∂ui

∂cij ≥ 0 and ∂ui

∂nif,s ≤ 0; ii) the marginal products of using intermediates and factors are
(weakly) positive, i.e., ∂Gj

∂xjℓ ≥ 0 and ∂Gj

∂njf,d ≥ 0; and iii) the no-free-lunch property holds, i.e., Gj (·) = 0 if
xjℓ = 0, ∀ℓ, and njf,d = 0, ∀f . Many of our results, including the welfare accounting decomposition, do not
require such restrictions.

C.1 Section 2
Proof of Lemma 1. (Efficiency/Redistribution Decomposition)

Proof. For any welfarist planner with social welfare function W (·), we can express dW
dθ as

dW

dθ
=
∑

i

∂W
∂V i

dV i

dθ
=
∑

i

∂W
∂V i

λi
dV i

dθ

λi
,

where λi is an individual normalizing factor with units dim
(
λi
)

= utils of individual i
units of numeraire that allows us to express

individual welfare assessments into a common unit/numeraire. We can therefore write

dWλ

dθ
=

dW
dθ

1
I

∑
i

∂W
∂V iλi

=
∑

i

ωi
dV i

dθ

λi
= 1
I

∑
i

ωi

︸ ︷︷ ︸
=1

∑
i

dV i

dθ

λi
+ ICovi

[
ωi,

dV i

dθ

λi

]
=
∑

i

dV i

dθ

λi︸ ︷︷ ︸
=ΞE

+CovΣ
i

[
ωi,

dV i

dθ

λi

]
︸ ︷︷ ︸

=ΞRD

,

where ωi =
∂W
∂V i λi

1
I

∑
i

∂W
∂V i λi

, which implies that 1
I

∑
i ω

i = 1.

C.2 Section 3
Proof of Theorem 1. (Exchange Efficiency)
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Proof. Given the definition of V i in equation (1), we can express
dV i

dθ

λi as

dV i

dθ

λi
=
∑

j

∂ui

∂cij

λi

dcij

dθ
+
∑

f

∂ui

∂nif,s

λi

dnif,s

dθ
=
∑

j

MRSij
c

dcij

dθ
−
∑

f

MRSif
n

dnif,s

dθ
.

The marginal rate of substitution MRSij
c measures individual i’s valuation in units of the welfare numeraire

of a marginal increase in good j’s consumption. Analogously, MRSif
n measures individual i’s cost in units

of the welfare numeraire of a marginal increase in factor f ’s supply. Hence, from Lemma 1, it follows that

ΞE =
∑

i

dV i

dθ

λi
=
∑

j

∑
i

MRSij
c

dcij

dθ
−
∑

f

∑
i

MRSif
n

dnif,s

dθ
.

Given (9), we can write

∑
i

MRSij
c

dcij

dθ
= CovΣ

i

[
MRSij

c ,
dχij

c

dθ

]
cj +AMRSj

c

dcj

dθ
,

where AMRSj
c is defined in (16). Similarly, we can write

∑
i

MRSif,s
n

dnif,s

dθ
= CovΣ

i

[
MRSif,s

n ,
dχif,s

n

dθ

]
nf,s +AMRSf

n

dnf,s

dθ
,

where AMRSf
n is also defined in (16). Hence, exchange efficiency, ΞE,X , can be expressed as

ΞE,X = CovΣ
i

[
MRSij

c ,
dχij

c

dθ

]
cj︸ ︷︷ ︸

Cross-Sectional
Consumption Efficiency

−CovΣ
i

[
MRSif,s

n ,
dχif,s

n

dθ

]
nf,s︸ ︷︷ ︸

Cross-Sectional
Factor Supply Efficiency

,

while production efficiency corresponds to

ΞE,P =
∑

j

AMRSj
c

dcj

dθ
−
∑

f

AMRSf
n

dnf,s

dθ
.

Alternatively, in matrix form, we can write

ΞE =
∑

i

dV i

dθ

λi
= MRSc

d̊c

dθ
− MRSn

dn̊s

dθ
,

where (9) can be expressed as

d̊c

dθ
= dχc

dθ
c + χc

dc

dθ
and dn̊s

dθ
= dχns

dθ
ns + χns

dns

dθ
.

Hence,

MRSc
d̊c

dθ
= MRSc

dχc

dθ
c + AMRSc

dc

dθ
and MRSn

dn̊s

dθ
= MRSn

dχns

dθ
ns + AMRSn

dns

dθ
,
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where AMRSc = MRScχc and AMRSn = MRSnχns . We can thus write

ΞE = MRSc
dχc

dθ
c︸ ︷︷ ︸

Cross-Sectional
Consumption Efficiency

−MRSn
dχns

dθ
ns︸ ︷︷ ︸

Cross-Sectional
Factor Supply Efficiency︸ ︷︷ ︸

ΞE,X (Exchange Efficiency)

+ AMRSc
dc

dθ
− AMRSn

dns

dθ︸ ︷︷ ︸
ΞE,P (Production Efficiency)

Proof of Corollary 1. (Properties of Exchange Efficiency)

Proof. Proceeding item-by-item:

(a) When I = 1, CovΣ
i

[
MRSij

c ,
dcij

dθ

]
= CovΣ

i

[
MRSif,s

n , dnif,s

dθ

]
= 0, ∀j and ∀f .

(b) When nf,s = 0, CovΣ
i

[
MRSif,s

n ,
dχif,s

n

dθ

]
nf,s = 0, ∀f .

(c) When MRSij
c is identical for all i, CovΣ

i

[
MRSij

c ,
deij

dθ

]
= 0. When MRSif

n is identical for all f ,

CovΣ
i

[
MRSif

n ,
dnif,s

dθ

]
= 0.

Proof of Lemma 2. (Goods Inverse Matrix)

Proof. Given (11) and (13) we can write dyj

dθ and dxjℓ

dθ in matrix form, as

dys

dθ
= Gx

dx̊

dθ
+ Gn

dn̊d

dθ
+ Gθ and dx̊

dθ
= dξ

dθ
y + ξ

dy

dθ
, (OA3)

where
dy

dθ
= dys

dθ
+ dȳs

dθ
.

Combining these expressions, we can express dys

dθ as

dys

dθ
= Gx

(
dξ

dθ
y + ξ

(
dys

dθ
+ dȳs

dθ

))
+ Gn

dn̊d

dθ
+ Gθ

= Ψy

(
Gx

dξ

dθ
y + Gn

dn̊d

dθ
+ Gxξ

dȳs

dθ
+ Gθ

)
,

where Ψy = (IJ − Gxξ)−1. Finally, we use the fact that Ψy = IJ + ΨyGxξ, so that we can express dy
dθ as

dy

dθ
= dys

dθ
+ dȳs

dθ
= Ψy

(
Gx

dξ

dθ
y + Gn

dn̊d

dθ
+ dȳs

dθ
+ Gθ

)
,

which corresponds to equation (14) in the text.

Proof of Theorem 2. (Production Efficiency)

Proof. As shown above, we can express ΞE,P in matrix form as

ΞE,P = AMRSc
dc

dθ
− AMRSn

dns

dθ
.
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First, note that we can express the change in aggregate consumption, dc
dθ , as

dc

dθ
= dy

dθ
− dx

dθ
= dy

dθ
−
(

ϕx

dy

dθ
+ dϕx

dθ
y

)
= ϕc

dy

dθ
− dϕx

dθ
y,

where we use the fact that dx
dθ = ϕx

dy
dθ + dϕx

dθ y and ϕc = IJ − ϕx.
Next, note that dy

dθ can be written as

dy

dθ
= Ψy

(
Gx

dχx

dθ
x + Gxχx

dϕx

dθ
y + Gn

dχnd

dθ
nd + Gnχnd

dnd

dθ
+ dȳ

dθ
+ Gθ

)
,

where we use the fact that

dξ

dθ
= dχx

dθ
x + χx

dϕx

dθ
y and dn̊d

dθ
= dχnd

dθ
nd + χnd

dnd

dθ
.

This result allows us to express dc
dθ as

dc

dθ
= ϕcΨyGx

dχx

dθ
x+(ϕcΨyGxχx − IJ) dϕx

dθ
y+ϕcΨyGn

dχnd

dθ
nd+ϕcΨyGnχnd

dnd

dθ
+ϕcΨy

(
dȳs

dθ
+ Gθ

)
Hence, combining this expression for dc

dθ with the resource constraint for factors, which implies that
dnd

dθ = dns

dθ + dn̄s

dθ , we can express production efficiency exactly as in text, as follows:

ΞE,P = MW P x
dχx

dθ
x︸ ︷︷ ︸

Cross-Sectional
Intermediate Input Efficiency

+ (AMW P x − AMRSc) dϕx

dθ
y︸ ︷︷ ︸

Aggregate
Intermediate Input Efficiency

+ MW P n
dχnd

dθ
nd︸ ︷︷ ︸

Cross-Sectional
Factor Efficiency

+ (AMW P n − AMRSn) dns

dθ︸ ︷︷ ︸
Aggregate

Factor Efficiency

+ MSV y
dȳs

dθ︸ ︷︷ ︸
Technology

Change

+ MSV yGθ︸ ︷︷ ︸
Good Endowment

Change

+ AMRSn
dn̄s

dθ︸ ︷︷ ︸
Factor Endowment

Change

,

where
MW Px = MSVyGx, MW Pn = MSVyGn, MSVy = AMRScϕcΨy.

Proof of Corollary 2. (Properties of Production Efficiency Decomposition)

Proof. Proceeding item-by-item:

(a) When J = 1, CovΣ
j

[
MWP jℓ

x ,
dχjℓ

x

dθ

]
= 0, ∀ℓ.

(b) With no intermediate goods, xℓ = dϕℓ
x

dθ = 0, ∀ℓ.

(c) If all factors are in fixed supply, dnf,s

dθ = 0, ∀s.

(d) If all intermediate inputs are specialized: dxjℓ
x

dθ = 0, ∀j, ∀ℓ. If all factors are specialized, dxjf,d
n

dθ = 0, ∀j,
∀f .
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(e) When marginal welfare products are equalized for intermediates: CovΣ
j

[
MWP jℓ

x ,
dχjℓ

x

dθ

]
= 0, ∀ℓ; for

factors: CovΣ
j

[
MWP jf

n ,
dχjf,d

n

dθ

]
= 0, ∀f .

C.3 Section 4
In the body of the paper, we assume that that yj > 0 and nf,d > 0, but here we also allow for yj = 0 and
nf,d = 0.

Proof of Theorem 3. (Efficiency Conditions: Exchange Efficiency)

Proof. If MRSij
c is different across any two individuals with χij

c > 0 for good j with cj > 0, then there
exists a perturbation of consumption shares in which cross-sectional consumption efficiency is positive. If
MRSij

c is less than AMRSj
c when χij

c = 0, then there is no feasible perturbation that reduces the share of
consumption for individual i. The same logic applies to cross-sectional factor supply efficiency.

Proof of Theorem 4. (Efficiency Conditions: Production Efficiency)

Proof. If MWP jℓ
x is different across any two intermediate uses of good ℓ two individuals with χjℓ

x > 0, then
there exists a perturbation of intermediate use shares in which cross-sectional intermediate input efficiency
is positive. The same logic applies to cross-sectional factor use efficiency.

When ϕℓ
x ∈ (0, 1), then there exists a perturbation of ϕℓ

x such that aggregate intermediate input efficiency
is positive unless AMWP ℓ

x = AMRSℓ
c . If ϕℓ

x = 0, it must be that AMWP ℓ
x ≤ AMRSℓ

c for the best possible
combination of intermediate use shares, which is the one that allocates good ℓ to its highest marginal welfare
product intermediate use. If ϕℓ

x = 1, it must be that AMWP ℓ
x ≥ AMRSℓ

c for the possible combinations of
consumption shares, which is the one that allocates the consumption of good j to the individual with the
highest MRSiℓ

c .
When nf,s > 0 (and nf,d > 0), then there exists a perturbation of nf,s such that aggregate factor

supply efficiency is positive unless AMWP f
n = AMRSf

n. If nf,s = 0, it must be that AMWP f
n ≤ AMRSf

n

for the best possible combination of factor supply shares, which is the one that allocates the consumption
of good j to the individual with the lowest MRSif

n . If nf,s = nf,d = 0, then it must be that the most
costly way of supplying a factor is higher than the highest marginal welfare product of doing so, formally:
maxj

{
MWP jf

n

}
≤ mini

{
MRSif

n

}
.12

Proof of Corollary 3. (Interior Economies)

Proof. Recall that we define marginal rates of substitution in units of the numeraire, i.e., MRSij
c = ∂ui

∂cij /λ
i.

If condition (20) holds, then MRSiℓ
c /MRSij

c = ∂Gj

∂xjℓ must be equal across individuals since marginal products
do not depend on i. This implies that two individuals’ valuation of good ℓ, expressed in units of good j, is
equalized. Since (20) applies for all j and ℓ, it also implies the equalization of MRS in units of the welfare
numeraire. To derive the equalization of MRT , notice that (20) can be rewritten as

MRSij
c

∂Gj

∂xjℓ
= MRSij′

c

∂Gj′

∂xj′ℓ
=⇒ MRSij

c /MRSij′

c = ∂Gj′

∂xj′ℓ
/
∂Gj

∂xjℓ
≡ MRT jj′,ℓ

where the RHS defines the marginal rate of transformation (MRT ). Condition (20) therefore implies both
MRS = MRT (after a change of units) and the equalization of MRT across uses since the LHS does not
depend on ℓ. A similar argument applies to factor use.

12When nf,d = 0, the value of a marginal unit of endowment of factor f is simply maxj

{
MWP jf

n

}
.
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Proof of Corollary 4. (Classical Efficiency Conditions Hold for Interior Links)

Proof. Proceeding item-by-item:

(a) At an interior link, Theorems 4 and 6 imply that both equations in (20) hold.

(b) The result follows then from the same logic as in Corollary 3.

Proof of Corollary 5. (Scenarios in which Classical Efficiency Conditions Do Not Hold)

Proof. Proceeding item-by-item:

(a) If good j is a pure intermediate, then MSV j
y ̸= AMRSj

c , which implies that the classical efficiency
conditions cannot hold, since efficiency requires that MSV j

y
∂Gj

∂xjℓ = MRSij
c .

(b) If good ℓ is a pure intermediate, then last condition of Theorem 4 already implies that the classical
efficiency conditions cannot hold.

(c) As in (a), MSV j
y ̸= AMRSj

c , which implies that the classical efficiency conditions cannot hold, since
efficiency requires that MSV j

y
∂Gj

∂njf,d = MRSif
n .

MSV under Efficiency

The marginal social value of goods is a central object for welfare accounting. It is a key determinant of
marginal welfare products and thus governs each component of production efficiency. It is furthermore
the single determinant of the technology change (and good endowment change) component of the welfare
accounting decomposition. Theorem 6 characterizes the marginal social value of goods at efficient
allocations.13

Theorem 6. (MSV under Efficiency). At an allocation that satisfies aggregate intermediate input efficiency,
the marginal social value of good j is given by

MSV j
y =

{
AMRSj

c if ϕj
c > 0

AMWP j
x if ϕj

x > 0.
(OA4)

At an allocation that additionally satisfies cross-sectional consumption and cross-sectional intermediate input
efficiency, the marginal social value of good j is given by

MSV j
y =

{
MRSij

c ∀i s.t. χij
c > 0 if ϕj

c > 0
MWP ℓj

x ∀ℓ s.t. χℓj
x > 0 if ϕj

x > 0.
(OA5)

Proof. Note that MSV j
y can be defined in terms of AMRSj

c and AMWP j
x , as

MSV j
y = ϕj

cAMRSj
c + ϕj

xAMWP j
x . (OA6)

This equation, which provides an alternative definition for MSV j
y , shows that the value of a good corresponds

to the value of consuming its aggregate consumption share ϕj
c and using its aggregate intermediate use share

13Characterizing the factor endowment change component under efficiency is straightforward. When nf,d > 0,
efficiency requires that AMWP f

n = MWP jf
n , ∀j with χjf,d

n > 0.
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ϕj
x in production. This definition is recursive since AMWP j

x is a function of the marginal social value of all
goods.

In matrix form, it follows from Equation (OA6) that

MSVy = AMRScϕc + MSVyGxξ = AMRScϕc + AMW Pxϕx,

where ξ = χxϕx and AMW Px = MSVyGxχx. Therefore, equation (OA4) follows immediately when
aggregate intermediate input efficiency holds. Equation (OA5) follows directly from the cross-sectional
efficiency conditions.

The marginal social value of a good derives from its consumption value when the good is final and from
its production value when the good is used as an input. Aggregate intermediate input efficiency guarantees
that these are equalized for mixed goods, i.e., AMRSj

c = AMWP j
x for j mixed. When j is a final good

with ϕj
c > 0, therefore, its marginal social value equals its consumption value AMRSj

c . When j is an
intermediate good with ϕj

x > 0, its marginal social value equals its production value AMWP j
x . And

when good j is mixed with ϕj
c > 0 and ϕj

x > 0, consumption and production value must be equalized,
so MSV j

y = AMRSj
c = AMWP j

x .
Conversely, the marginal social value of a pure final (pure intermediate) good is not equal to its production

(consumption) value. As long as aggregate intermediate input efficiency is satisfied, MSV j
y > AMRSj

c when
j is a pure intermediate with ϕj

x = 1 and MSV j
y > AMWP j

x when j is a pure final good with ϕj
c = 1.

Cross-sectional consumption efficiency furthermore guarantees that MRSij
c = AMRSj

c are equalized
across all individuals i that consume good j (χij

c > 0). The MSV of a final good must therefore coincide
with the valuation of each individual. Similarly, cross-sectional intermediate input efficiency guarantees that
MWP ℓj

x = AMWP j
x are equalized for good j across all its intermediate uses ℓ (χℓj

x > 0). The MSV of
goods used as intermediate inputs must then coincide with the marginal welfare product of each use. More
broadly, efficiency requires that the value of using a good must be equalized across all uses and coincide with
the MSV of the good.

C.4 Section 5
Definition. (Competitive Equilibrium with Wedges). A competitive equilibrium with wedges comprises a
feasible allocation

{
cij , nif,s, xjℓ, njf,d, yj,s

}
and prices

{
pj , wf

}
that satisfy resource constraints (3) and

(4), such that individuals optimize,

MRSij
c ≤ pj

(
1 + τ ij

c

)
, ∀i,∀j and MRSif

n ≥ wf
(
1 + τ if,s

n

)
, ∀i, ∀f,

where the equations hold with equality when cij > 0 and nif,s > 0, respectively, and firms minimize costs and
maximize profits,

pj ∂G
j

∂xjℓ
≤ pℓ 1 + τ jℓ

x

1 + τ j
y

, ∀j,∀ℓ and pj ∂Gj

∂njf,d
≤ wf 1 + τ jf,d

n

1 + τ j
y

, ∀j, ∀f,

where the equations hold with equality when xjℓ > 0 and njf,d > 0, respectively.
In this section, we implicitly choose the nominal numeraire (i.e. the unit in which prices, wages, and

profits are defined) to be the welfare numeraire. This is without loss of generality since we can always
renormalize MRS.

Proof of Theorem 5. (MSV in Competitive Economies with Wedges)
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Proof. In a competitive equilibrium with wedges, we can express aggregate marginal rates of substitution as

AMRSc = MRScχc = p (Ic + τ̄c) ,

where Ic is J × J diagonal matrix in which the j’th element is 1 when cj > 0 and 0 if cj = 0, and where we
define a J × J matrix of aggregate consumption wedges as τ̄c = τ cχc. It is also the case that

pGxχx = p (Ix + τ xχx) = p (Ix + τ̄x) ,

where Ix is J × J diagonal matrix in which the j’th element is 1 when xj > 0 and 0 if xj = 0, and where
we define a J × J matrix of aggregate intermediate use wedges as τ̄x = τ xχx. Hence, we can express the
marginal social value of goods as

MSVy = AMRScϕcΨy = p (Ic + τ̄c) ϕcΨy = pϕcΨy + pτ̄cϕcΨy

= p + p (τ̄xϕx + τ̄cϕc) Ψy,

where we use the fact that Icϕc = ϕc and that

pϕcΨy = p ((Gx − 1x) ξΨy + IJ) = (pGx − p1x) χxϕxΨy + p

= (pGxχx − p) ϕxΨy + p = (p (Ix + τ̄x) − p) ϕxΨy + p = pτ̄xϕxΨy + p.

Given Theorem 5, the technology change component of the welfare accounting decomposition is simply given
by

MSVyGθ =
∑

j

MSV j
y

∂Gj

∂θ
=
∑

j

(
pj +

∑
ℓ

pℓτ̄ ℓ
yψ

ℓj
y

)
∂Gj

∂θ
.

This result also implies that the marginal social value of goods does not depend directly on factor supply
or factor use wedges. This result underscores the asymmetry between consumption and intermediate input
distortions on the one hand and factor supply and use distortions on the other. Because MSVy enters in
the definition of marginal welfare products, all production efficiency components are non-zero when τ̄ y ̸= 0,
but only factor efficiency components directly depend on factor wedges.

Theorem 5 also has two important implications for network propagation. First, when τ̄ y = 0, the
marginal social value of goods can be read exclusively off prices and does not require knowledge of the entire
production network. This observation is made at times in frictionless competitive economies — see Corollary
7 — which Theorem 5 shows applies more generally. Second, when τ̄ y = 0, the goods inverse matrix Ψy

contains the necessary information on network propagation to determine MSVy. While it is possible to
characterize Ψy in terms of prices, allocations, and intermediate input wedges — as we do in Appendix E.3
— this is only relevant insofar as it captures ultimate changes in aggregate supply. Only intermediate input
wedges directly enter Ψy, which echoes existing insights highlighting the outsized role that intermediate
input distortions play in production — see e.g. Ciccone (2002) or Jones (2011).

Proof of Corollary 6. (Converse Hulten’s Theorem)

Proof. Follows directly from Theorem 5.

Proof of Corollary 7. (Hulten’s Theorem Revisited)
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Proof. Since frictionless competitive economies are efficient, ΞE simply equals technology change. When
τ̄c = τ̄x = 0, it follows from Theorem 5 that MSV j

y = pj . Hence, ΞE = pj ∂Gj

∂θ = pjyj , where we use the
fact that ∂Gj

∂θ = yj for proportional Hicks-neutral technology changes. Simply dividing by
∑

j p
jcj yields

equation (26) in the text.

Relation to Cost-Based Domar Weights. A central result of Baqaee and Farhi (2020) is that cost-
based Domar weights summarize the impact of pure technological change on final output in an environment
with a single individual, factors in fixed supply, and markup wedges. Their result is a special case of Theorem
5. Formally, under the assumptions in that paper,

1∑
j p

jcj︸ ︷︷ ︸
Normalization

MSVyGθ︸ ︷︷ ︸
Technology Change

Component

= 1∑
j p

jcj
pĉ︸ ︷︷ ︸

Final Expenditure
Share

Ψ̃y︸︷︷︸
Cost-Based

Leontief Inverse

, (OA7)

where ĉ = diag(c) and Ψ̃y is the proportional goods inverse, which in turn maps to the intermediate input
block of the cost-based Leontief inverse defined in Baqaee and Farhi (2020) — see Appendix E.3. Relative
to equation (OA7), Theorem 5 illustrates how competitive forces guarantee that MSV j

y = pj when τ̄ y = 0.
Away from the assumptions in Baqaee and Farhi (2020), Theorem 5 highlights that cost-based Domar weights
cease to capture the efficiency gains from pure technological change, for instance in the presence of aggregate
consumption wedges.

Allocative Efficiency in Competitive Economies

Here we specialize the allocative efficiency components of the welfare accounting decomposition to
competitive economies with wedges.

Theorem. (Production Efficiency in Competitive Economies). In competitive economies with wedges, in
the absence of technology and endowment changes, production efficiency is given by

ΞE,P =
∑

ℓ

CovΣ
j

[
τ jℓ

x ,
dχjℓ

x

dθ

]
pℓxℓ +

∑
ℓ

CovΣ
j

[(
MSV j

y − pj
) ∂Gj

∂xjℓ
,
dχjℓ

x

dθ

]
xℓ

︸ ︷︷ ︸
Cross-Sectional Intermediate Input Efficiency

+
∑

ℓ

pℓ
(
τ̄ ℓ

x − τ̄ ℓ
c

)
+
∑

j

(
MSV j

y − pj
) ∂Gj

∂xjℓ
χjℓ

x

 dϕℓ
x

dθ
yℓ

︸ ︷︷ ︸
Aggregate Intermediate Input Efficiency

+
∑

f

CovΣ
j

[
τ jf

nd ,
dχjf,d

n

dθ

]
wfnf,d +

∑
f

CovΣ
j

[(
MSV j

y − pj
) ∂Gj

∂njf,d
,
dχjf,d

n

dθ

]
nf,d

︸ ︷︷ ︸
Cross-Sectional Factor Use Efficiency

+
∑

f

wf
(
τ̄f

ns − τ̄f
nd

)
+
∑

j

(
MSV j

y − pj
) ∂Gj

∂njf,d
χjf,d

n

 dnf,s

dθ︸ ︷︷ ︸
Aggregate Factor Efficiency

.

Theorem C.4 follows from imposing the equilibrium conditions in (25) into the production efficiency
decomposition in Theorem 2. In line with Remark 3, Theorem C.4 further underscores the asymmetry
between aggregate goods wedges, which directly impact all production efficiency components (via the terms
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that contain MSV j
y − pj , since MSVy − p = pτ̄yΨy) and other wedges. Hence, any changes in inputs or

factors that increase the supply of goods with high aggregate goods wedges have a separate impact on the
efficiency components. Since these effects are identical across all components, we focus on describing the
remaining terms.

First, cross-sectional intermediate input efficiency directly depends on the dispersion in intermediate
input use wedges. Intuitively, reallocating intermediate inputs towards uses with higher wedges is valuable
since the competitive equilibrium features too little of those input uses. Second, aggregate intermediate
input efficiency directly depends on the difference between aggregate intermediate input and consumption
wedges. Intuitively, if τ̄ ℓ

x > (<) τ̄ ℓ
c , the aggregate intermediate use of good ℓ is inefficiently high relative to its

consumption use. Third, cross-sectional factor use efficiency directly depends on the dispersion in factor use
wedges. Intuitively, reallocating factors towards uses with higher wedges is valuable since the competitive
equilibrium features too little of those factor uses. Finally, aggregate factor efficiency directly depends on the
difference between aggregate factor supply and factor use wedges. Intuitively, if τ̄f

ns > (<) τ̄f
nd , the aggregate

supply of factor f is inefficiently low (high) relative to its use. In the Appendix, we characterize the factor
endowment change component.

While the general proofs of the First Welfare Theorem by Arrow (1951) and Debreu (1951) apply to the
economy considered here, our results provide an alternative constructive proof. Under standard convexity
assumptions, a Second Welfare Theorem also holds.

Theorem. (Exchange Efficiency in Competitive Economies). In competitive economies with wedges,
exchange efficiency is given by

ΞE,X =
∑

j

CovΣ
i

[
τ ij

c ,
dχij

c

dθ

]
pjcj

︸ ︷︷ ︸
Cross-Sectional

Consumption Efficiency

−
∑

f

CovΣ
i

[
τ if,s

n ,
dχif,s

n

dθ

]
wfnf,s

︸ ︷︷ ︸
Cross-Sectional

Factor Supply Efficiency

. (OA8)

Equation (OA8) highlights that cross-sectional dispersion in consumption or factor supply wedges is necessary
for exchange efficiency to be non-zero. Intuitively, reallocating consumption towards individuals with
higher consumption wedges is valuable since these individuals consume too little in equilibrium. Similarly,
reallocating factor supply towards individuals with lower factor supply wedges is valuable since these
individuals’ factor supply is too high in equilibrium. Finally, note that intermediate input wedges, factor
use wedges, or the aggregate levels of consumption and factor supply wedges do not determine exchange
efficiency directly.

D Redistribution
Our analysis in the body of the paper exclusively focuses on efficiency. However, perturbations with identical
efficiency implications may have different distributional implications. Theorem D decomposes redistribution
gains or losses into four components: Cross-sectional consumption and factor supply redistribution capture
redistribution gains due to the reallocation of consumption and factor supply shares, for given aggregate
levels of consumption and factor supply. And aggregate consumption and factor supply redistribution
capture redistribution gains due to changes in aggregate consumption and factor supply, for given shares.
Critically, the choice of social welfare function will directly impact the welfare gains from redistribution and
its components.

Theorem. (Redistribution Decomposition). The redistribution component of the welfare accounting
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decomposition, ΞRD, can be decomposed into

ΞRD =

Cross-Sectional
Consumption Redistribution︷ ︸︸ ︷∑

j

CovΣ
i

[
ωi,MRSij

c

dχij
c

dθ

]
cj +

Aggregate
Consumption Redistribution︷ ︸︸ ︷∑

j

CovΣ
i

[
ωi,MRSij

c χ
ij
c

] dcj

dθ

−
∑

f

CovΣ
i

[
ωi,MRSif

n

dχif,s
n

dθ

]
nf,s

︸ ︷︷ ︸
Cross-Sectional

Factor Supply Redistribution

−
∑

f

CovΣ
i

[
ωi,MRSif

n χ
if,s
n

] dnf,s

dθ︸ ︷︷ ︸
Aggregate

Factor Supply Redistribution

.

Proof. Note that

ΞRD = CovΣ
i

[
ωi,

dV i

dθ

λi

]
,

where
dV i

dθ

λi
=
∑

j

MRSij
c

dcij

dθ
−
∑

f

MRSif
n

dnif,s

dθ
.

Hence, using the fact that

dcij

dθ
= dχij

c

dθ
cj + χij

c

dcj

dθ
and dnif,s

dθ
= dχif,s

n

dθ
nf,s + χif,s

n

dnf,s

dθ
,

we can express ΞRD as in the statement of the theorem.

The cross-sectional terms capture redistribution gains or losses due to the reallocation of consumption and
factor supply, for given cj and nf,s. In particular, cross-sectional consumption redistribution is positive for
good j when individuals with high normalized individual weight ωi — those relatively favored by the planner
— see their consumption shares increase; MRSij

c captures potentially different marginal consumption values.
The aggregate terms capture redistribution gains due to changes in aggregates, for given allocation shares. In
particular, aggregate consumption redistribution is positive for good j when aggregate consumption increases
and individuals with high ωi consume a relatively larger share of the good. The logic is parallel for factor
supply redistribution. The cross-sectional terms parallel exchange efficiency since they are driven by changes
in consumption or factor supply shares given aggregates, while the aggregate terms parallel production
efficiency since they are driven by changes in aggregates consumption and factor supply.

E Additional Results

E.1 Dynamic Stochastic Environment
Here we consider a general dynamic stochastic economy in which individuals have preferences of the form

V i =
∑

t

(
βi
)t∑

st

πt

(
st
)
ui

t

({
cij

t

(
st
)}

j∈J
,
{
nif,s

t

(
st
)}

f∈F
; st

)
,

and in which the production structure introduced in Section 2 repeats history by history. Figure OA-1
illustrates the results
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For any welfarist planner with social welfare function W
(
V 1, . . . , V i, . . . , V I

)
, we can express dW

dθ as

dW

dθ
=
∑

i

∂W
∂V i

dV i

dθ
=
∑

i

∂W
∂V i

λi
dV i

dθ

λi
,

where λi is an individual normalizing factor that allows us to express individual welfare assessments into a
common unit/numeraire. We can therefore write

dWλ

dθ
=

dW
dθ∑
i

αiλi

I

=
∑

i

ωi
dV i

dθ

λi
=
∑

i ω
i

I︸ ︷︷ ︸
=1

∑
i

dV i

dθ

λi
+ ICovΣ

i

[
ωi,

dV i

dθ

λi

]
=
∑

i

dV i

dθ

λi︸ ︷︷ ︸
=ΞE

+CovΣ
i

[
ωi,

dV i

dθ

λi

]
︸ ︷︷ ︸

=ΞRD

,

where ωi = αiλi

1
I

∑
i

αiλi
, which implies that 1

I

∑
i ω

i = 1.
We can express individual i’s lifetime welfare gains in units of the lifetime welfare numeraire as

dV i|λ

dθ
=

dV i

dθ

λi
=
∑

t

λi
t

λi

∑
st

(
βi
)t
πt (st)λi

t (st)
λi

t

dV
i|λ

t (st)
dθ

=
∑

t

ωi
t

∑
st

ωi
t

(
st
) dV i|λ

t (st)
dθ

,

where λi and λi
t (st) are normalizing factors to express welfare gains at particular dates or histories across

individuals in a common unit. In this case, ωi
t = λi

t

λi and ωi
t (st) = (βi)t

πt(st)λi
t(st)

λi
t

, where

dV
i|λ

t (st)
dθ

=
∑

j

∂ui
t(st)

∂cij
t

λi
t (st)

dcij
t (st)
dθ

+
∑

f

∂ui
t(st)

∂nif,s
t

λi
t (st)

dnif,s
t (st)
dθ

,

=
∑

j

MRSij
t,c

(
st
) dcij

t (st)
dθ

−
∑

f

MRSif
t,n

(
st
) dnif,s

t (st)
dθ

where MRSij
t,c (st) =

∂ui
t(st)

∂c
ij
t

λi
t(st) and MRSif

t,n (st) = −
∂ui

t(st)
∂n

if,s
t

λi
t(st) .

Note that the efficiency component can be decomposed into aggregate efficiency, risk-sharing, and
intertemporal-sharing components:

ΞE =
∑

i

dV i

dθ

λi
=
∑

t

ωt

∑
st

ωt

(
st
)∑

i

dV
i|λ

t (st)
dθ︸ ︷︷ ︸

ΞAE

+
∑

t

ωt

∑
st

ωt

(
st
)
CovΣ

i

[
ωi

t (st)
ωt (st) ,

dV
i|λ

t (st)
dθ

]
︸ ︷︷ ︸

ΞRS

+
∑

t

ωtCovΣ
i

[
ωi

t

ωt
,
dV

i|λ
t

dθ

]
︸ ︷︷ ︸

ΞIS

,

where ΞAE =
∑

t ωt

∑
st ωt (st) ΞAE

t (st), with

ΞAE
t

(
st
)

=
∑

i

dV
i|λ

t (st)
dθ

=
∑

j

∑
i

MRSij
t,c

(
st
) dcij

t (st)
dθ

−
∑

f

∑
i

MRSif
t,n

(
st
) dnif,s

t (st)
dθ

.
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Hence, it follows that

∑
i

MRSij
t,c

(
st
) dcij

t (st)
dθ

= CovΣ
i

[
MRSij

t,c

(
st
)
,
dχij

c (st)
dθ

]
cj

t

(
st
)

+AMRSj
t,c

(
st
) dcj

t (st)
dθ∑

i

MRSif
t,n

(
st
) dnif,s

t (st)
dθ

= CovΣ
i

[
MRSif

t,n

(
st
)
,
dχif,s

n (st)
dθ

]
nf,s

t

(
st
)

+AMRSf
t,n

(
st
) dnf,s

t (st)
dθ

,

so from this stage onwards it is possible to follow the steps in the proof of Theorems 1 and 2.

E.2 Planning Problem
The Lagrangian of the planning problem can be expressed as

L = W
(
V 1, . . . , V i, . . . , V I

)
−
∑

j

ζj
y

(∑
i

cij +
∑

ℓ

xℓj −Gj
({
xjℓ
}

ℓ
,
{
njf,d

}
f

))
−
∑

f

ζf
n

∑
j

njf,d −
∑

i

nif,s −
∑

i

n̄if,s


+
∑

i

∑
j

κij
c c

ij +
∑

i

∑
f

κif,s
n nif,s +

∑
j

∑
ℓ

κjℓ
x x

jℓ +
∑

j

∑
f

κjf,d
n njf,d,

where V i is defined in (1). Hence, the first-order conditions can be derived from a perturbation of the form

dL =
∑

j

∑
i

(
αi ∂u

i

∂cij
− ζj

y + κij
c

)
dcij +

∑
i

∑
f

(
αi ∂ui

∂nif,s
+ ζf

n + κif,s
n

)
dnif,s

+
∑

j

∑
ℓ

(
ζj

y

∂Gj

∂xjℓ
− ζℓ

y + κjℓ
x

)
dxjℓ +

∑
j

∑
f

(
ζj

y

∂Gj

∂njf,d
− ζf

n + κjf,d
n

)
dnjf,d,

where we take good j′ as numeraire, which allows us to substitute αi for αi ∂ui

∂cij′ = ζj′

y ⇒ αi =
(

∂ui

∂c′

ζj′
y

)−1
,

and where we define MWP jℓ
x = ζj

y
∂Gj

∂xjℓ and MWP jf
n = ζj

y
∂Gj

∂njf,d . Formally, the Kuhn-Tucker conditions are

i) κij
c c

ij = 0 ⇒
(
ζj

y −MRSij
c

)
cij = 0, with generically one of the two terms > 0;

ii) κif,s
n nif,s = 0 ⇒

(
ζf

n +MRSij
n

)
nif,s = 0, with generically one of the two terms > 0;

iii) κjℓ
x x

jℓ = 0 ⇒
(
ζℓ

y −MWP jℓ
x

)
xjℓ = 0, with generically one of the two terms > 0;

iv) κif,d
n njf,d = 0 ⇒

(
ζf

n −MWP jf
n

)
njf,d = 0, with generically one of the two terms > 0.

By adding up the consumption optimality conditions for all individuals for good j :∑
i

(
ζj

y −MRSij
c

)
cij = 0 ⇒

∑
i

MRSij
c c

ij − ζj
y

∑
i

cij ⇒
∑

i

MRSij
c c

ij = ζj
yc

j .

If cj > 0 (as long as one agent is consuming the good, so good j is final):

ζj
y =

∑
i

MRSij
c

cij∑
i c

ij
=
∑

i

χij
c MRSij

c = AMRSℓ
c .
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If cj = 0, we must have ζj
y > MRSij

c , for all i, which means that ζj
y > maxi

{
MRSij

c

}
. By adding up the

intermediate good optimality conditions for all uses j of good ℓ:∑
j

(
MWP jℓ

x − ζℓ
y

)
xjℓ = 0 ⇒

∑
j

MWP jℓ
x xjℓ − ζℓ

y

∑
j

xjℓ ⇒
∑

j

MWP jℓ
x xjℓ = ζℓ

yx
ℓ.

If xℓ > 0 (as long as one good j uses good ℓ as input, so good ℓ is intermediate):

ζℓ
y =

∑
j

MWP jℓ
x

xjℓ∑
j x

jℓ
=
∑

j

χjℓ
x MWP jℓ

x = AMWP ℓ
x.

If xℓ = 0, we must have ζℓ
y > MWP jℓ

x , for all j, which means that ζℓ
y > maxj

{
MWP jℓ

x

}
. Combining

consumption and intermediate good optimality:∑
i

MRSij
c c

iℓ +
∑

j

MWP jℓ
x xjℓ = ζℓ

yy
ℓ,

so if yℓ > 0, it must be that ζℓ
y = AMRSℓ

cϕ
ℓ
c +

∑
j ζ

j
y

∂Gj

∂xjℓ ξ
jℓ, which can be written in matrix form as

ζy = AMRScϕcΨy, where Ψy = (IJ − Gxξ)−1
.

Similarly, for factors, if nf,s > 0 (as long as one agent is supplying factor f ):

ζf
n =

∑
i

nif,s

nf,s
MRSij

n =
∑

i

χif,s
n MRSij

n = AMRSf
n

If nf,s = 0, we must have ζf
n < MRSij

n , for all i, which means that ζf
n < maxi

{
MRSij

n

}
. If njf,d > 0 (as

long as factor f is used to produce a good j):

ζf
n =

∑
j

MWP jf
n

njf,d

nf,d
=
∑

j

MWP jf
n χjf,d

n = AMWP jf
n

If njf,d = 0, we must have ζf
n >

∑
j MWP jf

n χjf,d
n , for all j, which means that ζf

n > maxj

{
MWP jf

n

}
.

If nf,s > 0 and nf,d > 0 : AMWP f
n = AMRSf

n. If nf,s = 0, it must be that ζf
n < MRSif

n , or
ζf

n < mini

{
MRSif

n

}
. If nf,d = 0, it must be that MWP jf

n < ζf
n , or maxj

{
MWP jf

n

}
< ζf

n . Hence,
for nf,s = 0 = nf,d, we must have that maxj

{
MWP jf

n

}
< mini

{
MRSif

n

}
. Finally, for yj = 0 to be

optimal, it must be that cj = xℓj = 0 on the use side and xjℓ = njf,d = 0 on the input side. This condition
can be written as

max
{

max
i

{
∂ui

∂cij

}
,max

ℓ

{
ζℓ

y

∂Gℓ

∂xℓj

}}
< ζj

y < min
{

min
f

{(
∂Gj

∂njf,d

)−1

ζf
n

}
,min

ℓ

{(
∂Gj

∂xjℓ

)−1

ζℓ
y

}}
.

E.3 Propagation Matrices
Intermediate Inverse Matrix. Following similar steps as in the Proof of Lemma 2, we can express
changes in intermediate input use as follows. Using both equations in (OA3), we can instead solve for dx

dθ as
follows

dx

dθ
= dξ

dθ
y + ξ

(
Gx

dx̊

dθ
+ Gn

dn̊d

dθ
+ dȳs

dθ
+ Gθ

)
,
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so we can define a JL× JL propagation matrix in the space of intermediate links Ψx:

dx

dθ
= Ψx︸︷︷︸

Propagation

(
dξ

dθ
y + ξ

(
Gn

dn̊d

dθ
+ dȳs

dθ
+ Gθ

))
︸ ︷︷ ︸

Impulse

, where Ψx = (IJL − ξGx)−1
. (OA9)

Propagation in the space of goods and the space of intermediate links is connected. In particular, Woodbury’s
identity implies that

Ψx = IJL + ξΨyGx,

and it is also the case that
Ψxξ = ξΨy,

connecting propagation in the space of goods and the space of intermediate links. Leveraging (OA9), it is
possible to solve for changes in consumption as

dc

dθ
= dy

dθ
− dx

dθ
= Gx

dx

dθ
+ Gn

dn̊d

dθ
+ Gθ − dx

dθ

= (Gx − 1x) Ψx
dξ

dθ
y + ((Gx − 1x) Ψxξ + IJ) Gn

dn̊d

dθ
+ ((Gx − 1x) Ψxξ + IJ) Gθ.

Proportional Goods Inverse Matrix. While the goods inverse is expressed in levels, at times, it
may be useful to work with proportional propagation matrix. Starting from the definition of dy

dθ , it follows
that

ŷ−1 dy

dθ
= ŷ−1Ψyŷ

(
ŷ−1Gx

dξ

dθ
y + ŷ−1Gn

dn̊d

dθ
+ ŷ−1Gθ

)

= Ψ̃y

(
ŷ−1Gx

dξ

dθ
y + ŷ−1Gn

dnd

dθ
+ ŷ−1Gθ

)
,

where
Ψ̃y = ŷ−1Ψyŷ.

In the competitive case, Ψy = ŷ (p̂ŷ − (Ix + τ̃ x) p̌x̌)−1
p̂ and Ψ̃y = (p̂ŷ − (Ix + τ̃ x) p̌x̌)−1

p̂ŷ, where we
define a JL × JL matrix of prices as p̌ = p̂ ⊗ IJ , where τ̃ x is a J × JL matrix analogous to τ̄x, but with
the same ordering as the J × JL matrix Ix, given by

Ix =

 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1


J×JL

,
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and where we define an alternative JL× J matrix of intermediates uses x̌, given by

x̌ =



x11 0 0
x21 0 0
x31 0 0
0 x12 0
0 x22 0
0 x32 0
0 0 x13

0 0 x23

0 0 x33


JL×J

.

Regularity Conditions for Goods Inverse Matrix. In order to provide conditions under which
the inversion step to define the goods inverse is valid, we can appeal to the Perron–Frobenius theory of
non-negative matrices. If production functions have constant returns to scale, then by the homogeneous
function theorem, we have that

yj,s =
∑

k

∂Gj

∂xjk
xjk +

∑
f

∂Gj

∂njf,d
njf,d ⇒ 1 =

∑
k

∂ logGj

∂ log xjk
+
∑

f

∂ logGj

∂ lognjf,d
.

This implies that the matrix (here represented for J = 2 case)

ŷ−1Gxξŷ =
(

∂ log G1

∂ log x11
∂ log G1

∂ log x12

∂ log G2

∂ log x21
∂ log G2

∂ log x22

)
,

features rows whose sum can be written as

rj =
∑

k

∂ logGj

∂ log xjk
< 1.

Hence, this result implies that the spectral radius (maximum of the absolute value of eigenvalues) of ŷ−1Gxξŷ

is less than 1, so the Neumann series lemma concludes that the proportional goods inverse is well defined
(Meyer, 2023). It is possible to derive bounds of convergence, so that the sectors with lowest and highest
intermediate shares drive the speed of convergence. Convergence of the proportional goods inverse is sufficient
for convergence of the the goods inverse. Hence, the goods inverse exists in economies with constant or
decreasing returns to scale.

E.4 Welfare Accounting vs. Growth Accounting
Here we discuss the relation between welfare accounting, as developed in this paper, and the well-established
approach of growth accounting. Growth accounting measures the contribution of different inputs to final
output (i.e. aggregate consumption), indirectly computing technological growth as a residual. Instead,
welfare accounting attributes aggregate welfare gains to different sources, which brings it closer to the
“beyond GDP” literature (Fleurbaey, 2009, Jones and Klenow, 2016, Basu et al. (2022)). See Nordhaus and
Tobin (1973) for an earlier account of these ideas.

Heuristically, the welfare accounting decomposition can be expressed as

Welfare = Exchange Efficiency + Final Output − Factor Supply Cost︸ ︷︷ ︸
Production Efficiency

+Redistribution,
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where the goal is to compute welfare changes by computing or measuring all right-hand side elements.
Instead, growth accounting abstracts from exchange efficiency, factor supply costs, and redistribution, and
exploits a relation of the form

Final Output = Intermediate Inputs + Factors + Technology, (OA10)

where the goal is to measure both final output (left-hand side) and the intermediate input and factor
components (part of the right-hand side) to back out the technology component. These are distinct exercises
which are nonetheless related. For instance, when I = 1, exchange efficiency and redistribution are zero,
and when factors are not supplied by individuals, the welfare cost of factor supply is also zero. In that case,
welfare and final output are identical.

Moreover, when directly measuring the components of the welfare accounting decomposition, growth
accounting can be used to measure technology growth. Through the lens of the welfare accounting
decomposition, the adequate counterpart of the growth accounting relation in (OA10), solving for the
technology change component, is

MSVyGθ︸ ︷︷ ︸
Technology Change

= AMRSc
dc

dθ︸ ︷︷ ︸
Final Output

− (AMW Px − AMRSc) dϕx

dθ
y︸ ︷︷ ︸

Intermediate Input Use

− MW Pn
dnd

dθ︸ ︷︷ ︸
Factor Use

, (OA11)

where AMRSc
dc
dθ becomes the welfare-relevant change in final output, which is a welfare-analog of GDP.

Equation (OA11) is stated exclusively in terms of preferences and technologies. Additional assumptions
about market structure would make it possible to conduct a growth accounting exercise by measuring all
right-hand side components of (OA11), a task we leave for future work.
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F Minimal Welfare Accounting Economy: Special Cases
Applying Theorems 1 and 2 to simple economies is helpful to illustrate the economic forces that underlie each
of the components of the decomposition. Figure OA-2 summarizes the minimal welfare accounting economy,
which is the simplest economy in which each component of the welfare accounting decomposition can take
non-zero values. We present here seven special cases of this economy in which particular components of the
welfare accounting decomposition are non-zero. Table OA-1 summarizes these special cases. For simplicity
we assume that good endowments are zero.

F.1 Minimal Welfare Accounting Economy
The minimal welfare accounting economy features two individuals, two goods, and single factor in elastic
supply: I = 2, J = 2, and F = 1. Individual preferences take the form V 1 = u1 (c11, c12, n11,s

)
and V 2 =

u2 (c21, c22, n21,s
)

and technologies are given by y1 = G1 (x11, x12, n11,d; θ
)

and y2 = G2 (x21, x22, n21,d; θ
)
.

Finally, resource constraints are simply given by y1 = c11 + c21 + x11 + x21 and y2 = c12 + c22 + x12 + x22

and n11,s + n21,s + n̄11,s + n̄21,s = n11,d + n21,d. In this economy, all of the components of efficiency can be
non-zero, as we illustrate in a series of special cases.14

F.2 Vertical Economy
This minimal vertical economy is a special case of the minimal welfare accounting economy. In this economy,
there is a single individual who consumes a final good produced using an intermediate good, which is in turn
produced by a single factor in fixed supply, so I = 1, J = 2, and F = 1. This is the simplest economy that
illustrates the role played by pure intermediate goods. In this economy, individual preferences are given by
V 1 = u1 (c11), technologies by y1 = G1 (x12; θ

)
and y2 = G2 (n21,d; θ

)
, and resource constraints by y1 = c11,

y2 = x12, and n̄1,s = n21,d. By construction, all allocative efficiency components of the welfare accounting
decomposition are zero, so this economy exclusively features technology and endowment change components.

Aggregate and production efficiency are given by

ΞE = ΞE,P = MSV 1
y

G1

∂θ
+MSV 2

y

G2

∂θ
+MSV 1

y

∂G1

∂n11,d

dn̄1,s

dθ
,

where MSV 1
y = MRS11

c and MSV 2
y = MRS11

c
∂G1

∂x12 . In this economy, an efficient allocation must satisfy
MRS11

c > 0 and MRS11
c

∂G1

∂x12 > 0.

F.3 Robinson Crusoe Economy
One-producer one-consumer economies (i.e., Robinson Crusoe economies) are the simplest to study
production - see Section 15.C of Mas-Colell et al. (1995). In these economies, a single individual consumes
a single good and elastically supplies a single factor of production. A single production technology uses the
supplied factor to produce the good, so I = 1, J = 1, and F = 1. Formally, preferences, technology,
and resource constraints are respectively given by V 1 = u1 (c11, n11,s

)
, y1 = G1 (n11,d; θ

)
, y1 = c11,

and n11,s = n11,d. This economy exclusively features aggregate factor efficiency and technology change
components.

14At times, it is necessary to have J = 3 goods to represent some phenomena in production networks. For instance,
three goods are necessary to have a pure intermediate good being used to produce another pure intermediate good.
This is a relevant case in which classical efficiency conditions do not apply, as illustrated in examples 1 and 2.
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i = 1

i = 2

j = 1

j = 2

f = 1
c11

c21

c12

c22

x21
x12

x11

x22

n11,d

n21,d

n11,s

n21,s

Figure OA-2: Minimal Welfare Accounting Economy

Note: This figure illustrates the minimal economy in which all components of the welfare accounting decomposition
can take non-zero values. We summarize special cases of this economy in Table OA-1 and study them in Appendix
F.

Exchange Efficiency Production Efficiency

Cross-Sectional
Consumption

Efficiency

Cross-Sectional
Factor Supply

Efficiency

Cross-Sectional
Intermediate

Input
Efficiency

Aggregate
Intermediate

Input
Efficiency

Cross-Sectional
Factor Use
Efficiency

Aggregate
Factor

Efficiency

Vertical × × × × × ×

Robinson
Crusoe

× × × × × ✓

Horizontal × × × × ✓ ×

Roundabout × × × ✓ × ×

Diversified
Intermediate

× × ✓ ✓ × ×

Multiple
Factor

Suppliers

× ✓ × × × ✓

Edgeworth
Box

✓ × × × × ×

Table OA-1: Summary of Minimal Welfare Accounting Special Cases

Note: This table illustrates the components of the welfare accounting decomposition that can be non-zero in special
cases of the minimal welfare accounting economy introduced in Figure OA-2. All economies are formally defined in
Appendix F.
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i = 1 j = 1

j = 2

f = 1
c11

x12

n21,d

(a) Minimal Vertical

i = 1 j = 1 f = 1
c11 n11,d

n11,s

(b) Robinson Crusoe

i = 1 j = 1

j = 2

f = 1
c11

c12

n11,d

n21,d

(c) Minimal Horizontal

i = 1 j = 1 f = 1
c11

x11

n11,d

(d) Minimal Roundabout

i = 1 j = 1

j = 2

f = 1
c11

x12

x22

n21,d

(e) Minimal Diversified Intermediate

i = 1

i = 2

j = 1 f = 1
c11

c21

n11,d

n11,s

n21,s

(f) Minimal Multiple Factor Suppliers

i = 1

i = 2

j = 1

j = 2

c11

c21

c12

c22

(g) Edgeworth Box

i = 1

i = 2

j = 1

j = 2

f = 1
c11

c21

c12

c22

n11,d

n21,d

(h) Edgeworth Box (alternative)

Figure OA-3: Minimal Welfare Accounting Economy: Special Cases
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The production efficiency decomposition takes the form

ΞE,P =

MSV 1
y

∂G1

∂n11,d︸ ︷︷ ︸
AMW P 1

n

−MRS11
n︸ ︷︷ ︸

AMRS1
n

 dn1,s

dθ
+MSV 1

y

∂G1

∂θ
,

where the marginal social value of good 1 is given by MSV 1
y = MRS11

c . In this economy, an efficient
allocation must satisfy MSV 1

y
∂G1

∂n11,d = MRS11
n .

F.4 Horizontal Economy
This minimal horizontal economy is the simplest to illustrate the role played by the possibility of reallocating
factors across different uses. This economy generalizes to many well-known frameworks, including Heckscher-
Ohlin, Armington (1969), and Hsieh and Klenow (2009). In this economy, a single individual consumes two
different goods that can be produced using the same factor, which we assume to be in fixed supply, so I = 1,
J = 2, and F = 1. Formally, preferences, technology, and resource constraints are given by V 1 = u1 (c11, c12),
y1 = G1 (n11,d; θ

)
, y2 = G2 (n21,d; θ

)
, y1 = c11, y2 = c12, and n̄1,s = n11,d + n21,d. This economy exclusively

features cross-sectional factor use efficiency and technology and endowment change components
The production efficiency decomposition takes the form

ΞE,P = CovΣ
j

MSV j
y

∂Gj

∂nj1,d︸ ︷︷ ︸
MW P j1

n

,
dχj1,d

n

dθ

n1,d +MSV 1
y

∂G1

∂θ
+MSV 2

y

∂G2

∂θ
+AMWP 1

n

dn̄1,s

dθ
,

whereAMWP 1
n = χ11,d

n MSV 1
y

∂G1

∂n11,d +χ21,d
n MSV 2

y
∂G2

∂n21,d , and whereMSV 1
y = MRS11

c andMSV 2
y = MRS12

c

. In this economy, an efficient allocation must satisfy MSV 1
y

∂G1

∂n11,d = MSV 2
y

∂G2

∂n21,d .

F.5 Minimal Roundabout Economy
Roundabout economies have been used to illustrate the impact of intermediate goods on production—see e.g.,
Jones (2011). The minimal roundabout economy is the simplest economy in which aggregate intermediate
input efficiency can exist. In this economy a single individual consumes a single mixed good, which is at the
same time final and intermediate to itself, so I = 1, J = 1, and F = 1. Formally, preferences, technology,
and resource constraints are given by V 1 = u1 (c11), y1 = G1 (x11, n11,d; θ

)
, y1 = c11 +x11, and n̄1,s = n11,d.

This economy only features aggregate intermediate input efficiency, and technology and endowment change
components.

The production efficiency decomposition takes the following form

ΞE,P =

MSV 1
y

∂G1

∂x11︸ ︷︷ ︸
AMW P 1

x

−MRS11
c︸ ︷︷ ︸

AMRS1
c

 dϕ1
x

dθ
y1 +MSV 1

y

∂G1

∂θ
+AMWP 1

n

dn̄1,s

dθ
,

where AMWP 1
n = MSV 1

y
∂G1

∂n11,d and MSV 1
y = MRS11

c

1−ξ11 ∂G1
∂x11

. In this economy, an efficient allocation must

satisfy MSV 1
y = MSV 1

y
∂G1

∂x11 = MRS11
c .
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F.6 Diversified Intermediate
This minimal diversified intermediate economy is the simplest economy in which cross-sectional intermediate
input efficiency can exist. In this economy, a single individual consumes a final good, which is exclusively
produced by a pure intermediate that can be also used for roundabout production. This pure intermediate is
produced using a single factor in fixed supply, so I = 1, J = 2, and F = 1. Formally, preferences, technology,
and resource constraints are given by V 1 = u1 (c11), y1 = G1 (x12; θ

)
, y2 = G2 (x22, n21,d; θ

)
, y1 = c11,

y2 = c12 + x12 + x22, and n̄1,s = n21,d. This economy features cross-sectional intermediate input efficiency,
aggregate intermediate input efficiency, and technology and endowment change components.

The production efficiency decomposition takes the form

ΞE,P =CovΣ
j

MSV j ∂G
j

∂xj2︸ ︷︷ ︸
MW P j2

x

,
dχj2

n

dθ

x2 +
(
χ12

x MSV 1
y

∂G1

∂x12 + χ22
x MSV 2

y

∂G2

∂x22

)
︸ ︷︷ ︸

AMW P 2
x

dϕ2
x

dθ
y2

+MSV 1
y

∂G1

∂θ
+MSV 2

y

∂G2

∂θ
+
(
MSV 2

y

∂G2

∂n21,d

)
︸ ︷︷ ︸

AMW P 1
n

dn̄1,s

dθ
,

where MSV 1
y = MRS11

c and MSV 2
y = MRS11

c

∂G1
∂x12 ξ12

1−ξ22 ∂G2
∂x22

.

F.7 Two Factor Supplier Economy
This minimal two factor supplier economy (we could also call it Robinson Crusoe and Friday economy)
is the simplest economy in which cross-sectional factor supply efficiency can exist. In this economy, we
assume that two individuals have identical linear preferences for consumption of a single produced good,
which we use as numeraire. This eliminates potential gains from cross-sectional consumption efficiency, since
MRS11

c = MRS21
c = 1. We also assume that there is a single production technology that uses a single factor

that can be supplied either of the two individuals, with in principle different disutility, so I = 2, J = 1,
and F = 1. Formally, preferences, technology, and resource constraints are given by V 1 = c11 + u1 (n11,s

)
,

V 2 = c21 + u2 (n21,s
)
, y1 = G1 (n11,d; θ

)
, y1 = c11 + c21, and n11,s + n21,s = n31,d. This economy features

cross-sectional factor supply efficiency, aggregate factor efficiency, and technology change components.
The exchange efficiency decomposition takes the form

ΞE,X = −CovΣ
i

[
MRSi1

n ,
dχi1,s

n

dθ

]
n1,s.

The production efficiency decomposition takes the form

ΞE,P =

MSV 1
y

∂G1

∂n11,d︸ ︷︷ ︸
AMW P 1

n

−
(
χ11,s

n MRS11
n + χ21,s

n MRS21
n

)︸ ︷︷ ︸
AMRS1

n

 dn1,s

dθ
+MSV 1

y

∂G1

∂θ
+AMWP 1

n

dn̄1,s

dθ
,

where AMWP 1
n = MSV 1

y
∂G1

∂n11,d where the marginal social value of good 1 is

MSV 1
y = χ11

c MRS11
c + χ21

c MRS21
c = 1.
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F.8 Edgeworth Box Economy
Pure exchange economies (i.e., Edgeworth Box economies) are the simplest to study most phenomena in
general equilibrium and welfare economics. In this economy, two individuals consume two different goods,
which appear as endowments. It is possible to formalize endowments by assuming that there is a single factor
in fixed supply and that factor uses are predetermined, so I = 2, J = 2, and F = 1. Formally, preferences,
technologies, and resource constraints are respectively given by V 1 = u1 (c11, c12), V 2 = u2 (c21, c22),
y1 = G1 (n11,d; θ

)
, y2 = G2 (n21,d; θ

)
, y1 = c11 + c21, y2 = c12 + c22, and n̄1,s = n11,d + n12,d. This economy

features cross-sectional consumption efficiency, and technology and endowment change components, where
the last two can be interpreted as changes in endowments. Alternatively, we could simply model endowments
of the goods.

The exchange efficiency component takes the form

ΞE,X = CovΣ
i

[
MRSi1

c ,
dχi1

c

dθ

]
c1 + CovΣ

i

[
MRSi2

c ,
dχi2

c

dθ

]
c2.

The production efficiency component takes the form

ΞE,P = MSV 1
y

∂G1

∂θ
+MSV 2

y

∂G2

∂θ
+AMWP 1

n

dn̄1,s

dθ
+AMWP 2

n

dn̄2,s

dθ
.

where the marginal social value of goods is

MSVy =
(
χ11

c MRS11
c + χ21

c MRS21
c χ12

c MRS12
c + χ22

c MRS22
c

)
.
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G Applications

G.1 Armington (1969) Model
Model Solution. First, note that country profits are given by πj =

(
pjAj − wj

)
njj,s, where we already

impose that j = f . Hence, profit maximization requires that pj = wj

Aj . Without loss of generality, we
normalize p1 = 1, so w1 = A1. We also assume that τ ii = 0 and τ ij = τ ji = τ .

Hence, exploiting Walras’ law, an equilibrium of the model can be expressed as the solution to the system

c11

c12 =
(

1
p2 (1 + τ)

)−σ

and c21

c22 =
(

1 + τ

p2

)−σ

A1 = c11 + c21 and A2 = c12 + c22

p2A2 = c21 + p2c22,

for
{
c11, c12, c21, c22, p2}. If instead we had assumed that countries have endowments of goods, then their

budget constraints take the form ∑
j

pj
(
1 + τ ij

)
cij = piȳi,s +

∑
j

T ij ,

which is equivalent to the formulation in the text when Ai = ȳi,s. Hence, our parameterization implies that
country 2’s good is 50 times more abundant than country 1’s.

Welfare Accounting Decomposition. Country i’s welfare gains induced by a perturbation take the
form

dV i|λ

dτ
=

dV i

dτ

λi
=
∑

j

∂V i

∂cij

λi

dcij

dτ
=
∑

j

MRSij
c

dcij

dτ
=
∑

j

MRSij
c

dχij
c

dτ
cj ,

where MRSij
c = ∂V i

∂cij /λ
i , dcij

dτ = dχij
c

dτ cj + χij
c

dcj

dτ , and dcj

dτ = 0.
We can therefore expresses the normalized welfare gain as

dWλ

dτ
=

dW
dτ

1
I

∑
i

∂W
∂V iλi

=
∑

i

ωi
∑

j

MRSij
c

dχij
c

dτ
cj

=
∑

j

CovΣ
i

[
MRSij

c ,
dχij

c

dτ

]
cj

︸ ︷︷ ︸
Cross-Sectional Consumption Efficiency

+
∑

j

CovΣ
i

[
ωi,MRSij

c

dχij
c

dτ

]
cj

︸ ︷︷ ︸
Cross-Sectional Consumption Redistribution

,

where ωi = λi ∂W
∂V i

1
I

∑
i

λi ∂W
∂V i

. We choose aggregate world consumption as welfare numeraire, which implies that

λi =
∑

j
∂V i

∂cij c
j . Similar results obtain if we choose unit world consumption, which implies that λi =

∑
j

∂V i

∂cij .
Even though country 2’s consumption is substantially higher than country 1 in the absence of tariffs, as shown
in the middle plots in Figure OA-4, the linear homogeneity of the preferences imply that ∂V 1

∂c11 = ∂V 2

∂c21 and
∂V 1

∂c12 = ∂V 2

∂c22 . Hence, to ensure that the planner attaches a higher weight to the country that consumes less
(country 1), we use a social welfare function of the form W

(
V 1, V 2) =

∑
i

(
V i
)σ−1

σ , which implies that

ωi = λi(V i)− 1
σ

1
I

∑
i

λi(V i)− 1
σ

. This is equivalent to expressing country preferences as V i =
∑

j

(
cij
)σ−1

σ and assuming

a utilitarian social welfare function. The bottom two plots in Figure OA-4 illustrate the equilibrium values
of ωi and λi.
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G.2 DMP Model
Model Solution. We consider the standard search equilibrium definition (Pissarides, 2000), whose
notation we mostly follow. Job-filling and job-finding rates, respectively denoted by q0 (θ0) and p0 (θ0),
are given by

q0 (θ0) =
m
(
χ1

0,n, v0
)

v0
= µθ−α

0 and p0 (θ0) = θ0q0 (θ0) =
m
(
χ1

0,n, v0
)

χ1
0,n

= µθ1−α
0 .

The value of an occupied job, denoted by J0, is given by

J0 = z2 − w0 + β [(1 − φ) J1 + φV1] and J1 = z2 − w1,

where wt denotes the wage. The value of a vacant job is given by

V0 = −κ0 + β [q0 (θ0) J1 + (1 − qt (θt))V1] and V1 = 0.

At an equilibrium with free-entry, V0 = 0, so

J1 = κ0

βq0 (θ0) and J0 = z2 − w0 + (1 − φ) κ0

q0 (θ0) .

The value of employed and unemployed workers, respectively denoted by Et and Ut, are given by

E0 = w0 + β [φU1 + (1 − φ)E1] and E1 = w1

U0 = b0 + β [pt (θt)E1 + (1 − pt (θt))U1] and U1 = b1.

The wage is determined by Nash bargaining, with

wt = arg max
wt

(Et − Ut)η (Jt − Vt)1−η
.

The solution to this problem is

Et − Ut = η (Et − Ut + Jt − Vt) and Jt − Vt = (1 − η) (Et − Ut + Jt − Vt) .

Given our parametrization, we have that U1 = V1 = 0, which means that w1 = E1 = η (E1 + J1) = ηz2 and
that J1 = (1 − η) z2.

Hence, the condition
(1 − η) z2 = κ0

βq0 (θ0)

pins down equilibrium tightness θ0. Given θ0 and χ1
0,n, we can compute equilibrium vacancies, which is

sufficient to compute the welfare accounting decomposition. Figure OA-5 illustrates how an improvement in
the matching technology translates in higher vacancies posted at date 0, which in turn translates into lower
unemployment at date 1.

Welfare Accounting. The welfare gain of a marginal change in µ can be written as

dW

dµ
= dc0

dµ
+ β

dc1

dµ
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Using unit perpetual consumption as lifetime welfare numeraire, we can express the normalized welfare gain
as

dWλ

dµ
=

dW
dµ

λ
= ω0

dc0

dµ
+ ω1

dc1

dµ
,

where λ = 1 + β and where ω0 = 1
1+β and ω1 = β

1+β . Note that

dc0

dµ
= ϕ0,c

(
dy1

0
dµ

+ dy2
0

dµ

)
− dϕx,0

dµ

(
y1

0 + y2
0
)

dc1

dµ
= dy1

1
dµ

+ dy2
1

dµ
,

where dyj
t

dµ = zj dχt,n

dµ , which allows us to write

dWλ

dµ
= ω1

∑
j

ϕ1,cz
j
dχj

1,n

dµ
− ω0

dϕx,0

dµ

(
y1

0 + y2
0
)

= ω1CovΣ
j

[
MWP j

1,n,
dχj

1,n

dµ

]
︸ ︷︷ ︸

Cross-Sectional Factor Use Efficiency

− ω0
dϕx,0

dµ

(
y1

0 + y2
0
)

︸ ︷︷ ︸
Aggregate Intermediate Input Efficiency

,

where marginal welfare products are given by MWP j
1,n = ϕ1,cz

j .

G.3 Hsieh and Klenow (2009) Model
Welfare Accounting. Since the solution of the model is completely standard, we exclusively describe
here how to characterize the welfare accounting decomposition. We consider a perturbation in στ , which is
associated with a welfare change given by

dW

dστ
= ∂u

∂c1
dc1

dστ
.

Using good 1 as numeraire, λ = ∂u
∂c1 , so

dWλ

dστ
= dy1

dστ
=

J∑
j=2

∂y1

∂yj
Aj dχ

j,d
n

dστ
=

J∑
j=2

MWP j
n

dχj,d
n

dστ
= CovΣ

j

[
MWP j

n,
dχj,d

n

dστ

]
︸ ︷︷ ︸

Cross-Sectional Factor Use Efficiency

,

where the marginal welfare product of factor use χj,d
n is MWP j

n = ∂y1

∂yj A
j and where ∂y1

∂yj =
(

yj

y1

)− 1
ϵ .

G.4 New Keynesian Model
This Appendix presents additional model details in G.4.1, competitive equilibrium in G.4.2, a self-contained
quantitative calibration in G.4.3, and additional numerical results in G.4.4.
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G.4.1 Additional Model Details

Households. Household preferences (36) give rise to the usual CES demand functions

cij = Γij
c

(
pj

P i

)−ηc

ci and cijℓ =
(
pjℓ

pj

)−ϵj

cij .

Under homothetic CES consumption preferences, each household i faces an ideal price index

P i =

∑
j

Γij
c (pj)1−ηc

 1
1−ηc

.

Production. The production function (37) features three nests of CES aggregates. Taking as given prices
and wages, firms choose inputs to minimize cost

Cjℓ = min
{xjℓℓℓ′ }ℓℓ′ , {njℓi}i

∑
ℓ

∫ 1

0
pℓℓ′

xjℓℓℓ′
dℓ′ +

∑
i

W injℓi,

subject to the CES production structure in (37). This problem gives rise to labor demand

njℓ = (Aj)η−1(1 − ϑj)
(
W jℓ

mcj

)−η

yjℓ and njℓi = Γji
w

(
W i

W jℓ

)−ηw

njℓ

and intermediate input demand

xjℓ = (Aj)η−1ϑj

(
pjℓ

x

mcj

)−η

yjℓ , xjℓℓ = Γjℓ
x

(
pℓ

pjℓ
x

)−ηx

xjℓ and xjℓℓℓ′
=
(
pℓℓ′

pℓ

)−ϵℓ

xjℓℓ.

Nominal marginal cost is given by

mcj = 1
Aj

[(
1 − ϑj

) (
W j
)1−η + ϑj

(
pj

x

)1−η
] 1

1−η

,

which is symmetric across firms ℓ in sector j. Marginal cost is not affected by the revenue tax, which is the
only wedge in this application. Finally, the cost indices are given by

W j =
[∑

ℓ

Γji
w (W i)1−ηw

] 1
1−ηw

and pj
x =

[∑
ℓ

Γjℓ
x (pℓ)1−ηx

] 1
1−ηx

.

Since production functions are homogeneous of degree one, total cost is given by Cjℓ = mcjyjℓ.
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Sectoral Aggregation. Firms set prices according to (38). Aggregating to the sectoral level, the price
of sector j ’s good is

pj =
(∫ 1

0
(pjℓ)1−ϵj

dℓ

) 1
1−ϵj

=
[ ∫ δj

0

(
ϵj

ϵj − 1
1

1 − τ j
mcj

)1−ϵj

dℓ+
∫ 1

δj

(p̄j)1−ϵjdℓ

] 1
1−ϵj

=
[
δj

(
ϵj

ϵj − 1
1

1 − τ j
mcj

)1−ϵj

+ (1 − δj)(p̄j)1−ϵj

] 1
1−ϵj

= ϵj

ϵj − 1
1

1 − τ j

[
δj(mcj)1−ϵj

+ (1 − δj)(m̄cj)1−ϵj

] 1
1−ϵj

,

where the very first equality follows since

pjcij =
∫ 1

0
pjℓcijℓdℓ =

∫ 1

0
pjℓ

(
pjℓ

pj

)−ϵj

cijdℓ =⇒ pj =
(∫ 1

0
(pjℓ)1−ϵj

dℓ

) 1
1−ϵj

.

Aggregating the goods market clearing condition, we have

pjyj ≡
∫ 1

0
pjℓyjℓdℓ =

∑
i

µi

∫ 1

0
pjℓcijℓdℓ+

∑
ℓ

∫ 1

0

∫ 1

0
pjℓxℓℓ′jℓdℓ′dℓ,

where
∫ 1

0 p
jℓyjℓdℓ denotes total nominal expenditures on sectoral good j. This also implies a resource

constraint at the sectoral level, given by yj =
∑

i µ
icij +

∑
ℓ

∫ 1
0 x

ℓℓjdℓ. All this relies on our assumption that
all agents buying in sector j share the same homothetic demand aggregators over varieties ℓ. In particular,
it implies that we also have

yjℓ =
(
pjℓ

pj

)−ϵj

yj and yj =
(∫ 1

0
(yjℓ)

ϵj −1
ϵj dℓ

) ϵj

ϵj −1
.

Fiscal Rebates. In the absence of fiscal policy, the rebate T i that household i receives simply corresponds
to total corporate profits plus the proceeds from the revenue tax. That is,

∑
i

µiT i =
∑

j

∫ 1

0
Πjℓdℓ+

∑
j

∫ 1

0
τ jpjℓyjℓdℓ =

∑
j

∫ 1

0

(
pjℓ −mcj

)
yjℓdℓ

Assuming a uniform rebate, we simply have T i =
∑

j

∫ 1
0
(
pj −mcj

)
yjℓdℓ.

G.4.2 Equilibrium

Definition. (Competitive Equilibrium). Taking as given an initial price distribution
{
p̄jℓ
}

jℓ
, a realization

of technology shocks
{
Aj
}

j
, revenue taxes

{
τ j
}

j
, and monetary policy M , a competitive equilibrium

comprises an allocation
{
cijℓ, ni, xiℓℓℓ′

, yjℓ
}

i,jℓ,ℓℓ′
and prices

{
pjℓ,W i

}
i,jℓ

such that (i) households optimize

consumption and labor supply, (ii) firms ℓ ∈
[
0, δj

)
in sector j reset their prices optimally, and (iii) markets

for goods and factors clear

yjℓ =
∑

i

µicijℓ +
∑

ℓ

∫ 1

0
xℓℓ′jℓdℓ′ and µini =

∑
j

∫ 1

0
njℓidℓ.

Notice that each sector features two representative firms ex post since all firms are symmetric ex ante
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and those firms that reset prices all choose the same reset price. At the sector level, there is consequently a
representative price-adjusting firm and a representative fixed-price firm.

Computing competitive equilibrium requires an initial price distribution
{
p̄jℓ
}

jℓ
. We assume that initial

prices are given by

p̄jℓ = p̄j = ϵj

ϵj − 1
1

1 − τ j
m̄cj = ϵj

ϵj − 1
1

1 − τ j
mcj

(
1,
{
p̄ℓℓ′
}

ℓℓ′
,
{
W̄ i
}

i

)
.

That is, p̄j corresponds to the price firms in sector j would set if all technologies remain at their default
level Aj = Āj . This initialization is heuristically consistent with the zero-inflation steady state of a dynamic
New Keynesian model. In the absence of technology shocks, therefore, no firm faces an incentive to adjust
prices. If Aj ̸= Āj , a fraction δj of firms in each sector reset their price.

Numeraire. We take as our numeraire total nominal expenditures in the absence of shocks, i.e.,
M̄ =

∑
j p

jyj = 1. Therefore, M̄ = 1 provides a benchmark stance for monetary policy. In the absence of
technology shocks, setting M = M̄ = 1 implies production efficiency and therefore efficiency since all firms
are symmetric.

Macro Block. To compute this model, it is particularly convenient to characterize a macro block by
aggregating to the sectoral level. To that end, we aggregate several key equilibrium conditions. The aggregate
labor market clearing condition (aggregated to the level of household type) is

µini =
∑

j

∫ 1

0
njℓidℓ =

∑
j

∫ 1

0
Γji

w

(
W i

W j

)−ηw

njℓdℓ

=
∑

j

Γji
w

(
W i

W j

)−ηw

(Aj)η−1(1 − ϑj)
(
W j

mcj

)−η ∫ 1

0
yjℓdℓ

=
∑

j

Γji
w

(
W i

W j

)−ηw

(Aj)η−1(1 − ϑj)
(
W j

mcj

)−η

Djyj ,

where Dj =
∫ 1

0

(
pjℓ

pj

)−ϵj

dℓ is a measure of sectoral price dispersion. Aggregating the goods market clearing

condition yields

yjℓ =
∑

i

µicijℓ +
(
pjℓ

pj

)−ϵj ∑
ℓ

Γℓj
x

(
pj

pℓ
x

)−ηx
∫ 1

0
(Aℓ)η−1ϑℓ

(
pℓ

x

mcℓ

)−η

yℓℓ′
dℓ′.

And plugging in for CES demand functions implies

yj =
∑

i

µicij +
∑

ℓ

Γℓj
x

(
pj

pℓ
x

)−ηx

(Aℓ)η−1ϑℓ

(
pℓ

x

mcℓ

)−η

yℓDℓ,

yielding sectoral goods market clearing conditions written as a fixed point in yj .
Finally, the budget constraint can be written as

P ici = W ini +
∑

j

(pj −Djmcj)yj .

Computationally, it is now easiest to solve the macro block as a separate system of equations. Firm-level
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allocations can then be obtained from CES demand functions.

G.4.3 Calibration

Our calibration broadly follows Schaab and Tan (2023) and is summarized in Table OA-2. It is based on
66 production sectors and 10 household types, which we associate with deciles of the household income
distribution.

For household preferences, we set the coefficient of relative risk aversion to γ = 2 and the inverse Frisch
elasticity to φ = 2. We use an elasticity of substitution of ηc = 1, so the consumption aggregator is Cobb-
Douglas, and we calibrate the consumption weights Γij

c to match consumption expenditure shares across
household types in the CEX.

Parameters Value / Target Source
Household preferences

γ Relative risk aversion 2 Classical Efficiency
φ Inverse Frisch elasticity 2 Classical Efficiency
ηc Elasticity of substitution across goods 1 Cobb-Douglas
Γij

c CES consumption weights Consumption expenditure shares CEX
Production and nominal rigidities

η Elasticity of substitution across inputs and labor 1 Cobb-Douglas
ϑj CES input bundle weight Sectoral input share BEA
ηx Elasticity of substitution across inputs 1 Cobb-Douglas
ηw Elasticity of substitution across factors 1 Cobb-Douglas
Γij

x CES input use weights Input-output network BEA I-O
Γij

w CES factor use weights Payroll shares ACS
ϵj Elasticities of substitution across varieties Sectoral markups Baqaee and Farhi (2020)
δj Sectoral price adjustment probabilities Price adjustment frequencies Pasten et al. (2017)

Table OA-2: List of Calibrated Parameters

On the production side, we set the elasticity of substitution between the labor and intermediate input
bundles to η = 1. Therefore, ϑj and 1 − ϑj correspond respectively to the input and labor shares in
production, which we obtain from the BEA GDP-by-Industry data. We compute the input share ϑj as input
expenditures relative to gross output, averaged between 1997 and 2015, and treat the labor share as its
complement. We set the elasticities of substitution across intermediate inputs and factors to ηx = ηw = 1.
We calibrate Γij

x and Γij
w to match data on input-output linkages and payroll shares. For the former, we

use data from the BEA Input Output “Use” Table to compute input shares as a sector j’s expenditures on
goods from sector ℓ as a share of j’s total expenditures on inputs, averaged between 1997 and 2015. We
obtain payroll shares from a linked ACS-IO dataset as type i ’s earnings from sector j as a share of total
earnings, averaged between 1997 and 2015. We use data from Baqaee and Farhi (2020) on sectoral markups
to calibrate the elasticity of substitution across sectoral varieties ϵj . Sectoral markups are computed as
µj = ϵj

ϵj−1 .
Finally, we use data from Pasten et al. (2017) on price adjustment frequencies to calibrate δj . They

estimate monthly price adjustment frequencies using the data underlying the Bureau of Labor Statistics’
Producer Price Index for 754 industries from 2005 to 2011. First, we link these estimates to the 66 sectors
in our data. Second, we obtain quarterly adjustment probabilities as 1 −

(
1 − monthly adjustment frequency

100

)3
.

Finally, we bin these estimates into quintiles. This allows us to solve our model assuming that each of the
66 sectors consists of 5 firms.
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G.4.4 Additional Results

In this subsection, we present additional numerical results that are referenced in the main text.

Divine Coincidence. Consider an alternative calibration where households and sectors are symmetric,
so there exist a representative household and a representative sector. Our model then collapses to the
standard, one-sector New Keynesian model, albeit with roundabout production. Divine Coincidence holds
in this model. That is, the optimal monetary policy response to an aggregate technology shock closes both
output and inflation gaps. Figure OA-6 illustrates this benchmark from the perspective of our welfare
accounting decomposition. In that context, Divine Coincidence implies that each allocative efficiency
component is 0, indicating that optimal policy can attain an efficient allocation. Moreover, since households
are symmetric, there is no scope for redistribution gains, so welfare and efficiency coincide.

Importance of Markup Distortions. Figure 4 in the main text corresponds to a calibration of
the model that assumes revenue taxes are available to eliminate initial markups. We reproduce our main
experiment in Figure OA-7 below, assuming that revenue taxes are not available.

It is well known from the New Keynesian literature that monopolistic competition implies inefficiently low
steady state employment. In that context, optimal monetary policy under discretion, which is heuristically
comparable to the static optimization problem we consider, seeks to raise employment via expansionary
monetary policy. We revisit this result from the perspective of our welfare accounting decomposition.
Figure OA-7 demonstrates that, in the presence of initial markup distortions, aggregate factor and input
use efficiency considerations push optimal monetary policy towards a more expansionary stance. In the
one-sector New Keynesian model (without roundabout production), aggregate factor efficiency corresponds
to the standard labor wedge. In this multi-sector variant, aggregate factor and input use efficiency formally
capture that aggregate employment and aggregate activity are inefficiently low.

Cross-sectional factor use and intermediate input efficiency, on the other hand, push monetary policy
towards a relatively more contractionary stance. Optimal policy therefore trades off the gains from
stimulating aggregate activity in the presence of markup distortions against the cost of creating misallocation
in the form of price dispersion, captured by cross-sectional factor use and intermediate input efficiency.
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Figure OA-4: Armington Model
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Figure OA-5: DMP Model
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Figure OA-6: Optimal Monetary Policy under Divine Coincidence
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Figure OA-7: Optimal Monetary Policy with Markup Distortions

OA-40


	Introduction
	Environment and Social Welfare
	Preferences, Technologies, and Resource Constraints
	Feasible Allocations and Perturbations
	Social Welfare: Efficiency vs. Redistribution

	Welfare Accounting: Efficiency
	Exchange Efficiency
	Production Efficiency
	Network Propagation: Goods Inverse Matrix
	Defining AMRS, MSV, MWP, and AMWP
	Production Efficiency Decomposition

	Insights from Welfare Accounting Decomposition

	Pareto Efficient Allocations
	Efficiency Conditions
	Classical Efficiency Conditions: Interior Economies
	Failure of Classical Efficiency Conditions: Non-Interior Economies
	Planning Problem, Lagrange Multipliers, and Socialist Calculation Debate

	Competitive Economies
	Competitive Equilibrium with Wedges
	MSV and Converse Hulten's Theorem
	Hulten's Theorem Revisited
	Marginal Revenue Product vs. Marginal Welfare Product

	Applications
	Armington1969 Model
	DMP Model
	hsieh2009misallocation Model
	Environment.
	Results.


	New Keynesian Model
	Environment.


	Conclusion
	Matrix Definitions
	Shares Definitions
	Proofs and Derivations
	Section 2
	Section 3
	Section 4
	Section 5
	Relation to Cost-Based Domar Weights.


	Redistribution
	Additional Results
	Dynamic Stochastic Environment
	Planning Problem
	Propagation Matrices
	Welfare Accounting vs. Growth Accounting

	Minimal Welfare Accounting Economy: Special Cases
	Minimal Welfare Accounting Economy
	Vertical Economy
	Robinson Crusoe Economy
	Horizontal Economy
	Minimal Roundabout Economy
	Diversified Intermediate
	Two Factor Supplier Economy
	Edgeworth Box Economy

	Applications
	Armington1969 Model
	DMP Model
	hsieh2009misallocation Model
	New Keynesian Model
	Additional Model Details
	Equilibrium
	Calibration
	Additional Results



