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1 Introduction

The central question in asset pricing is finding the value of claims to uncertain cash flows.
However, it is not evident how traditional cash-flow pricing can be used to value changes in
uncertainty itself. This paper fills this gap by studying probability pricing, that is, we study
the value of changes in the probabilities of different states.

We introduce probability pricing in a two-date environment in which the terminal
consumption of an expected utility agent depends on a random state. We then consider
a marginal perturbation to the probability distribution of the state and define the probability
price associated with it as the agent’s willingness-to-pay for the perturbation. While the
direct computation of a variational derivative yields an expression for the probability price
that values changes in probabilities by utility flows, we explain why this characterization is
not useful. Instead, our main result establishes an equivalence between probability prices
and the prices derived from a standard cash-flow pricing formula.

The main contribution of this paper lies in showing that an agent’s willingness-to-pay for a
marginal change in probabilities is equivalent to pricing an asset with hypothetical cash flows
that represent the state-by-state value of the probability perturbation. The hypothetical cash
flow at a given state is in turn given by the product of i) the change in the normalized survival
function at that state, and ii) the sensitivity of consumption to the state.1 As we explain
in detail, the change in the survival function is the relevant object to compute hypothetical
cash flows because perturbations that increase (decrease) probability mass to the right of a
particular state are effectively adding up (subtracting) the marginal utility at that state, by
virtue of the fundamental theorem of calculus.

Establishing a precise equivalence between cash-flow and probability pricing and
expressing the probability pricing formula in terms of cash-flow equivalents is useful for
several reasons. First, the hypothetical cash flows that we characterize are useful for
hedging purposes. That is, an investor who wants to be hedged against changes in the
probabilities of different scenarios can use our result to identify the cash flows that a
hedging strategy must be designed to replicate. Second, once changes in probabilities
are expressed in terms of equivalent cash flows, it is possible to use a standard stochastic
decomposition to attribute part of the probability price to changes in expected (equivalent)
payoffs and to a risk compensation. Relatedly, probability pricing can also be useful in
economies with heterogeneous agents and incomplete markets to compute cross-sectional

1The survival function of a probability distribution, 1 − F (s), is the complement to the cumulative
distribution function, F (s).
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welfare decompositions.
By considering particular probability perturbations we can derive additional results.

First, we highlight properties of probability prices by considering perturbations to a
distribution characterized in terms of a mean parameter and a standard deviation parameter.
In particular, we show that the willingness-to-pay for a perturbation that marginally
increases consumption unconditionally at all future states (risk-free asset) must be the
same as the willingness-to-pay for a perturbation that shifts all probabilities uniformly
to the right. We also show that the probability price of a shift in a standard deviation
parameter is exclusively driven by a risk compensation. Second, we show how the
probability pricing formula relates to the classical literature on preferences over monetary
lotteries. Formally, we show that first-order stochastically dominant perturbations feature a
positive probability price, while second-order stochastically dominant perturbations feature
a negative probability price. Probability pricing can be understood as a way to generalize
these classic results about gambles, because it determines whether an individual is willing
to pay a positive (or negative) price for any gamble, not only those that satisfy particular
dominance properties.

While we initially use probability pricing to study changes in physical probabilities,
probability pricing is particularly well-suited to study the private and social values of
information since changes in information are effectively changes in probabilities. The second
part of our analysis introduces heterogeneous agents who face uncertainty and, in addition,
receive private and/or public signals about the state of the economy. We represent the
informational environment by the likelihood, i.e., the conditional probability distribution
of a signal given physical states, and extend probability pricing to characterize agents’
willingness-to-pay for perturbations to the likelihood that represent marginal changes in
information.

Our general approach does not require these perturbations to represent either an
increase or a decrease in the informativeness of signals, e.g., in the sense of the Blackwell
(1953) order. However, as we illustrate in our applications, our formulae are particularly
tractable for standard truth-noise signal structures in which a perturbation corresponds to
an increase/decrease in noise. We show that the relevant probability price, which can now
differ across agents, is again the discounted value of a hypothetical cash flow. In this case,
the cash flow depends on i) the local sensitivity of agents’ consumption to signals, ii) a local
measure of the perturbation in probabilities, and iii) the direct effects of the perturbation
on consumption which arise because equilibrium prices and allocations change in response
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to the perturbation. Together, these three components are sufficient to characterize the
valuation/welfare impact of changes in an informational environment.

Applications. The probability pricing approach has broad implications and multiple use
cases, which we illustrate in four applications. Our first application leverages probability
pricing to compute the willingness-to-pay for changes in the distribution of aggregate
consumption in a canonical consumption-based asset pricing model. This exercise illustrates
how our results can be useful to compute and decompose, for instance, the cost of changes in
climate risks, disaster probabilities, or other shocks that alter the distribution of aggregate
consumption.

Our second application studies the welfare/willingness-to-pay impact of changes in the
precision of the performance noise in a canonical principal-agent problem. Probability
pricing allow us to formalize new insights about this well studied constrained Pareto efficient
contracting environment. In particular, we show that the efficiency gains of perturbing the
precision of the performance noise are solely driven by the probability pricing terms, not
by changes in consumption. We also show that increases in the performance precision are
always associated with aggregate-efficiency gains, both because the contract adjusts to make
production more efficient, but also because aggregate consumption risk is reduced. At last, we
show that increases in the performance precision have ambiguous risk-sharing implications.
While the contract endogenously adjust to an increase in the performance precision to give
more high-powdered incentives to the agent, hence worsening risk-sharing, there may be a
countervailing force when the performance sensitivity of contract is sufficiently large since
the agent relatively benefits from the smoother consumption, generating risk-sharing gains.

Our final two applications illustrate the role of probability pricing to study the value
of information in settings with risk-averse heterogeneous agents and incomplete markets.
Our third application explores the welfare implication of changing public information in a
version of Hirshleifer (1971)’s model that allows for production. Hirshleifer (1971) shows
that more precise public information can make all agents worse off in an endowment
economy (with incomplete markets) by worsening risk-sharing, a result a priori seen as
counterintuitive. Here we use probability pricing to show show that there is a channel
through which public information is welfare-improving, even in an endowment economy.
We also show how probability pricing can be used to separately study the production and
risk-sharing implications of changes in public information.

Our final application shows how probability pricing is useful to understand the welfare
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impact of changes in the precision of private information in a canonical competitive model
of financial trading with dispersed information and noise traders. In the noisy rational
expectations equilibrium (REE) of this model, the price acts as a public signal that partially
aggregates the private signals received by investors. The repeated use of probability pricing
allows us to show that changes in the precision of private information exclusively impact
consumption through distributive pecuniary effects. The remaining welfare effects are due
to four distinct probability pricing channels, which we carefully identify. In particular, we
show that i) efficiency is minimized at intermediate levels of information, and ii) the private
value of more precise signals is strictly positive.

Related Literature. At its core, the idea of probability pricing is most related to the
classic work characterizing notions of risk and risk aversion that follows Pratt (1964),
Rothschild and Stiglitz (1970) and Arrow (1971), among many other contributions. These
results have by now made their way to PhD textbooks, see e.g., Ingersoll (1987), Mas-
Colell, Whinston, and Green (1995), Gollier (2001), or Campbell (2017). To the best of
our knowledge, the probability pricing formula and its associated consumption equivalent
characterization of probability changes are novel contributions to this literature. Two
reasons may explain this. First, our goal is to compute the willingness-to-pay for general
perturbations, rather than trying to derive orders or relations for particular perturbations or
utility specifications. Second, following the widely successful cash-flow pricing literature, we
focus on marginal perturbations, which allows us to connect our results to cash-flow pricing.
That said, as explained in the text, probability pricing can be useful to derive well-known
properties of distributions and preferences of risk-averse agents.2

The question of how to value changes in probabilities has been asked in specific contexts.
For instance, Barro (2009) computes welfare changes from changing disaster probabilities
and consumption volatility in a consumption-based asset pricing model. In fact, we model
our first application after his results. See also Martin and Pindyck (2015). Our general
results focus on i) valuing changes in probabilities generally, making minimal assumptions
on preferences, distributions, or perturbations, and ii) establishing a general analogy between
cash-flow and probability pricing.

Arguably the closest contribution to our principal-agent application is Rantakari (2008),
2Integration by parts, which is key to establish our main result, is widely used in screening models and

mechanism design (Mirrlees, 1971; Baron and Myerson, 1982; Segal and Whinston, 2002) — see Bolton and
Dewatripont (2005) for a textbook treatment. While there is an evident high-level relation between those
papers and ours, our focus and theirs is completely different.
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who explores the impact of changes in uncertainty on the optimal strength of incentives. See
also Holmström (1979) and Grossman and Hart (1983). In contrast to this work, we leverage
probability pricing to determine the individual and social values of changes in uncertainty,
not the change in the form of the optimal contract.

The question of whether information improves efficiency pervades the literature on the
efficiency of stock markets (e.g., Grossman and Stiglitz, 1980; Hellwig, 1980; Diamond and
Verrecchia, 1981; Vives, 2016), strategic trade (e.g., Kyle, 1989; Vives, 2011; Rostek and
Weretka, 2012), and public disclosures (e.g., Hirshleifer, 1971; Diamond, 1985; Diamond and
Verrecchia, 1991; Morris and Shin, 2002; Angeletos and Pavan, 2007; Goldstein and Yang,
2019). The classical tools of valuation and welfare analysis are, at first glance, of limited
use in these problems: information affects not only prices and allocations, but also agents’
statistical inferences and the probabilities that they attach to different states of the economy.
Perhaps for this reason, and despite several important contributions to this area — including
those of Morris and Shin (2002); Angeletos and Pavan (2007); Veldkamp (2009); Gottardi
and Rahi (2014); Vives (2016); Kadan and Manela (2019); Pavan, Sundaresan, and Vives
(2022) — the welfare analysis of models with information, in particular when agents are
risk averse, remains understudied. Our results illustrate how probability pricing is helpful to
understand the value of information. We hope that the results in this paper can spur further
efforts in this area, both theoretically and empirically, connecting to the results in Ai and
Bansal (2018), Kadan and Manela (2019), and Veldkamp (2023), among others. Since our
approach is based on consumption equivalents, it is uniquely suited to serve as the foundation
of measurement efforts.

2 Probability Pricing

2.1 Environment

We initially consider a single-agent environment with two dates, t ∈ {0, 1}. At date 1, there
is a continuum of possible states indexed by s with (potentially unbounded) support on [s, s̄].
We denote the cumulative distribution function (cdf) of the state by F (s) ∈ [0, 1], and its
probability density function (pdf) by f (s) > 0.

The agent has standard expected utility preferences, given by

V = u (c0) + β
∫ s̄

s
u (c1 (s)) f (s) ds, (1)
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where c0 denotes consumption at date 0, c1 (s) denotes consumption at date 1 in state s,
and β ∈ [0, 1] denotes the agent’s time discount factor. We assume throughout that the flow
utility function u (·) is twice differentiable, increasing, and concave.

2.2 Cash-Flow Pricing

To fix ideas, it is useful to first consider the standard problem of asset/cash-flow pricing.
Suppose the agent is able to purchase q units of an asset that delivers state-contingent cash
flows x (s) at a price px, with budget constraints given by

c0 = . . . − pxq

c1 (s) = . . . + x (s) q,

where the ellipses (. . .) capture any other elements in the agent’s budget constraints. The
agent’s willingness-to-pay for a marginal unit of the asset satisfies the following well-known
asset pricing formula:

px =
∫ s̄

s
ω (s)x (s) ds, where ω (s) = βu′ (c1 (s))

u′ (c0)
f (s) (2)

defines a state-price and m (s) = βu′(c1(s))
u′(c0) defines a stochastic discount factor. In this case,

asset/cash-flow pricing uncovers the willingness-to-pay at date 0 for changes in consumption
at date 1 in different states induced by the asset’s cash flows. Asset prices are higher for
assets with higher payoffs x (s), in particular in states with high state-prices ω (s).

2.3 Probability Pricing

We now show that the logic behind cash-flow pricing can be extended to characterize the
willingness-to-pay at date 0 for changes in probabilities. We refer to this alternative thought
experiment as probability pricing.

In order to consider changes in probabilities, we introduce a perturbation parameter θ that
determines the cdf (and pdf) over states, assuming that F (s; θ) and f (s; θ) are differentiable
functions of θ. Our objective is to characterize the agent’s willingness-to-pay, or probability
price, pθ, for a marginal change dθ in this parameter, so that

c0 = . . .− pθθ.
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To isolate the novel effects that arise from perturbations to probabilities, we initially assume
that the agent’s consumption profile does not depend on θ. We relax this assumption below.

The agent’s willingness-to-pay for a marginal change in probabilities satisfies the formula

pθ =
∫ s̄

s

βu (c1 (s))
u′ (c0)

df (s; θ)
dθ

ds, (3)

where it must be that
∫ s̄

s
df(s;θ)

dθ
ds = 0.3 This expression is intuitive. The agent’s willingness-

to-pay for a change in probabilities is high, all else equal, if increases in density df(s)
dθ

coincide
with high-consumption states, i.e., those with large u (c (s)).

However, this characterization has two undesirable properties. First, it is difficult to
directly compare px and pθ, because the standard asset pricing formula in Equation (2)
expresses px in terms of marginal utilities u′ (·), while Equation (3) is written in terms of
utility levels u (·). Second, one may think at first that the ratio βu(c1(s))

u′(c0) plays an analogous
role to the stochastic discount factor or the state-price for cash-flow pricing. However, this
ratio is unfortunately not invariant to preference-preserving transformations — in particular,
additive transformations of u (·) such as u (·) → u (·) + a — which makes it unsuitable as a
foundation for a theory of valuation of changes in probabilities.

Our main result, Proposition 1, transforms changes in probabilities into consumption
equivalents, yielding a probability pricing formula that parallels the traditional cash-flow
formula. While the proof of Proposition 1 relies on integration by parts and, hence, makes
use of the continuity of the underlying distribution of s, the same logic applies with discrete
states, as we show in Appendix D.1.

Proposition 1 (Probability Pricing). The willingness-to-pay, or probability price, pθ, for a
marginal perturbation in probabilities indexed by θ is given by

pθ =
∫ s̄

s
ω (s)xθ (s) ds, where ω (s) = βu′ (c1 (s))

u′ (c0)
f (s; θ) , (4)

3Formally, this perturbation can be interpreted as taking a variational/Gateaux derivative (Luenberger,
1969). To ensure that the perturbed cdf distribution remains a valid cdf without making parametric
assumptions, F (s; θ) can always be formulated as

F (s; θ) = θF (s) + (1 − θ)F (s) ,

where F (s) denotes the cdf of the “initial” distribution, and F (s) denotes the cdf of the “final” distribution, or
equivalently the “direction” of the perturbation. In general, the parameter θ can be mapped to a parameter
of a particular distribution; see e.g., Section 2.4. See Dávila and Walther (2023) for an application of
variational derivatives to leverage regulation with distorted beliefs.
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defines a state-price, and where

xθ (s) =
d(1−F (s;θ))

dθ

f (s; θ)
dc1 (s)
ds

(5)

defines a consumption-equivalent cash flow for state s.

Equation (4) shows that computing an agent’s willingness-to-pay for a marginal change in
probabilities is equivalent to pricing an asset with hypothetical cash flows in state s given
by xθ (s). But why are these the appropriate hypothetical cash flows that translate changes
in probabilities into consumption equivalent changes?

First, note that gaining the utility flow u (·) at a given state is equivalent to gaining the
marginal utility du(c1(s))

ds
= u′ (c1 (s)) dc1(s)

ds
at all states to the left of that state, by virtue of

the fundamental theorem of calculus. Notice also that
d(1−F (s;θ))

dθ

f(s) is the normalized amount
of probability mass that the perturbation shifts from states to the left of s to states to the
right of s: we refer to this term as the normalized survival change since the complement
function to the cdf, 1 −F (s), is commonly referred to as the “survival function”. Therefore,
the survival change d(1−F (s;θ))

dθ
aggregates all the (net) density changes to the right of state

s, and each of these changes induces a welfare gain valued at u′ (c1 (s)) dc1(s)
ds

. Aggregating
these gains over all states yields Equation (4). Figure 1 illustrates this logic.

In principle, d(1−F (s;θ))
dθ

and dc1(s)
ds

can take negative values, so the consumption-equivalent
defined in Equation (5) can be negative, as well as pθ. A negative value of pθ simply indicates
that the perturbation makes the agent worse off, so the willingness-to-pay for it is negative.4

The following remarks elaborate on why formulating probability pricing in terms of marginal
utilities and consumption equivalents, as in Equation (4), rather than in terms of utility flows,
as in (3), is desirable.

Remark 1. (Hedging) Equation (5) is useful for the purposes of constructing a hedging
strategy against changes in probabilities. In particular, an investor who wants to be insured
against changes in the probabilities of different scenarios can use Equation (5) to identify
the cash flows that a hedging strategy must be designed to replicate. This strategy ensures

4Notice that computing an agent’s willingness-to-pay for a marginal change in probabilities (probability
pricing) is different from computing the change in an agent’s willingness-to-pay for an asset given a marginal
change in probabilities (comparative statics of cash-flow pricing). The answer to the latter question can be
expressed as

dpx
dθ

=
∫ s̄

s

ω (s)
df(s;θ)
dθ

f (s; θ)x (s) ds,

which obviously yields a different answer than (4).
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A1 ×■

(a) Perturbation at a Single State
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f (s)

u (s)

u′ (s)A1 A2A3

A1 ×■+A2 ×■−A3 ×■

(b) General Perturbation

Figure 1: Illustrating Probability Pricing

Note: In this figure, u (c (s)) ≡ u (s). The left figure illustrates the change in date-1 utility induced
by perturbing the pdf at a particular state. In this case, the utility change is given by u (·), which in
turn can be written as u (0) + A1. The right figure illustrates the change in date-1 utility induced by
perturbing the pdf at multiple states. The probability price of the general perturbation, pθ, corresponds to
the sum (difference when the pdf decreases) of the areas A1 to A3 multiplied by the changes in the density:
pθ = A1×■+A2×■+A3×■, where we exploit the fact that

∫ s̄
s
df(s;θ)
dθ ds = 0. But this sum can be equivalent

calculated by adding up (integrating) marginal utilities u′ (·) multiplied by the changes in densities to the
right d(1−F (s;θ))

dθ of every state: this is exactly the probability pricing formula in Equation (4).

that the investor’s welfare is hedged against changes in probabilities. The central result in
Proposition 1 is arguably showing how to construct state-by-state equivalent cash-flows, to
in turn be able to leverage readily available used cash-flow pricing insights.

Remark 2. (Stochastic Decomposition) A standard stochastic decomposition of Equation (4)
allows us to attribute part of the probability price to changes in expected (equivalent) payoffs
and to a risk compensation, as follows:

pθ = 1
1 + rf

dE [c1 (s)]
dθ︸ ︷︷ ︸

Expected Payoff

+Cov

m (s) ,
d(1−F (s;θ))

dθ

f (s; θ)
dc1 (s)
ds


︸ ︷︷ ︸

Risk Compensation

, (6)

where 1 + rf = 1/E [m (s)] denotes the risk-free rate and where, as shown in the Appendix,
dE[c1(s)]

dθ
= E

[
d(1−F (s;θ))

dθ

f(s;θ)
dc1(s)

ds

]
. This decomposition is useful to understand whether a

perturbation to probabilities is valuable because it changes expected consumption or because
the changes in consumption take place in states with different valuations.

Remark 3. (Cash-Flow and Probability Pricing) In general, we can allow the agent’s
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consumption profile at date 1, c1 (s; θ), to be affected by the perturbation parameter θ (same
with date-0 consumption). In particular, the mapping c1 (s; θ) can capture equilibrium or
off-equilibrium effects of any sort, either in competitive, strategic, contracting environments,
etc. In this case, the agent’s welfare gain expressed in date-0 consumption units can be
written as

dV
dθ

u′ (c0)
=
∫ s̄

s
ω (s)

 dc1 (s; θ)
dθ︸ ︷︷ ︸

Consumption

+
d(1−F (s;θ))

dθ

f (s; θ)
dc1 (s; θ)

ds︸ ︷︷ ︸
Probability

 f (s; θ) ds, (7)

where ω (s) is defined as in (4). Equation (7) is agnostic about the exact mechanism
through which consumption mapping c1 (s; θ) depends on changes in probabilities. In our
applications, consumption will vary in response to a change in probabilities conditional on a
state because agents’ decisions endogenously adjust. This adjustment may be due to changes
in optimal contracts (Application 2) or in competitive equilibrium allocations (Applications
3 and 4). Similar forces would also apply to economies with strategic trade (e.g., Kyle, 1989;
Vives, 2011; Rostek and Weretka, 2012).

Remark 4. (Cross-Sectional Welfare Decomposition) Probability pricing can also be useful
in economies with heterogeneous agents and incomplete markets to compute cross-sectional
welfare decompositions of the form introduced in Dávila and Schaab (2024). These
decompositions require to express the impact of perturbations in consumption equivalents,
relying again on (4). We illustrate this use in Applications 2 and 3.

2.4 Probability Pricing for Particular Perturbations

Here we develop several implications of the probability pricing result for particular
perturbations.

2.4.1 Mean/Variance Perturbations

First, we highlight properties of probability prices by considering perturbations to a
distribution that is characterized in terms of a mean parameter µ and a standard deviation
parameter σ. Suppose that the state is defined in affine form, as in

s = µ+ σn, (8)
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where µ and σ ≥ 0 are parameters, and where n is random variable distributed according
to a cdf H (n).5 In this case, the normalized survival change

d(1−F (s))
dθ

f(s) can be expressed in
tractable forms:

i) A marginal increase in the mean of s, dµ, induces a normalized survival change given
by

d(1−F (s))
dµ

f (s) = 1. (9)

ii) A marginal increase in the standard deviation of s, dσ, induces a normalized survival
change given by

d(1−F (s))
dσ

f (s) = s− µ

σ
. (10)

Equation (9) shows that the hypothetical cash-flow determining probability prices induced
by a marginal increase in µ is simply the consumption sensitivity dc(s)

ds
, so

pµ =
∫ s̄

s
ω (s) dc1 (s)

ds
ds =⇒

c1(s)=s
pµ =

∫ s̄

s
ω (s) ds.

If c1 (s) = s, the distribution F (s) is directly defined over consumption (s is a lottery), and
then the probability price of a marginal increase in µ is the same as the price of the risk-
free asset. Intuitively, the willingness-to-pay for a perturbation that marginally increases
consumption unconditionally at all future states (risk-free asset) must be the same as the
willingness-to-pay for a perturbation that shifts all probabilities uniformly to the right when
c1 (s) = s (marginal increase in µ). Another related implication of probability pricing for a
general c1 (s) is that it is always possible to construct a perturbation of probabilities whose
price is the risk-free rate by ensuring that d(1−F (s))

f(s)
dc1(s)

ds
= 1.

Equation (10) shows that the hypothetical cash-flow determining probability prices
induced by a marginal increase in σ is given by

(
s−µ

σ

)
dc1(s)

ds
, so

pσ =
∫ s̄

s
ω (s)

(
s− µ

σ

)
dc1 (s)
ds

ds.

Intuitively, a marginal increase in σ shifts mass to the tails, reducing survival probabilities
in states below the mean (s < µ), and increasing them in states above the mean (s > µ). It
thus follows from Equation (6) that the probability price of a shift in σ is exclusively driven

5If we further assume that E [m] = 0 and Var [m] = 1, then E [s] = µ and Var [s] = σ2, but this is not
necessary for Equations (9) and (10) to hold.
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by a risk compensation.

2.4.2 Mixture Distributions

A second scenario is one in which the state is defined as a mixture of two distributions.
Formally, suppose that with probability 1−h the state follows a distribution F (s), and with
probability h the state follows a distribution with cdf F (s). Mixture distributions are often
used to capture discrete jumps, large shocks, or disasters, as in Application 1.

In this case, a marginal increase in the probability h induces a normalized survival change
given by

d(1−F (s))
dh

f (s) = F (s) − F (s)
(1 − h) f (s) + hf (s)

. (11)

In this case, the difference between cdf’s F (s) − F (s) directly determines the sign of the
normalized survival change and of the hypothetical consumption equivalent at s. So if the
distribution F (s) first-order stochastically dominates F (s), that is F (s) > F (s), then
ph > 0 and vice versa. We further elaborate on stochastic dominance next. Moreover, note
that ph in this case is invariant to the level of h.

2.4.3 Stochastic Dominance

Finally, we show how the probability pricing formula relates to the classical literature on
preferences over monetary lotteries.6 Suppose that consumption is c1 (s) = s, so that the
state s and the distribution F (s) define a lottery over consumption. In this case, we have
the following properties:

i) First-order stochastic dominance: The probability price for perturbations such that
dF (s)

dθ
≤ 0 (or equivalently, d(1−F (s))

dθ
≥ 0) for all s satisfies pθ ≥ 0.

ii) Second-order stochastic dominance/mean-preserving spreads: The probability price
for perturbations such that dE[s]

dθ
= 0 and

∫ s
s

dF (t)
dθ

dt ≥ 0 for all s satisfies pθ ≤ 0.

The two properties highlighted here confirm that probability prices can be used to derive
well-known properties of the preferences of risk-averse agents. The first property shows that
an agent is always willing to pay a positive price for a perturbation that implies “good news”
in the sense of first-order stochastic dominance. The second property, as in Rothschild and

6See, for example, Pratt (1964), Rothschild and Stiglitz (1970) and Arrow (1971). For an overview of the
literature, see Mas-Colell, Whinston, and Green (1995, Chapter 6) or Gollier (2001).
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Stiglitz (1970), shows that a risk-averse agent is never willing to pay a positive price for a
perturbation that implies “more risk” in the sense of a mean-preserving spread. We must
emphasize, however, that these properties do not extend to the general probability prices
derived in Equation (4). This is because, outside of the special case in which dc1(s)

ds
= 1,

the sensitivity of consumption to the state dc1(s)
ds

can have non-trivial implications that go
beyond the classical literature on lotteries.

In fact, Proposition 1 can be understood as a way to generalize these classic results about
gambles. Probability pricing can be used to determine whether an individual is willing to
pay a positive (or negative) price for any gamble, not only those that satisfy particular
dominance properties.

3 Physical Probabilities

Our objective in the remainder of this paper is to show that probability pricing has broad
implications and multiple use cases. In this section, we initially present two scenarios in
which we directly vary physical probabilities. This contrasts with our results in Section 4,
in which we use probability pricing to study changes in the distribution of signals, that is,
to study the value of information.

3.1 Application 1: Consumption-Based Asset Pricing

Our first application leverages probability pricing to compute the willingness-to-pay for
changes in the distribution of aggregate consumption in a canonical consumption-based
asset pricing model. This exercise illustrates how our results can be useful to compute and
decompose, for instance, the cost of changes in climate risks or the risk of other disasters, as
well as changes in the distribution of individual consumption.

3.1.1 Environment

Consider a two-date representative-agent, fruit-tree economy with exogenous output.7 We
assume that the representative individual has time-additive utility with isoelastic preferences

7To more easily illustrate the results, we consider a two-date economy. The results straightforwardly
extend to multi-period economies.
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parametrized by γ, so

V = u (c0) + β
∫ s̄

s
u (c1 (s)) f (s) ds, where u (c) = c1−γ

1 − γ
.

Similar to Barro (2009), we assume that date 1 output is distributed as y1 (s) = esy0, where
s is given by a mixture of normals, which can be used to capture disasters or large shocks —
see Section 2.4.2. With probability 1−h, s is normally distributed with mean µ and standard
deviation σ, and with probability h, s is normally distributed with mean µ and standard
deviation σ. Since the economy is closed and all output is consumed, consumption equals
output at all times. The parameters µ and σ can be interpreted as defining the distribution
of consumption in normal times, while h has the interpretation of the discrete likelihood of
a disaster materializing, in which case the distribution of consumption is defined by µ and
σ.

In this model, the normalized survival change is given by (11), while the assumed
specification of uncertainty implies that

dc1 (s)
ds

= c1 (s) .

3.1.2 Value of Changes in Probabilities

We now compute the willingness-to-pay for different changes in the underlying distribution
of consumption. Interpreting a date in the model as a year, we use a rate of time preference
β = 0.95 and a risk aversion coefficient of γ = 4, again consistent with Barro (2009). We set
h = 0.02 to capture a 2% yearly disaster probability, with a distribution of consumption
growth in normal times given by µ = 0.025 and σ = 0.02. If a disaster takes place,
consumption falls on average by roughly 30%, with µ = −0.3 and σ = 0.02. By normalizing
y0 = 1, we can interpret all values as relative to the level of initial consumption.

The left panel in Figure 2 shows the willingness-to-pay for a marginal change in the
yearly probability of disaster h, ph, for different values of h. As noted above in Section
2.4.2, the value of ph is invariant to h for mixture distributions. Interestingly, this constant
value masks two different forces. First, since dE[c1(s)]

dh
is also invariant to h, it follows from

Equation (6) that the expected payoff component must increase in magnitude as h grows,
since the interest rate decreases through a standard precautionary savings effect. Hence,
it has to be the case that the risk-compensation component of the perturbation — defined
in (6) — increases with h. This decomposition provides a practical illustration of how the
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Figure 2: Probability Pricing (Application 1)

Note: This figure shows the willingness-to-pay (relative to initial consumption) for changes in the disaster
probability h for different values of h (left panel), ph/c0, and for changes in the volatility of consumption in
normal times σ for different values of σ (right panel) pσ/c0. Preference parameters are β = 0.95 and γ = 4.
The baseline distribution is defined by µ = 0.025, σ = 0.02, µ = −0.3, σ = 0.02 and h = 0.02, indicated by
dashed vertical black lines in both figures.

probability pricing formula can be useful to decompose a particular willingness-to-pay for a
perturbation.

The right panel in Figure 2 shows the willingness-to-pay for a marginal change in the
volatility of consumption in normal times σ, pσ, for different values of σ. Since y1 (s) is log-
normally distributed, an increase in σ increases expected aggregate consumption through a
Jensen’s inequality effect, so dE[c1(s)]

dσ
> 0. Therefore, the negative willingness-to-pay for a

marginal increase in σ combines a welfare gain due to a higher expected payoff and a welfare
loss due to the fact that the change in consumption takes place in states with different
valuations.

In terms of magnitudes, an increase in the probability of disaster by one percentage
point (∆h = 0.01) is associated with consumption loss of roughly half that amount, since
ph

c0
≈ −0.5. An increase in the volatility σ of similar magnitude around the baseline

calibration is associated with a consumption equivalent loss an order of magnitude smaller,
since pσ

c0
≈ −0.05 at σ = 0.02.
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3.2 Application 2: Principal-Agent Problem

This second application studies the welfare/willingness-to-pay impact of changes in output
uncertainty in a canonical principal-agent problem — as in, e.g., Bolton and Dewatripont
(2005, Chapter 4), whose notation we follow whenever possible. Probability pricing will allow
us to formalize new insights about this constrained Pareto efficient contracting environment.

3.2.1 Environment

We consider an environment in which a principal, indexed by i = B (boss), contracts with
an agent, indexed by i = A. The principal is risk-neutral, with preferences given by

V B =
∫
cB (s) f (s) ds,

while the agent is risk-averse, with preferences given by

V A =
∫
u
(
cA (s)

)
f (s) ds,

where ci (s) denotes consumption of individual i ∈ {A,B} in state s. We assume that
the agent has constant absolute risk aversion preferences, with u (c) = −e−ηc, where η is
the coefficient of absolute risk aversion. The agent makes a costly effort decision e, which
generates a random output/performance y (s) = e+ s, where s is normally distributed with
s ∼ N

(
0, 1

τ

)
and where we denote the precision of output uncertainty by τ = 1

σ2 . The agent
receives a compensation w (s), which is linear in output, so the consumption of the agent in
state s is given by

cA (s) = w (s) − ψ (e) , where w (s) = t+ αq (s) ,

where t denotes an uncontingent transfer and where we refer to α as the contract sensitivity.
We assume that the cost function for effort is ψ (e) = κ

2e
2. The consumption of the principal

is thus given by
cB (s) = y (s) − w (s) .

In this economy, aggregate consumption at state s is simply given by e + s − ψ (e), so the
first-best level of effort is e = 1

κ
.
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Optimal Contract. We provide a step-by-step derivation of all results in the Appendix.
The optimal contract features a sensitivity to output α, which in turn induces an effort
decision e, given by

α = 1
1 + ηκ

τ

= τ

τ + ηκ
, and e = α

κ
.

As the performance noise vanishes (τ → ∞), the contract sensitivity becomes maximal
α → 1, and effort approaches its first-best level e → 1

κ
. Because we consider linear contracts,

the solution to the principal-agent problem when τ → ∞ feature production efficiency but
is not the first-best solution, which would require the principal fully insuring the agent.

3.2.2 Value of Changes in Performance Precision

Our goal is to compute the welfare/willingness-to-pay impact of changes in the precision
of output uncertainty, parametrized by τ . Formally, individual i’s welfare gains induced
by a marginal change in the precision of output uncertainty τ , expressed in units of date-1
uncontingent consumption, are given by the following augmented probability pricing formula:

dV i|λ

dτ
=

dV i

dτ

λi
=
∫
ωi (s)

dci (s)
dτ

+
d(1−F (s))

dτ

f (s)
dci (s)
ds

 ds, (12)

where λi =
∫ ∂ui(ci(s))

∂ci(s) f (s) ds and where individual i’s (shadow) state prices are given by

ωi (s) =
∂ui(ci(s))

∂ci(s) f (s)∫ ∂ui(ci(s))
∂ci(s) f (s) ds

.

The state price ωi (s) defines a marginal rate of substitution for individual i between
consumption at state s and uncontingent consumption.8 If both individuals could perfectly
insure each other, ωi (s) would be equal across individuals, but in this economy full insurance
is not possible.

Similar to (7), Equation (12) shows that individual welfare gains consist of a consumption
and probability components. In the Appendix, we analytically characterize all of the
components of Equation (12).

8Using the language of Dávila and Schaab (2024), we have chosen date-1 uncontingent consumption as the
lifetime welfare numeraire. Other numeraire choices to express welfare gains — such as date-0 consumption,
as in Section 2 — would require to define a different λi, but would yield similar insights.
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Cross-Sectional Efficiency Decomposition. Because probability pricing allows us to
translate changes in probabilities into consumption equivalents, we are able to decompose
the sources of efficiency gains in this economy. Formally, we abstract from redistributional
considerations and focus on characterizing (Kaldor-Hicks) efficiency gains, given by

ΞE =
∑

i

dV i|λ

dτ
=
∑

i

∫
ωi (s) dc

i (s)
dτ

ds︸ ︷︷ ︸
ΞE

c (consumption)

+
∑

i

∫
ωi (s)

d(1−F (s))
dτ

f (s)
dci (s)
ds

ds︸ ︷︷ ︸
ΞE

s (probability)

, (13)

where ΞE
c and ΞE

s denote the sum of individual welfare gains due to changes in consumption
and probabilities, respectively. As explained above, the consumption term has the
interpretation of changes in consumption given a state is realized, while the probability term
has the interpretation of changes in the probabilities of different states being realized, for
given consumption allocations at each state. Moreover, we can implement Dávila and Schaab
(2024)’s welfare decomposition to further decompose ΞE

c and ΞE
s into i) aggregate-efficiency

and ii) risk-sharing components. Aggregate-efficiency gains arise because of changes in the
social value of aggregate consumption (or consumption-equivalents), while risk-sharing gains
arise because consumption (or consumption-equivalents) is reshuffled towards individuals
with higher marginal valuations, ωi (s). Formally, we can express ΞE

c and ΞE
s as

ΞE
c = ΞAE

c + ΞRS
c and ΞE

s = ΞAE
s + ΞRS

s , (14)

where we provide explicit definitions and analytical characterizations of each of the
components in the Appendix.9 Our analysis yields three main takeaways.

First, we show that the efficiency gains of perturbing τ are solely driven by the probability
terms. Formally, we show that

ΞE
c = ΞAE

c + ΞRS
c = 0.

This result may seem intuitive, since the optimal contract is precisely structured to tradeoff
effort/production decisions and risk-sharing considerations that operate via changes in
consumption. This result is due to the fact that we are perturbing probabilities, but
other perturbations could feature ΞE

c since this economy is constrained efficient but not
Pareto efficient. Figure (3) illustrates this result. An increase in τ optimally increases the

9While the split in (13) does not require the probability pricing result, it is necessary for both stochastic
and cross-sectional decompositions.
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performance sensitivity of the contract, which induces the agent to supply more effort while
making his consumption more volatile. The additional effort induces an aggregate-efficiency
gain (dashed line), in turn fully compensated by a risk-sharing loss (dotted line).10

Second, we show that increases in the performance precision τ are always associated
with aggregate-efficiency gains. This occurs for two reasons. First, since the agent’s effort
increases with τ because of the increase in the contract’s performance sensitivity, aggregate
consumption increases, since the agent was working too little to begin with. Formally,

ΞAE
c = (1 − ψ′ (e)) de

dτ
> 0. (15)

And even in the absence of an endogenous consumption response, increasing τ reduces
aggregate consumption risk, which generates an aggregate efficiency gain similar to the one
in Application 1, where we reduced the volatility of aggregate consumption. Formally, this
smoothing of aggregate consumption implies that

ΞAE
s > 0.

At last, we show that increases in the performance precision τ have ambiguous risk-sharing
implications. We first show that the risk-sharing component due to consumption is always
strictly negative. Formally,

ΞRS
c < 0.

Consistent with our discussion above, this is a reflection of the fact that the contract adjusts
optimally, trading off this risk-sharing loss with the aggregate-efficiency gain in (15). We
then show, perhaps surprisingly, that the risk-sharing component due to information can
take positive and negative values. Formally, we show that

ΞRS
s =


< 0 if α < 0.5

≥ 0 if α ≥ 0.5.

For low values of the performance sensitivity α, smoother aggregate consumption due to an
increase in τ disproportionally benefits the principal since she receives the bulk (1 − α) of

10As Hart and Holmström (1987) put it: “The agency problem is not an inference problem in a strict
statistical sense; conceptually, the principal is not inferring anything about the agent’s action from the output
because he already knows what action is being implemented. Yet, the optimal sharing rule reflects precisely
the pricing of inference.”
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(c) Efficiency Decomposition: ΞE = ΞAE + ΞRS

Figure 3: Varying Performance Precision (Application 2)

Note: This figure shows the efficiency/willingness-to-pay implications induced by changing the precision of
output uncertainty. The top left figure illustrates how efficiency gains are solely driven by the probability
terms. It also shows that the optimal contract is such that aggregate-efficiency and risk-sharing gains/losses
exactly compensate each other. The top right figure illustrates that increases in performance precision
generate aggregate efficiency gains, but risk-sharing gains or losses. The bottom figure shows that increasing
output precision increases efficiency, always through aggregate-efficiency, while risk-sharing can take any
sign. In this figure, the parameters are η = 1.2, κ = 0.5, and V̄ = −0.25.
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the change. But the agent values smoother consumption less in relative terms. Instead, for
high values of the performance sensitivity α, the agent relatively benefits from the smoother
consumption, generating risk-sharing gains.

4 Information

So far, we have explored how probability pricing is useful to study changes in physical
probabilities. However, probability pricing is a particularly useful approach to characterize
the private and social values of information. We now consider a general economy with
heterogeneous individuals who experience perturbations to the information environment.
This environment is sufficiently general to nest our two new applications: Application 3
considers changes in public information, while Application 4 considers changes in private
information.

4.1 Changes in Information are Changes in Probabilities

General Environment. We consider an economy populated by a finite number of types of
individuals i ∈ {1, . . . , I} ≡ I. There is a unit measure of agents of each type. The aggregate
state of the economy is denoted by z ∈ Z ⊂ Rn, where n is the number of state variables,
and drawn from an absolutely continuous distribution with density π (z). Each individual
experiences an idiosyncratic state ε ∈ E ⊂ Rm, where m is the number of idiosyncratic state
variables, which are drawn from an absolutely continuous distribution with density πi (ε|z),
and are independent across agents within each type.11 We write s = (z, ε) ∈ Rn+m for the
overall vector of states faced by an agent, whose density is defined as

πi (s) ≡ π (z) πi (ε|z) .

All agents derive utility from consumption, with preferences given by

V i =
∫
ui

(
ci (s)

)
πi (s) ds,

where ci (s) = ci (z, ε) denotes the consumption of an agent of type i in state s = (z, ε). All
types’ utility functions ui (·) are twice differentiable, strictly increasing, and strictly concave.

11We adopt a law of large numbers convention throughout: Conditional on aggregate state z, πi (ε|z) also
describes the measure of agents of type i who experience a given shock ε.
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When convenient, we partition the vector of state variables using the notation s =
(ξ, s−ξ), where ξ ∈

[
ξ, ξ̄

]
is a single/scalar state variable, and s−ξ ∈ Rn+m−1 denotes

the vector of all states except ξ. We accordingly write the distribution of state variables
as πi (s) = πi (s−ξ) × f i (ξ|s−ξ), where f i (ξ|s−ξ) denotes the conditional distribution (or
likelihood) of ξ given all other states. We denote the associated cumulative distribution by
F i (ξ|s−ξ). One interpretation of this partition is that ξ is an informative signal of physical
state variables that is observed by agents. We then interpret the likelihood f i (ξ|s−ξ) as
capturing agents’ information environment.

Our notation captures both public and private information. First, the signal ξ can
represent public information. In this case, ξ is an element of the aggregate state vector z,
whose realization is common to all agents in the economy. Another implication of public
information is that the likelihood f (ξ|s−ξ) does not depend on the agent’s type i, nor on
any idiosyncratic element of s−ξ. Second, the signal ξ can represent private information. In
this case, ξ is an idiosyncratic state variable, whose realization is specific to each individual
agent. Notice that this case allows different types of agents to have different conditional
distributions of informative signals. For instance, one type i of agent may be uninformed,
while another type j ̸= i is informed. 12

Note that our analysis can be applied to settings in which there is more than one signal,
for instance, economies with both private and public information. In terms of our notation
above, we have defined ξ as a scalar, so that it represents a single informative signal. We
adopt this convention because the welfare effects of changes in the information environment
are clearest when one perturbs the conditional distribution of one signal at a time. However,
since the state vector s = (z, ε) is vector-valued, it is always possible to interpret elements
of z or ε as additional public or private informative signals, whose conditional distribution
is being held constant in the perturbations we analyze.

Probability Pricing and The Value of Information. We now analyze an agent’s
willingness-to-pay for a marginal change in the likelihood f i (ξ|s−ξ), which affects the
informational environment that agents face in our model. We follow a parallel approach
to our analysis of probability pricing in Section 2. We introduce a perturbation parameter

12Some additional notation allows us to make the distinction more explicit when needed. We can
define the residual state as s−ξ = (z−ξ, ε−ξ), where z−ξ and ε−ξ, respectively, denote all aggregate and
idiosyncratic states that are not equal to ξ, and write the distribution of state variables as πi (s) =
π (z−ξ)πi (ε−ξ|z−ξ) f i (ξ|z−ξ, ε−ξ). For example, in the case where ξ is public information, and is therefore
only contained in the aggregate state vector, we have z = (z−ξ, ξ), and ε = ε−ξ, while in the case of private
information, where ξ is an element of the idiosyncratic state vector, we have z = z−ξ and ε = (ξ, ε−ξ).
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θ, assume that f i (ξ|z) is a differentiable function of θ, and study the following normalized
welfare gain of type i:

1
λi

dV i

dθ
, (16)

where λi denotes the marginal value of an arbitrary numeraire.13 This normalized gain is
the probability price (augmented with the change in consumption), defined in analogy to
Section 2, associated with a marginal change in information.

We also allow the agent’s consumption profile ci (s) to be affected by the perturbation
parameter θ. Thus, we can capture the equilibrium effects of a change in the information
environment. However, we continue to assume that the other primitives of the model – in
particular, agents’ preferences and the marginal distribution πi (s−ξ) of state variables – are
held constant and do not depend on θ. Differentiating an individual’s expected utility in
Equation (1), we obtain a two-part decomposition of normalized welfare gains:

1
λi

dV i

dθ
=
∫ u′

i (ci (s))
λi

dci (s)
dθ

πi (s) ds︸ ︷︷ ︸
consumption

+
∫ ui (ci (s))

λi

dπi (s)
dθ

ds︸ ︷︷ ︸
probabilities/likelihood

. (17)

The first term in Equation (17) measures the change in expected utility that is caused by
changes in the agent’s consumption conditional on a state taking place. The second term
expresses the change in expected utility that is due to changes in the probability of different
constellations of signals and states. This term is the exact equivalent to Equation (3) in the
context of probability pricing. Once again, the agent values changes in probabilities that
shift mass towards states in which she enjoys higher consumption and utility. In the context
of changes to information, the changes in probabilities are driven by changes in the likelihood
df i(ξ|z)

dθ
of the signal. Indeed, since we have assumed that the marginal distribution of other

states s−ξ is constant, the relevant change in probabilities is

dπi (s)
dθ

= πi (s−ξ)
df i (ξ|s−ξ)

dθ
.

We can now derive the counterpart of Equation (5) in which probability pricing can be used
to quantify the value of information.

13As noted in Section 2, the choice of this numeraire does not materially influence our results as long as it
expresses different agents’ utility in common units and satisfies λi > 0 for all i. For instance, if the numeraire
is an asset that pays one dollar unconditionally, then we have λi =

∫
u′
i

(
ci (s)

)
πi (s) ds. In Section 2, we

used λi = u′ (c0).
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Proposition 2 (Probability Pricing: Information). The normalized effect of a marginal
change in information on the utility of agent type i is given by:

1
λi

dV i

dθ
=
∫
ωi (s)

 dci (s)
dθ︸ ︷︷ ︸

consumption

+
d(1−F i(ξ|s−ξ))

dθ

f i (ξ|s−ξ)
∂ci (s)
∂ξ︸ ︷︷ ︸

likelihood

 ds, (18)

where ωi (s) = u′
i(ci(s))

λi πi (s) is a type-specific state-price, and where d(1−F i(ξ|s−ξ))
dθ

denotes
the perturbation to the cumulative likelihood of signal ξ, conditional on the vector of other
state variables s−ξ.

The willingness-to-pay of a marginal change in information for an individual consists of
the weighted sum — with weights given by individual state-prices ωi (s) — of two elements.
On one hand, the agent benefits in a given state when her consumption in this state is
adjusted upwards after the perturbation, with dci(s)

dθ
> 0. On the other hand, the agent

benefits if the perturbation shifts likelihood towards signal realizations ξ for which her

consumption is high. The latter effect is measured by
d(1−F i(ξ|s−ξ))

dθ

f i(ξ|s−ξ)
dci(s)

dξ
, which has an

analogous interpretation to Equation (5) in the context of probability pricing. Equation
(18) highlights that the sensitivity of the consumption profile ci (·) to changes in θ and the
signal ξ are critical to understand the individual and social welfare implications of changes
in information, as we illustrate next in our applications.

4.2 Application 3: Public Information

This application explores the welfare implication of changing public information in a version
of Hirshleifer (1971)’s model that allows for production. Hirshleifer (1971) shows that
better (more precise) public information can make all agents worse off in an endowment
economy (with incomplete markets) by generating risk-sharing losses, a result a priori seen
as counterintuitive. Here we use probability pricing to show that there is a channel through
which more precise public information generates efficiency gains, even in an endowment
economy. We also show how probability pricing can be used to separately study and quantify
the production and risk-sharing implications of changes in public information.
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4.2.1 Environment

We consider an economy with three dates t = {0, 1, 2} and two types of individuals, indexed
by i = {A,B}. Individuals are ex-ante identical at date 0 and exclusively consume at date 2.
At date 2, there is a continuum of states, indexed by s ∈ [s, s]. At date 1, there is a public
signal over the date 2 state, denoted by ξ ∈

[
ξ, ξ

]
. Hence, the pair (s, ξ) defines a history at

date 2.
Individual i expected utility preferences can be formulated recursively as follows:

V i
0 =

∫
V i

1 (ξ) f (ξ) dξ where V i
1 (ξ) =

∫
u
(
ci

2 (s, ξ)
)
f (s|ξ) ds,

where ci
2 (s, ξ) denotes the consumption of individual i at date 2 when the date-2 state is

s and the signal realized at date-1 is ξ.14 We assume that individuals have no access to
financial markets or contracting opportunities at date 0. At date 1, individuals have access
to complete markets against the realization of the state s, so individual faces date-1 budget
constraints given by ∫

q1 (s|ξ)xi
1 (s|ξ) ds = 0, ∀ξ,

where q1 (s|ξ) denotes the prices of an Arrow-Debreu security that pays at date 2 in state
s, and xi

1 (s|ξ) denotes individual i’s position in that security. At date 2, individual i’s
consumption is given by

ci
2 (s, ξ) = ni

2 (s) + xi
1 (s|ξ) + Πi (s|ξ) , ∀ (s, ξ) ,

where ni
2 (s) denotes individual i’s endowment of the consumption good, and Πi

1 (s|ξ) denotes
the individual i’s proceeds from operating a technology. We assume that investor i manages
a backyard quadratic technology and chooses ki

1 (ξ) at date 1 after observing the public signal
ξ, where

Πi (s|ξ) = eski
1 (ξ) − κ

2
(
ki

1 (ξ)
)2
.

Note that by setting ki
1 (ξ) = 0, this economy nests the pure endowment economy case in

Hirshleifer (1971).
We further assume that nA

2 (s) = χA (s) n̄2 and nB
2 (s) =

(
1 − χA (s)

)
n̄2, where n̄2 denotes

a (predetermined) aggregate endowment, and where the share of investor A’s endowment
14In models with information, the assumption of expected utility rules out preferences for early or late

resolution of uncertainty, which in turn generate a “psychic” value on the timing of information. There is
scope to further explore these additional sources of value in future work.
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has sigmoid/logistic form:
χA (s) = es

1 + es
.

This functional form ensures that lims→∞ χA (s) = 1 and lims→−∞ χA (s) = 0. Hence, high s
states are states in which investors A owns most of the endowment: these are “good” states
from the perspective of A.

Finally, we assume that the public signal takes the following form:

ξ = s+ ε,

where s ∼ N (µ0, σ
2
0) and ε ∼ N (0, σ2). After observing the signal ξ, the distribution of

posterior beliefs s|ξ follows a normal distribution N
(
µs|ξ, σs|ξ

)
, with moments given by

µs|ξ = αξ + (1 − α)µ0 and σ2
s|ξ = 1

1
σ2 + 1

σ2
0

,

with α = σ2
0

σ2+σ2
0
. By considering changes in the public signal volatility, σ, we can illustrate

the pure impact of a change in information. This exercise contrasts with our first two
applications since this change has no impact on technologies and endowments.

Equilibrium. The definition of competitive equilibrium is standard and provided in
the Appendix. Individuals make date-1 decisions over i) their portfolio of Arrow-Debreu
securities, xi

1 (s|ξ), and ii) their production, ki
1 (ξ). Then financial markets clear.

Since markets are complete, individuals’ portfolio decisions must satisfy

u′ (ci
2 (s, ξ)) f (s|ξ)

u′ (ci
2 (s′, ξ)) f (s′|ξ) = q1 (s|ξ)

q1 (s′|ξ) ,

for any two state s and s′ given the signal realization ξ. Market completeness further implies
that both individuals will make identical production decisions, given by

ki
1 (ξ) = k1 (ξ) = 1

κ

∫
ω2 (s|ξ) esds, ∀i,

where ω2 (s|ξ) = u′(ci
2(s,ξ))f(s|ξ)∫

u′(ci
2(s,ξ))f(s|ξ)ds

= q1(s|ξ)∫
q1(s|ξ)ds

.
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(a) Aggregate Efficiency Decomposition
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(b) Risk-Sharing Decomposition
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(c) Efficiency Decomposition

Figure 4: Varying Signal Precision (Application 3)

Note: This figure shows the efficiency/willingness-to-pay implications induced by changing the public signal
volatility. The top left figure shows that aggregate efficiency is exclusively driven by the probability pricing
term, not consumption. The top right figure shows that increasing volatility (reducing precision) of public
information generates risk-sharing gains, due to the consumption component, with the probability pricing
component in the opposite direction. The bottom figure shows that increasing volatility (reducing precision)
of public information can be welfare reducing due to an aggregate efficiency loss even when this generates
risk-sharing gains. The baseline parameters are σ = 0.15, γ = 2, and κ = 2.

28



4.2.2 Value of Changes in Public Signal Precision.

We focus on characterizing the welfare/willingness-to-pay impact of changes in the precision
of the public signal, here parametrized by the volatility parameter σ. Formally, individual
i’s welfare gains induced by a marginal change in the volatility of the signal σ, expressed in
units of date-1 uncontingent consumption, are given by the following formula that combines
consumption and probability pricing:

dV iλ

dσ
=

dV i

dθ

λi
=
∫∫

ωi
2 (s, ξ)

dci
2 (s, ξ)
dθ

+
d(1−F (ξ|s))

dσ

f (ξ | s)
dci

2 (s, ξ)
dξ

 dξds, (19)

where λi =
∫∫
u′

i (ci
2 (s, ξ)) f (s, ξ) dsdξ and where individual i’s (shadow) state prices are

given by

ωi
2 (s, ξ) = u′

i (ci
2 (s, ξ)) f (s, ξ)∫∫

u′
i (ci

2 (s, ξ)) f (s, ξ) dsdξ .

Similar to (7) and (12), Equation (19) implies that individual welfare gains consist of a
consumption and a probability component.

And similar to Application 2, we can express (Kaldor-Hicks) efficiency gains as follows:

ΞE =
∑

i

dV i|λ

dσ
=
∑

i

∫∫
ωi

2 (s, ξ)
dci

2 (s, ξ)
dθ

+
d(1−F (ξ|s))

dθ

f (ξ | s)
dci

2 (s, ξ)
dξ

 dξds
︸ ︷︷ ︸

ΞE
c (consumption)

(20)

+
∑

i

∫∫
ωi

2 (s, ξ)
d(1−F (ξ|s))

dθ

f (ξ | s)
dci

2 (s, ξ)
dξ

dξds︸ ︷︷ ︸
ΞE

ξ
(probability)

, (21)

where ΞE
c and ΞE

ξ denote the sum of individual welfare gains due to changes in consumption
and probabilities, respectively. As explained above, these terms can be further decomposed
in the social value of aggregate consumption (or consumption-equivalents), while risk-
sharing gains arise because consumption (or consumption-equivalents) is reshuffled towards
individuals with higher marginal valuations, ωi (s). Formally, we can express ΞE

c and ΞE
ξ as

ΞE
c = ΞAE

c + ΞRS
c and ΞE

ξ = ΞAE
ξ + ΞRS

ξ , (22)

where we provide explicit definitions and analytical characterizations of each of the
components in the Appendix. Our analysis yields three main takeaways.

First, we discuss our results on risk-sharing, which would be qualitatively identical if we
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had considered an endowment economy. The top right panel of Figure 4 illustrates these
results. We show that while increasing the precision of public information (lower σ) generates
risk-sharing losses, this is exclusively due to the consumption component. In fact, we show
that the probability pricing component goes in the opposite direction. Intuitively, for a given
realization of the signal ξ, an increase in the precision of public information damages the
consumption of those individuals who are already doing worse off. This effect, captured by

ΞRS
c > 0,

is the driver of the Hirshleifer (1971) effect. In this competitive environment, this loss is
caused by the distributive pecuniary effects of the perturbation, combined with the fact that
markets are incomplete against the signal.

However, probability pricing is countervailing force, since

ΞRS
ξ < 0.

By reducing the likelihood of extreme signals, an increase in the precision of public
information (lower σ) disproportionally benefits those individuals who are worse off, even
for a given mapping between signals and consumption. In other words, even when the
counterintuitive Hirshleifer effect materializes, reducing the likelihood of extreme signal
realizations is a benefit from increasing the precision of public information, even in
endowment economies.

Second, we show that increases in the precision of the public signal (lower σ) are
associated with aggregate-efficiency gains, ΞAE > 0, but only due to the probability pricing
term, not consumption. The top left panel of Figure 4 illustrates these results. Intuitively,
a more volatile public signal makes production decisions less efficient via

ΞAE
ξ > 0.

However, it is important to notice that this increase in volatility has no impact on the
aggregate-efficiency consumption term since

ΞAE
c = 0.

This result is due to the fact that production in this economy is optimally chosen, so changes

30



in production induced by changes in the signals do not directly change the value of aggregate
output (an envelope theorem/optimality argument). This occurs because production is
carried out under complete markets. Overall, our results are helpful to understand the
welfare impact of public information in both endowment and production economies.

4.3 Application 4: Private Information (REE)

Our last applications shows how probability pricing is useful to understand the private and
social value of changes in the precision of private information in a canonical competitive
model of financial trading with dispersion information. In the noisy rational expectations
equilibrium (REE) of this model, the price acts as a public signal that partially aggregates
the private signals received by investors.

4.3.1 Environment

We consider an economy with three dates t = {0, 1, 2} and two types of agents: investors
and noise traders. Agents receive signals and trade at date 1 and consume at date 2. All
agents have identical constant absolute risk aversion (CARA) expected utility preferences
over their date-2 consumption, with flow utility given by

u (c) = −e−ηc,

where η > 0 denotes the coefficient of absolute risk aversion. There is a continuum of
utility maximizing investors in unit measure. There is also a single noise trader who trades
inelastically.

There are two assets: a risky asset and a riskless asset. The risky asset pays a normally
distributed payoff δ at date 2 given by

δ ∼ N
(
µδ,

1
τδ

)
.

The risky asset is competitively traded at date 1 at a price q and is in fixed supply ā ≥ 0.
The riskless asset pays a gross interest rate normalized to one. Assuming that the aggregate
endowment of consumption at date 1 is zero ensures that riskless market also clears. For
simplicity, we assume that all agents initial endowment of the risky asset is a0 = ā. At date
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1, each investor receives a private signal ξ about the asset payoff δ, where

ξ = δ + uξ with uξ ∼ N

(
0, 1
τξ

)
,

and where the realizations of uξ are independent across investors.
The noise trader (with measure one) trades a random amount of the risky asset

n ∼ N
(
µn, τ

−1
n

)
,

and their consumption is given by cn
2 = δ (n+ a0) − qn.

Equilibrium The definition of a rational expectations equilibrium in this model is
standard. Investors choose their asset holdings for the risky and riskless assets to maximize
their expected utility subject to their information and taking prices as given, and goods
and asset markets clear. We focus on the unique equilibrium in linear strategies in which
the optimal risky asset demand is linear in the private signal and the price, and the price
are linear functions of the date-1 aggregate state, which is given by the average signal of
investors, δ =

∫
ξf (ξ| δ), and the amount traded by the noise trader, n.

The welfare of investors at date 0 is given by

V0 =
∫∫∫

V1
(
ξ, δ, n; τξ

)
f
(
ξ, δ, n; τξ

)
dξdδdn,

where V1 is the expected utility at date 1 of an investor that receives a signal ξ when the
aggregate state at date 1 is

(
δ, n

)
, given by

V1
(
ξ, δ, n; τξ

)
=
∫
u
(
c2
(
δ, ξ, δ, n

))
f
(
δ| ξ, q

(
δ, n

)
; τξ, τq̂ (τξ)

)
dδ,

where τq̂ measures price informativeness and is given by the precision of the unbiased signal
about δ contained in the price.

For the noise trader, the welfare at date 0 is given

J0 =
∫∫

u
(
c2
(
δ, q⋆

(
δ, n

)
, n
))
f
(
δ
)
f (n) dδdn,

because the noise trader’s noise n and the price q⋆ jointly perfectly reveal δ = δ, which
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implies
∫
u (cn

2 (δ, n, q⋆)) f (δ|q⋆, n; τq̂ (τξ)) dδ =u
(
c2
(
δ, q⋆, n

))
.

4.3.2 Value of Change in Private Signal Precision

We are interested in the willingness-to-pay for a change in the precision τξ of the private
signal received by the investors has the following effects on investor welfare. As in the
previous section, we measure an agent’s welfare gains induced by a marginal increase in the
precision of the private signals τξ expressed in units of date-2 uncontingent consumption.
Formally, this value for investors is given by dV λ

0
dτξ

≡ dV0
dτξ

1
λ
, where

dV λ
0

dτξ
=
∫∫∫


1
λ

dV1
(
ξ, δ, n; τξ

)
dτξ︸ ︷︷ ︸

Date-1 Continuation

+ 1
λ

dV1
(
ξ, δ, n; τξ

)
dξ

d(1−F(ξ|δ;τξ))
dτξ

f
(
ξ|δ; τξ

)
︸ ︷︷ ︸

Date-1 Probability/Signal Compression

 f
(
ξ|δ; τξ

)
dξf

(
δ
)
dδf (n) dn,

and λ =
∫∫∫ [∫

u′
(
c2
(
δ, ξ, δ, n

))
f
(
δ| ξ, q

(
δ, n

)
; τξ, τq̂ (τξ)

)
dδ
]
f
(
ξ, δ, n; τξ

)
dξdδdn. The

first term in the expression above represents the effects on date-1 welfare, hence the label
“date-1 continuation”, while the second term captures the probability pricing effect coming
from the change in the conditional distribution of the private signal being compressed as τξ

increases.
To understand the effect on the date-1 continuation, it is helpful to isolate the

informational content captured by q̂. To do so, we can define the date-1 expected utility of
investors as follows

V1
(
ξ, δ, n; τε

)
= Ṽ1

(
ξ, q⋆

(
δ, n; τξ, τq̂ (τξ)

)
, q̂⋆

(
δ, n; τξ

)
; τξ, τq̂ (τξ)

)
,

where

Ṽ1 (ξ, q, q̂; τξ, τq̂) =
∫
u (c̃2 (δ, a⋆

1 (ξ, q; τξ, τq̂) , q)) f (δ| ξ, q̂; τξ, τq̂) dδ

and q̂⋆
(
δ, n; τξ

)
is the unbiased signal about δ contained in the price in equilibrium. For

notational convenience, we denote the arguments of the equilibrium mappings by ⋆. Then,
the effect on the date-one continuation can be further decomposed into the pecuniary effects
and signal distribution effects, as follows.
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dV1

dτξ

=

distributive pecuniary︷ ︸︸ ︷
∂Ṽ1

∂q

dq⋆

dτξ

+

learning pecuniary︷ ︸︸ ︷
∂Ṽ1

∂q̂

dq̂⋆

dτξ︸ ︷︷ ︸
pecuniary effects

+

private signal︷ ︸︸ ︷
∂Ṽ1

∂τξ

+

informativeness︷ ︸︸ ︷
∂Ṽ1

∂τq̂

dτq̂

dτξ︸ ︷︷ ︸
signal distributions

.

where the partial derivatives keep all other arguments in the corresponding function fixed.
Since the price aggregates all private signals received by investors, the pecuniary effects
contain the usual distributive pecuniary effects and the learning pecuniary effects that come
from the mapping between the aggregate states and the information contained in the price
changing with τξ. The effect on the distribution of signals can also be decomposed into the
effect of the change in an investors private signal, ∂Ṽ1

∂τξ
, and the effect of the change in the rest

of the investors’ precisions which is captured by the change in price informativeness, ∂Ṽ1
∂τq̂

dτq̂

dτξ
.

Therefore, the willingness-to-pay for a marginal change in τξ for investors is

dV λ
0

dτξ
=
∫∫∫ distributive pecuniary︷ ︸︸ ︷

∂Ṽ λ
1

∂q

dq⋆

dτξ︸ ︷︷ ︸
consumption pricing

f
(
ξ|δ; τξ

)
dξf

(
δ
)
dδf (n) dn+

∫∫∫


learning
pecuniary︷ ︸︸ ︷
∂Ṽ λ

1
∂q̂

dq̂⋆

dτξ
+

private
signal︷ ︸︸ ︷
∂Ṽ λ

1
∂τξ

+

informativeness︷ ︸︸ ︷
∂Ṽ λ

1
∂τq̂

dτq̂

dτξ
+

signal compression︷ ︸︸ ︷
dV λ

1
dξ

d(1−F(ξ|δ;τξ))
dτξ

f
(
ξ|δ; τξ

)
︸ ︷︷ ︸

probability pricing


f
(
ξ|δ; τξ

)
dξf

(
δ
)
dδf (n) dn

where we define ∂Ṽ λ
1

∂x
≡ 1

λ
∂Ṽ1
∂x

for any x. The distributive pecuniary effects are the only channel
through which changes in the private signal precision affect consumption. The rest of the
effects work by affecting the date-1 probability of the aggregate state at date-2 δ (learning,
pecuniary, private signal, and informativeness), and the distribution of the idiosyncratic
state at date 1 (signal compression).

Since the noise trader’s noise and the price jointly perfectly reveal δ = δ, there are only
pecuniary effects for the noise traders. Noise traders always learn the dividend perfectly
from the price (due to the continuum of investors and the LLN), regardless of the precision
of the private signals. Therefore, the date-0 welfare effect for noise traders expressed in units
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of their date-2 uncontingent consumption is

dJλn

0
dτξ

≡ 1
λn

dJ0

dτξ

= 1
λn

∫∫
u′
(
cn

2

(
δ, n, q⋆

)) ∂c2

∂q

dq⋆

dτξ︸ ︷︷ ︸
distributive pecuniary

f
(
δ
)
f (n) dδdn,

where λn ≡
∫∫
u′
(
cn

2

(
δ, n, q⋆

))
f
(
δ
)
f (n) dδdn.

Aggregating the welfare effects for investors and the noise trader, we do a final
decomposition thinking about the effects of changes in one’s private signal and the effects of
changes in everyone else’s private signals. More specifically, the “private” effects are given by
the private signal and signal compression effects, while the “social” effects—those happening
through pecuniary and information externalities—are captured by the distributive pecuniary,
learning pecuniary, and informativeness effects.

Figure 5, shows the different welfare components discussed above as a function of the
precision of the private signals. Interestingly, as it can be seen from Figure 5a, the change
in overall welfare is non-monotonic and has a minimum where the solid line crosses the
horizontal axis, which implies welfare is higher either at the no information or full information
limits. This non-monotonicity is present in both consumption and probability pricing effects.
Moreover, within the probability pricing effects shown in Figure 5b, the signal precision and
the learning pecuniary effects are positive, which is consistent with investors being better
off when their information is more precise or the price reflects information better. Figure
5c shows that changes in welfare for investors and noise traders can often go in different
directions with investors benefiting from increases in precision when precisions are low and
the noise trader benefiting from them when precisions are high. Finally, Figure 5d shows
that the private effect of information is positive while the social effect can be positive or
negative.

5 Conclusion

This paper extends traditional cash-flow pricing to analyze the willingness-to-pay for changes
in probabilities, that is, probability pricing. We show that an agent’s willingness-to-pay for
a marginal change in probabilities is equivalent to pricing an asset with hypothetical cash
flows that represent the state-by-state value of the probability perturbation. This result
establishes a direct analogy with traditional cash-flow pricing and is useful to construct
hedging strategies, among other things. Our applications illustrate the broad implications of
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Figure 5: Varying Private Signal Precision (Application 4)

Note: This figure shows the different welfare decompositions in Application 4 as a function of the precision
of the private signals. Benchmark parameters are γ = 1.2, a0 = 0, µδ = 10, µn = 0, τδ = 1, and τn = 9.
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probability pricing, from disaster risk valuation to principal-agent problems, to the study of
the private and social values of information in financial markets with public or dispersed
information. Beyond theoretical insights, our results show how quantify the impact of
changes in probabilities, paving the way for further applications in asset pricing and welfare
analysis.
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Appendix
A Proofs and Derivations: Section 2
Proof of Proposition 1. (Probability Pricing)
Proof. Let U (s) = βu (c1 (s)), so dU(s)

ds = βu′ (c1 (s)) dc1(s)
ds . Using integration by parts, Equation (3) can

be expressed as

pθ = 1
u′ (c0)

∫ s̄

s

U (s) df (s; θ)
dθ

ds = 1
u′ (c0)

[
U (s) dF (s; θ)

dθ

∣∣∣∣s̄
s

−
∫ s̄

s

dU (s)
ds

dF (s; θ)
dθ

ds

]

= 1
u′ (c0)

U (s̄) dF (s̄; θ)
dθ︸ ︷︷ ︸
=0

−U (s) dF (s; θ)
dθ︸ ︷︷ ︸
=0

−
∫ s̄

s

dU (s)
ds

dF (s; θ)
dθ

ds


= 1
u′ (c0)

[∫ s̄

s

dU (s)
ds

d (1 − F (s; θ))
dθ

ds

]
=
∫ s̄

s

βu′ (c1 (s))
u′ (c0)

dc1 (s)
ds

d (1 − F (s; θ))
dθ

ds,

which corresponds to Equation (4) in the text. We use the fact that for all θ, we have F (s̄; θ) = 1 and
F (s; θ) = 0.

Note that defining expected consumption as E [c1 (s)] =
∫ s̄
s
c1 (s) f (s; θ) ds, it is the case that

dE [c1 (s)]
dθ

=
∫ s̄

s

c1 (s) df (s; θ)
dθ

ds =
∫ s̄

s

dc1 (s)
ds

d (1 − F (s; θ))
dθ

ds =
∫ s̄

s

d(1−F (s;θ))
dθ

f (s; θ)
dc1 (s)
ds

f (s; θ) ds.

Note also that

pθ =
∫ s̄

s

m (s) dc1 (s)
ds

d(1−F (s;θ))
dθ

f (s; θ) f (s; θ) ds

=
∫ s̄

s

m (s) f (s; θ) ds
∫ s̄

s

d(1−F (s;θ))
dθ

f (s; θ)
dc1 (s)
ds

f (s; θ) ds+ Cov

[
m (s) , dc1 (s)

ds

d(1−F (s;θ))
dθ

f (s; θ)

]
,

which corresponds to Equation (6) in the text.

Mean/Variance Perturbations. We assume that s = µ+ σn. Therefore, the cdf F (s) is given by

F (s) = H

(
s− µ

σ

)
,

where H (·) denotes the cdf over n. Therefore, the pdf f (s) is given by

f (s) = d

ds
H

(
s− µ

σ

)
= 1
σ
h

(
s− µ

σ

)
.

A marginal increase in µ implies that:

dF (s)
dµ

= d

dµ
H

(
s− µ

σ

)
= − 1

σ
h

(
s− µ

σ

)
, so

d(1−F (s))
dθ

f (s) = 1.
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A marginal increase in σ implies that:

dF (s)
dσ

= d

dσ
H

(
s− µ

σ

)
= −s− µ

σ

1
σ
h

(
s− µ

σ

)
, so

d(1−F (s))
dθ

f (s) = s− µ

σ
.

Mixture Distributions. In this case, note that f (s;h) = (1 − h) f (s) + hf (s) and F (s;h) =
(1 − h)F (s) + hF (s), so we can express the survival change as

d (1 − F (s;h))
dh

= F (s) − F (s) ,

implying Equation (11) in the text. Note that

ph =
∫ s̄

s

βu′ (c1 (s))
u′ (c0)

dc1 (s)
ds

(
F (s) − F (s)

)
ds,

which is invariant to the level of h, as stated in the text.

Stochastic Dominance. First, we consider a perturbation that satisfies first-order stochastic
dominance. In the case of a lottery, c1 (s) = s, and dc1(s)

ds = 1, so Equation (4) simplifies as follows

pθ =
∫ s̄

s

βu′ (c1 (s))
u′ (c0)

d (1 − F (s; θ))
dθ

ds.

It is immediate that any first-order stochastic dominance shift, with d(1−F (s;θ))
dθ ≥ 0, leads to pθ ≥ 0, since

utility is increasing in consumption with u′ (c1 (s)) > 0.
Second, we consider a perturbation that satisfies second-order stochastic dominance. Define the

cumulative perturbation H (s; θ) =
∫ s
s
dF (t;θ)
dθ dt, where we have assumed that H (s; θ) ≥ 0 for all s. Notice

that, integrating by parts, the change in the expected value of s as a result of the perturbation can be written
as

dE [s]
dθ

=
∫ s̄

s

s
df (s; θ)
dθ

ds = s̄
dF (s̄; θ)

dθ
− s

dF (s; θ)
dθ

−
∫ s̄

s

dF (s; θ)
dθ

ds

= −
∫ s̄

s

dF (s; θ)
dθ

ds = −H (s̄; θ) ,

so that, by assumption, we have H (s̄; θ) = 0. Now integrating by parts again, we have

pθ = −
∫ s̄

s

βu′ (c1 (s))
u′ (c0)

d (1 − F (s; θ))
dθ

ds

= − 1
u′ (c0)

u′ (s̄)H (s̄; θ)︸ ︷︷ ︸
=0

− u′ (s; θ)H (s; θ)︸ ︷︷ ︸
=0

−
∫
u′′ (s)H (s; θ) ds


= 1
u′ (c0)

∫
u′′ (s)H (s; θ) ds.

Then, since utility is strictly concave with u′′ (s) < 0, we obtain pθ ≤ 0.
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B Proofs and Derivations: Section 3

B.1 Application 1: Consumption-Based Asset Pricing
In this case, the probability price for a change in the disaster probability h can be written as

ph =
∫ s

s

β
u′ (c1 (s))
u′ (c0)

dc1 (s)
ds

d (1 − F (s))
dθ

ds = c0

∫ s

s

βe(1−γ)sf (s)
d(1−F (s))

dθ

f (s) ds,

where we used the fact that u′(c1(s))
u′(c0) =

(
c1(s)
c0

)−γ
= e−γ(c1(s)/c0) = e−γs and dc1(s)

ds = c1 (s). Since

d (1 − F (s))
dθ

= F (s) − F (s) ,

it is straightforward to conclude that pθ

c0
is invariant to the level of h.

A similar logic yields an equivalent formulation for

pσ
c0

=
∫ s

s

βe(1−γ)sf (s)
d(1−F (s))

dθ

f (s) ds,

where in this case
d(1−F (s))

dθ

f (s) = s− µ

σ
.

A direct application of Equation (6) generates the decomposition shown in Figure 2.

B.2 Application 2: Principal-Agent Problem
The principal, with full bargaining power, solves the following problem

max
{e,t,α}

∫
c1 (s) f (s) ds,

subject to participation and incentive constraints for the agent, given by∫
u
(
c2 (s)

)
f (s) ds = V

e ∈ arg max
e

∫
u
(
c2 (s)

)
f (s) ds.

Note that the objective function can be expressed as

V 1 =
∫
c1 (s) f (s) ds = (1 − α) e− t,

and the utility of the agent as

V 2 =
∫
u
(
c2 (s)

)
f (s) ds = − exp

[
−η
(
t+ αe− 1

2κe
2 − η

2α
2 1
τ

)]
.
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Therefore, the principal-agent problem can be re-written as

max
{e,t,α}

e− 1
2κe

2 − η

2α
2 1
τ

subject to

e ∈ arg max
e

{
− exp

[
−η
(
t+ αe− 1

2κe
2 − η

2α
2 1
τ

)]}
.

If effort is observable, then the principal chooses an effort level e to solve

max
e
e− 1

2κe
2,

implying e level of effort e = 1
κ . This solution implies a performance sensitivity of α = 1 and a non-contingent

transfer given by t = w + 1
2κe

2.

Optimal Contract. If effort is not observable, the agent’s optimality condition determines the optimal
effort

e = α

κ
.

So the principal’s problem becomes

max
{t,α}

α

κ
− 1

2κ
(α
κ

)2
− η

2α
2 1
τ
,

which yields the following solution for the contract sensitivity α:

α = 1
1 + ηκ

τ

= τ

τ + ηκ
.

The non-contingent transfer t is given by

t = −1
η

ln
(
−V

)
− α2

2κ

(
τ − ηκ

τ

)
.

Note that equilibrium changes in consumption for both individuals are given by

dcB (s)
dτ

= (1 − α) da
dτ

− (e+ s) dα
dτ

− dt

dτ
and dcB (s)

ds
= 1 − α

dcA (s)
dτ

= dt

dτ
+ (e+ s) dα

dτ
+ (α− ψ′ (e)) de

dτ
and dcA (s)

ds
= α,

where the contract changes according to

de

dτ
= 1
κ

dα

dτ
,

dα

dτ
= ηκ

(τ + ηκ)2
dα

dτ
= ηκ

(τ + ηκ)2 , and dt

dτ
= −α

κ

(
τ − ηκ

τ

)
dα

dτ
− η

2

(α
τ

)2
.

In this case, f (s) =
√

τ
2π expϕ (

√
τs) and F (s) = Φ (

√
τs), where ϕ (·) and Φ (·) denote the pdf and cdf of

the standard normal. Consistent with our result in Section 2.4.1,
d(1−F (s))

dτ

f(s) = − 1
2τ s.
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Welfare Gains. Normalized individual welfare gains are given by

dV i|λ

dτ
=

dV i

dτ

λi
=
∫
ωi (s)

[
dci (s)
dτ

+ dci (s)
ds

d(1−F (s))
dτ

f (s)

]
ds.

We can respectively formulate them for the principal and the agent as follows:

dV 1|λ

dτ
=
∫
ω1 (s)

−sdα
dτ

+ (1 − α)
d(1−F (s))

dτ

f (s)︸ ︷︷ ︸
dc̃1(s)

dτ

 ds+ (1 − α) da
dτ

− e
dα

dτ
− dt

dτ

dV 2|λ

dτ
=
∫
ω2 (s)

sdαdτ + α
d(1−F (s))

dτ

f (s)︸ ︷︷ ︸
dc̃2(s)

dτ

 ds+ dt

dτ
+ e

dα

dτ
+ (α− ψ′ (a)) da

dτ
.

Efficiency defined by ΞE =
∑
i
dV i|λ

dτ , can be decomposed into aggregate-efficiency and risk-sharing as
following

ΞAE = (1 − ψ′ (a)) da
dτ

+
∫
ω (s)

(
−
dF (s)
dτ

f (s)

)
ds

ΞRS =
∫
ω (s)CovΣ

i

[
ωi (s)
ω (s) ,

dc̃i (s)
dτ

]
ds,

where ω (s) = 1
I

∑
i ω

i (s).
To confirm our computations, let’s proceed without further developing dV i|λ

dτ . Efficiency is given by the
following

ΞE =
∫ ∑

i

ωi (s)
[
dci (s)
dτ

+ dci (s)
ds

(
−
dF (s)
dτ

f (s)

)]
ds,

which can be directly decomposed into aggregate-efficiency and risk-sharing as following

ΞAE = (1 − ψ′ (a)) da
dτ

+
∫
ω (s)

(
−
dF (s)
dτ

f (s)

)
ds

ΞRS =
∫
ω (s)CovΣ

i

[
ωi (s)
ω (s) ,

dci (s)
dτ

]
ds+

∫
ω (s)CovΣ

i

[
ωi (s)
ω (s) ,

dci (s)
ds

(
−
dF (s)
dτ

f (s)

)]
ds.

The aggregate-efficiency terms follow from the following steps

ΞAE =
∫
ω (s)


∑
i

dci (s)
dτ︸ ︷︷ ︸

=(1−ψ′(a)) da
dτ

 ds+
∫
ω (s)


∑
i

dci (s)
ds︸ ︷︷ ︸

=1


(

−
dF (s)
dτ

f (s)

)
ds.
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It’s important to note that
∫
ω (s) ds = 1. We can thus compute

ΞAEc = (1 − ψ′ (a)) da
dτ

ΞAEs =
∫
ω (s)

d(1−F (s))
dτ

f (s) ds

ΞRSc =
∫
ω (s)CovΣ

i

[
ωi (s)
ω (s) ,

dci (s)
dτ

]
ds

ΞRSs =
∫
ω (s)CovΣ

i

[
ωi (s)
ω (s) ,

d(1−F (s))
dτ

f (s)
dci (s)
ds

]
ds

Therefore, ΞE = Ξc + Ξs where ΞEc = ΞAEc + ΞRSc and ΞEs = ΞAEs + ΞRSs .
We can show that the efficiency gains are entirely driven by information, i.e. that Ξc = 0. This can be

done by proving that ΞRSc = −ΞAEc = − (1 − ψ′ (a)) dadτ . Note that

ΞRSc =
∫
ω1 (s) dc

1 (s)
dτ

ds+
∫
ω2 (s) dc

2 (s)
dτ

ds−
∫
ω (s)

(∑
i

dci (s)
dτ

)
ds

=
∫
ω1 (s) dc

1 (s)
dτ

ds+
∫
ω2 (s) dc

2 (s)
dτ

ds− (1 − ψ′ (a)) da
dτ
.

The proof boils down to proving that
∫
ω1 (s) dc

1(s)
dτ ds+

∫
ω2 (s) dc

2(s)
dτ ds = 0. Note the following∫

ω1 (s) dc
1 (s)
dτ

ds+
∫
ω2 (s) dc

2 (s)
dτ

ds = −dα

dτ

∫
ω1 (s) sds+ dα

dτ

∫
ω2 (s) sds+ (1 − ψ′ (a)) da

dτ
.

Now note that ωi (s) = f (s) implying that
∫
ω1 (s) sds = 0. So we need to prove that dα

dτ

∫
ω2 (s) sds =

− (1 − ψ′ (a)) dadτ . The principal’s problem Lagrangian in the optimal contract case

L = max
{α,t}

{∫
u1 (c1 (s)

)
f (s) ds+ ϕ

[∫
u2 (c2 (s)

)
f (s) ds− V

]}
.

And let’s focus on the normalized F.O.C with respect to α

∂L
∂α

=
∫
∂u1 (c1 (s)

)
∂c1 (s)

dc1 (s)
dα

f (s) ds+ ϕ

[∫
∂u2 (c2 (s)

)
∂c2 (s)

dc2 (s)
dα

f (s) ds
]

= 0.

Note the following

dc1 (s)
dα

= (1 − α) da
dα

− (a+ s) − dt

dα
dc2 (s)
dα

= dt

dα
+ α

da

dα
+ (a+ s) − ψ′ (a) da

dα
.

Therefore, ∫
∂u1 (c1 (s)

)
∂c1 (s)

dc1 (s)
dα

f (s) ds = (1 − α) da
dα

− a− dt

dα∫
∂u2 (c2 (s)

)
∂c2 (s)

dc2 (s)
dα

f (s) ds = λ2
[
dt

dα
+ α

da

dα
+ a+

∫
ω2 (s) sds− ψ′ (a) da

dα

]
.
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(a) Aggregate Efficiency Decomposition: ΞAE = ΞAEc +
ΞAEs
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(b) Risk-Sharing Decomposition: ΞRS = ΞRSc + ΞRSs
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(c) Equilibrium Comparative Statics

Figure A.1: Varying Performance Precision: ΞAE vs. ΞRS (Application 2)

Note: This figure shows the efficiency/willingness-to-pay and equilibrium comparative statics induced by
changing the output precision.
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The Lagrange multiplier here is the ratio of the individual numeraires, since

∂L
∂t

=
∫
∂u1 (c1 (s)

)
∂c1 (s)

dc1 (s)
dt

f (s) ds+ ϕ

[∫
∂u2 (c2 (s)

)
∂c2 (s)

dc2 (s)
dt

f (s) ds
]

= 0.

Note that dc1(s)
dt = −dc2(s)

dt = −1 which yields that

ϕ =
∫ ∂u1(c1(s))

∂c1(s) f (s) ds∫ ∂u2(c2(s))
∂c2(s) f (s) ds

= λ1

λ2 = 1
λ2

Therefore,

∂L
∂α

=
∫
∂u1 (c1 (s)

)
∂c1 (s)

dc1 (s)
dα

f (s) ds+ ϕ

[∫
∂u2 (c2 (s)

)
∂c2 (s)

dc2 (s)
dα

f (s) ds
]

= 0

= (1 − ψ′ (a)) da
dα

+
∫
ω2 (s) sds = 0

which yields that
∫
ω2 (s) sds = − (1 − ψ′ (a)) dadα .

Recall that we wanted to prove that dα
dτ

∫
ω2 (s) sds = − (1 − ψ′ (a)) dadτ which is equivalent to

dα

dτ

∫
ω2 (s) sds = − (1 − ψ′ (a)) da

dα

dα

dτ
⇒ dα

dτ

[∫
ω2 (s) sds+ (1 − ψ′ (a)) da

dα

]
= 0

and we have already shown that
∫
ω2 (s) sds+ (1 − ψ′ (a)) dadα = 0 due to the optimal contract formulation.

This proves that the efficiency gains are mainly driven by information.
We can now establish that ΞRSc takes the form

ΞRSc =
∫
ω (s)CovΣ

i

[
ωi (s)
ω (s) ,

dci (s)
dτ

]
ds

=
∫
ω1 (s) dc

1 (s)
dτ

ds+
∫
ω2 (s) dc

2 (s)
dτ

ds− (1 − ψ′ (a)) da
dτ

= dα

dτ

∫ ω1 (s) dc
1 (s)
dα

ds+
∫
ω2 (s) dc

2 (s)
dα

ds︸ ︷︷ ︸
=0

− (1 − ψ′ (a)) da
dτ

= − (1 − ψ′ (a)) da
dτ

which proves that Ξc = ΞAEc + ΞRSc = 0.
We can now show that aggregate efficiency is always positive. First, note that

ΞAEc = (1 − ψ′ (a)) da
dτ

= (1 − α) 1
κ

dα

dτ
> 0.
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Second, note that

ΞAEs =
∫
ω (s)

(
−
dF (s)
dτ

f (s)

)
ds

= 1
2

∫
ω1 (s)︸ ︷︷ ︸
=f(s)

(
−
dF (s)
dτ

f (s)

)
ds+ 1

2

∫
ω2 (s)

(
−
dF (s)
dτ

f (s)

)
ds

= 1
2

∫ (
−dF (s)

dτ

)
ds+ 1

4τ

∫
ω2 (s)

[
s
f (s)
f (s) − s

]
ds

= 1
4τ sf (s) (s− s) + sf (s)

4τ

∫
ω2 (s)
f (s) ds− 1

4τ

∫
ω2 (s) sds︸ ︷︷ ︸

=−(1−ψ′(a)) da
dα

= 1
4τ sf (s) (s− s) + sf (s)

4τ

∫
ω2 (s)
f (s) ds+ 1

4τ (1 − ψ′ (a)) da
dα

> 0,

where the t two terms are zero, since f (s) = 0. Thus,

ΞAEs = 1
4τ (1 − ψ′ (a)) da

dα
> 0 ⇒ ΞAE > 0.

Finally, we show that risk-sharing can take different signs. First, note that

ΞRSc =
∫
ω (s)CovΣ

i

[
ωi (s)
ω (s) ,

dci (s)
dτ

]
ds = − (1 − ψ′ (a)) da

dτ
= − (1 − α) 1

κ

dα

dτ
< 0.

Second, note that

ΞRSs =
∫
ω (s)CovΣ

i

[
ωi (s)
ω (s) ,

dci (s)
ds

(
−
dF (s)
dτ

f (s)

)]
ds

= (1 − α)
∫
ω1 (s)

(
−
dF (s)
dτ

f (s)

)
ds+ α

∫
ω2 (s)

(
−
dF (s)
dτ

f (s)

)
ds−

∫
ω (s)

(
−
dF (s)
dτ

f (s)

)
ds

=
(

1
2τ

)[
α− 1

2

]
(1 − ψ′ (a)) da

dα

=
(

1
2τ

)[
α− 1

2

]
(1 − α) da

dα
< 0 ⇔ α <

1
2 ,

where we followed the same steps as in the proof of ΞAEs . This shows that ΞRSs < 0 as long as α < 0.5.
Therefore, whenever α < 0.5, risk-sharing is negative. But risk-sharing can get slightly positive for high
values of α. We can define a threshold for sensitivity α above which risk-sharing is positive. Formally,
risk-sharing is given by

ΞRS =
(

1
2τ

)[
α− 1

2

]
(1 − α) 1

κ
− (1 − α) 1

κ

dα

dτ

Let α denote the sensitivity threshold where ΞRS = 0, which is given by

α = 1
2 + 2τ dα

dτ

Therefore, risk-sharing is negative whenever α < α, and is positive whenever α > α.
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C Proofs and Derivations: Section 4
Proof of Proposition 2 We manipulate the first integral in Equation (17), which can be expanded
as follows: ∫

ui
(
ci (s)

)
λi

dπi (s)
dθ

ds =
∫∫

ui
(
ci (ξ, s−ξ)

)
λi

df i (ξ|s−ξ)
dθ

πi (s−ξ) dξds−ξ

=
∫ [∫ ξ̄

ξ

ui
(
ci (ξ, s−ξ)

)
λi

df i (ξ|s−ξ)
dθ

dξ

]
πi (s−ξ) ds−ξ (A.1)

For any fixed s−ξ, let U (ξ) = ui(ci(ξ,s−ξ))
λi and V (ξ) = dF i(ξ|s−ξ)

dθ . Now the term in square brackets in (A.1)
can be expressed as ∫ ξ̄

ξ

U (ξ)V ′ (ξ) dξ = U
(
ξ̄
)
V
(
ξ̄
)

− U
(
ξ
)
V
(
ξ
)

−
∫ ξ̄

ξ

U ′ (ξ)V (ξ) dξ

using integration by parts. Notice that for all θ, we have F i
(
ξ̄|s−ξ

)
≡ 1 and F i

(
ξ|s−ξ

)
≡ 0. We then have

V
(
ξ̄
)

= V
(
ξ
)

= 0, so we get

∫ ξ̄

ξ

U (ξ)V ′ (ξ) dξ = −
∫ ξ̄

ξ

U ′ (ξ)V (ξ) dξ

=
∫ ξ̄

ξ

u′
i

(
ci (ξ, s−ξ)

)
λi

dci (ξ, s−ξ)
dξ

(
−dF i (ξ|s−ξ)

dθ

)
dξ

Substituting into (A.1) we find that

∫
ui
(
ci (s)

)
λi

dπi (s)
dθ

ds =
∫ [∫ ξ̄

ξ

u′
i

(
ci (ξ, s−ξ)

)
λi

dci (ξ, s−ξ)
dξ

(
−dF i (ξ|s−ξ)

dθ

)
dξ

]
πi (s−ξ) ds−ξ

=
∫∫

u′
i

(
ci (ξ, s−ξ)

)
λi

dci (ξ, s−ξ)
dξ

(
−dF i(ξ|s−ξ)

dθ

f i (ξ|s−ξ)

)
f i (ξ|s−ξ)πi (s−ξ) dξds−ξ

=
∫
u′
i

(
ci (s)

)
λi

dci (s)
dξ

(
−dF i(ξ|s−ξ)

dθ

f i (ξ|s−ξ)

)
πi (s) ds

Finally, substituting into Equation (17), we obtain

1
λi
dV i

dθ
=
∫
ui
(
ci (s)

)
λi

dπi (s)
dθ

ds+
∫
u′
i

(
ci (s)

)
λi

dci (s)
dθ

πi (s) ds

=
∫
u′
i

(
ci (s)

)
λi

[(
−dF i(ξ|s−ξ)

dθ

f i (ξ|s−ξ)

)
× dci (s)

dξ
+ dci (s)

dθ

]
πi (s) ds

which establishes the result. The results for Applications 3 and 4 are to be included.
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D Extensions

D.1 Discrete States
The counterpart to Equation (1) in the discrete case is given by

V = u (c0) + β
∑
s

π (s; θ)u (c1 (s)) ,

where π (s) denotes the probability of one of the countably many states s ∈ {1, . . . , S}. The agent’s
willingness-to-pay for a marginal change in probabilities satisfies the formula

pθ =
∑
s

dπ (s; θ)
dθ

βu (c1 (s))
u′ (c0) , (A.2)

where it must be that
∑
s
dπ(s)
dθ = 0. Summation by parts implies that

∑
s

u (c1 (s)) dπ (s)
dθ

=
S−1∑
s=0

(u (c1 (s)) − u (c1 (s+ 1))) dΠ (s; θ)
dθ

,

where dΠ(s;θ)
dθ =

∑s
u=1

dπ(u;θ)
dθ denotes the change in cdf, and where we use the fact that dΠ(S)

dθ = 0. Therefore,
we can write express pθ as

pθ = β

S−1∑
s=0

π (s; θ)
(
u (c1 (s+ 1)) − u (c1 (s))

u′ (c0)

) d(1−Π(s;θ))
dθ

π (s; θ) ,

which is the exact counterpart of Equation (4). Formally as the difference between s + 1 and s becomes
small,

u (c1 (s+ 1)) − u (c1 (s)) → u′ (c1 (s)) dc1 (s)
ds

.

D.2 Leisure
When preferences include both consumption and leisure, then U (s) = βu (c1 (s) , n1 (s)), so

dU (s)
ds

= β
∂u (c1 (s))
∂c1 (s)

dc1 (s)
ds

+
∂u(n1(s))
∂n1(s)
∂u(c1(s))
∂c1(s)

dn1 (s)
ds

 . (A.3)

The term in parentheses in Equation (A.3) corresponds to a consumption-equivalent, expressing changes in
n1 (s) in consumption units. Hence, all results in the paper apply using this leisure-augmented consumption-
equivalent.

D.3 Redistributional Concerns
In the body of the paper, we have exclusively focused on characterizing (Kaldor-Hicks) efficiency. It
is however straightforward to compute welfare gains for any welfarist social welfare function, given by
W = W

(
V 1, . . . , V I

)
, using the efficiency/redistribution decomposition in Dávila and Schaab (2024).

Formally, the normalized marginal social welfare effects of any perturbation for any welfarist social welfare
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function can be expressed as

dWλ

dθ
=
∑
i

ωi
dV i|λ

dθ
=

∑
i

dV i|λ

dθ︸ ︷︷ ︸
ΞE (Efficiency)

+ I · Covi
[
ωi,

dV i|λ

dθ

]
︸ ︷︷ ︸

ΞRD(Redistribution)

, (A.4)

where dV i|λ

dθ =
dV i

dθ

λi and ωi =
∂W
∂V i λ

i

1
I

∑
i

∂W
∂V i λ

i
. This is the unique decomposition in which a normalized welfare

assessment can be expressed as Kaldor-Hicks efficiency, ΞE , and its complement, ΞRD. The choice of
λi simply accounts for the chosen unit to make interpersonal comparisons (welfare numeraire). Hence,
perturbations in which ΞE > 0 can be turned into Pareto improvements if transfers are feasible and costless.
Given (A.4), it is thus straightforward to augment our analysis to also draw insights over ΞRD.
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