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Abstract

This paper studies the relation between volatility and informativeness in financial markets.
We identify two channels (noise-reduction and equilibrium-learning) that determine the
volatility-informativeness relation. When informativeness is sufficiently high (low), volatility
and informativeness positively (negatively) comove in equilibrium. We identify conditions on
primitives that guarantee that volatility and informativeness comove positively or negatively.
We introduce the comovement score, a statistic that measures the distance of a given asset
to the positive/negative comovement regions. Empirically, comovement scores i) have trended
downwards over the last decades, ii) are positively related to value and idiosyncratic volatility
and negatively to size and institutional ownership.
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1 Introduction

A long tradition in economics and finance, commonly traced back to Hayek (1945), emphasizes the
role of financial markets in aggregating dispersed information. Under this view, prices not only
convey scarcity, but also reveal the dispersed information held by investors about the underlying
fundamentals of the economy. Within this paradigm, price informativeness, understood as the
precision of the signal about future payoffs revealed by asset prices, defines a natural measure of
the ability of financial markets to aggregate information. While price informativeness is a complex
equilibrium object that can only be inferred, price volatility is an alternative equilibrium object
that is regularly scrutinized.1 In particular, price volatility — because it is easy to compute — is
typically used as a proxy for informativeness. For instance, in a recent review of the literature on
idiosyncratic equity volatility, Campbell et al. (2022) state that “idiosyncratic volatility serves as
an empirical proxy for the flow of firm-specific information”. An important takeaway of our analysis
is that using volatility to make inferences about informativeness is only justified in a particular set
of circumstances, which we formally characterize, first as a function of price informativeness and
subsequently in terms of primitives. By introducing the comovement score, a new asset-specific
statistic, we show how it is possible to determine in practical scenarios whether price volatility is a
valid proxy for price informativeness.

In this paper, we systematically explore the relation between volatility and informativeness with
the goal of understanding the conditions under which changes in price volatility can be interpreted
as a reflection of more or less informative asset markets. We do so theoretically and empirically.
Because price volatility and price informativeness are jointly determined in equilibrium, we adopt
an unconventional methodological approach, by initially studying the equilibrium relation between
both endogenous variables before understanding comparative statics.

Our first set of results is theoretical. First, in the context of a tractable model of competitive
trading in financial markets, we show that the equilibrium relation between price informativeness
and price volatility — which refer to as the “volatility-informativeness” relation — is shaped by
two different channels, the equilibrium-learning channel and the noise-reduction channel, which
operate in opposite directions.2 Through the equilibrium-learning channel, which is inactive when
investors do not learn from asset prices, an increase in price informativeness tilts investors’ demands
toward putting more weight on the price as a signal about asset payoffs, making investors’ demands

1The relevant definition of price volatility for our analysis corresponds to the conditional idiosyncratic volatility of
asset prices given past public information, as it will become clear in Section 3. In our context, there is a one-to-one
mapping between conditional price volatility and conditional return volatility. To simplify the exposition, we typically
use the term price volatility.

2Since price informativeness is an endogenous object, considering changes in price informativeness that do not
otherwise affect the volatility-informativeness relation is only possible for a subset of all the model parameters. This
type of changes is nonetheless useful for definitional purposes. We eventually consider changes in parameters that,
at the same time, change price informativeness and shift the volatility-informativeness relation.
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more correlated, which increases the sensitivity of prices to the aggregate payoff realization and,
consequently, price volatility. Alternatively, through the noise-reduction channel, an increase in
price informativeness is directly associated with a reduction in price volatility, since less noise is
incorporated into the price.

Second, we show that the volatility-informativeness relation is upward-sloping (downward-
sloping) whenever price informativeness is sufficiently high (low). Through the lens of our two-
channel decomposition, when prices are sufficiently informative, the equilibrium-learning channel
becomes overwhelmingly important and dominates the noise-reduction channel. However, when
prices are sufficiently uninformative, the noise-reduction channel dominates. This result implies
that any change among the subset of parameters that do not enter the volatility-informativeness
relation directly must induce a positive (negative) comovement between price informativeness and
volatility when price informativeness is sufficiently high (low).

Third, we characterize regions in which price informativeness and price volatility positively
or negatively comove for changes in any of the underlying model parameters. Initially, we
show that whenever prices are sufficiently informative (uninformative), changes in any underlying
parameter, including those that explicitly appear in the volatility-informativeness relation, induce a
positive (negative) comovement between price informativeness and volatility across all applications
considered. Next, we characterize the conditions under which volatility and informativeness
positively or negatively comove as a function of primitives. We do so by defining positive, negative,
and ambiguous comovement regions in terms of model primitives. Interestingly, these regions can
be defined exclusively in terms of two scale-invariant ratios of precisions: a signal-to-payoff ratio
and a noise-to-payoff ratio. Finding an unambiguously positive or negative comovement between
price volatility and informativeness for any change in model primitives, even for specific regions of
the parameter space, may come as a surprise since, by reading the existing literature (e.g., Vives
(2008)), one may conclude that there is no systematic relation between these variables.

Subsequently, building on our theoretical results, we develop an empirical framework to analyze
the relation between volatility and informativeness. First, we introduce the notion of comovement
score, which is a statistic that measures the relative distance of a given asset to the positive/negative
comovement regions. The comovement score is useful because it defines a continuous measure of
(the likelihood of) comovement between volatility and informativeness for all stocks, including
those in the ambiguous comovement region. The definition of the comovement score is meant to
capture the idea that stocks closer to the positive (negative) comovement region are more likely to
experience positive (negative) comovement between volatility and informativeness.

Second, we show how to empirically measure stock-specific comovement scores. In particular,
we describe how to estimate a stock’s signal-to-payoff/noise-to-payoff pair, and how to use such
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estimates to compute comovement scores. We formally show that a specific combination of
parameters and R-squareds from linear regressions of changes in asset prices on changes in asset
payoffs allows us to consistently estimate signal-to-payoff and noise-to-payoff ratios, which in turn
can be used to estimate comovement scores. The empirical measurement of the comovement score
opens the door to using price volatility to measure price informativeness in applied work. More
specifically, our analysis suggests that stocks with estimated comovement scores closer to 1 are
better candidates to use volatility as a proxy for informativeness, while for stocks with estimated
comovement scores closer to 0 increases in volatility are more likely to reflect decreases in price
informativeness.

Using quarterly data between 1961 and 2017, we apply our estimation procedure to recover a
panel of stock-specific comovement scores by running rolling time-series regressions. We find that
roughly 14% of the estimated comovement scores are in or near the negative comovement region
(29% of the scores are lower than 0.5), while roughly 40% are in or near the positive comovement
region (71% of the scores are higher than 0.5). Our estimation exercise allows us to uncover both
cross-sectional and time-series patterns about the behavior of comovement scores.

In the time series, we find that both the mean and median of the distribution of comovement
scores have steadily decreased since the mid-1980s. Through the lens of our framework, these results
imply that changes in volatility are less likely to reflect changes in informativeness in the same
direction in recent times. We also find an increase in the cross-sectional dispersion of comovement
scores in recent times, which supports the idea that making inferences about informativeness from
volatility is not straightforward, and needs to be studied on a case-by-case basis. In the cross
section, we find that stocks that i) are small, ii) have a high book-to-market ratio, iii) have high
idiosyncratic volatility and iv) have a lower institutional ownership share have higher comovement
scores. We show that these cross-sectional patterns are remarkably stable over time, and that
the conditional distributions of stocks according to the characteristics that we study also remain
unchanged over time. We find that both the empirical time series and cross-sectional variation
in comovement scores is mostly due to changes in noise-to-payoff ratios, and discuss plausible
explanations that rationalize these findings. Finally, consistent with our theoretical framework, we
show that stocks with higher comovement scores are more likely to experience positive comovement
between price volatility and price informativeness.

Related Literature. This paper is most directly related to the literature that studies the role
played by financial markets in aggregating dispersed information, going back to Hayek (1945),
and following Grossman and Stiglitz (1980), Hellwig (1980), and Diamond and Verrecchia (1981),
among others. Biais, Glosten and Spatt (2005), Vives (2008), and Veldkamp (2011) provide recent
reviews of this body of work. Although price informativeness and price volatility are important
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equilibrium objects that have been studied in prior literature, we provide, to our knowledge, the first
systematic study of the relation between both endogenous variables. In particular, while the existing
literature typically presents expressions for price informativeness and volatility separately, in terms
of primitives, and presents comparative statics for each of these two quantities separately, it does not
explore further the relation between both variables. For instance, the textbook treatment of Vives
(2008) separately discusses the comparative statics of price volatility and informativeness, already
showing that volatility and informativeness may comove positively or negatively. Similarly, Wang
(1993) and Lee and Liu (2011) study comparative statics of price volatility and informativeness
when varying the number of noise traders. In contrast, our results systematically characterize how
volatility and informativeness comove for any change in model primitives, identifying regions in
which both variables comove unambiguously in a particular direction.

There exists a vast literature focused on the measurement of asset price volatility, including
the seminal contribution of Engle (1982), which spurred a large amount of work in Financial
Econometrics. Campbell et al. (2001, 2022) and Brandt et al. (2009) are well-known references
within this vast literature.3 While these studies emphasize the implications of price volatility
for diversification and its relation with expected returns, they have not related their findings to
whether prices are more or less informative, besides arguing at times (see our reference above) that
volatility may be a valid proxy for informativeness. Our results highlight that using volatility to
make inferences about informativeness is only justified in specific circumstances.

A growing literature seeks to understand the behavior of price informativeness empirically.
In particular, Bai, Philippon and Savov (2016) explore whether financial markets have become
more informative over time. Dávila and Parlatore (2020) show how to identify and estimate exact
stock-specific measures of price informativeness in a large class of environments. Farboodi et al.
(2019) show that financial markets are more informative because of large, growth stocks, for which
data have become relatively more valuable. Kacperczyk, Sundaresan and Wang (2018) find that
price informativeness increases with ownership by foreign investors. In contrast to this literature,
we introduce a new statistic that determines how changes in price volatility can be used to infer
changes in price informativeness.

Finally, we would like to highlight the high-level relation between our results and the work of
Bergemann, Heumann and Morris (2015). They show in an abstract linear-quadratic environment
that the information structure that yields maximal aggregate volatility is such that agents confound
idiosyncratic and aggregate shocks, excessively responding to aggregate shocks. Their goal is to
study how alternative information structures affect the moments (e.g., volatility) of endogenous
variables in the economy. Instead, our goal is to understand the endogenous equilibrium relation

3By modeling dispersed information and learning, our results also contrast with the vast literature studying excess
volatility and predictability that follows Shiller (1981), mostly focused on a representative investor.
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between the signal-to-noise ratio associated with asset prices, which is an unobservable variable
that captures the ability of financial markets to aggregate information, with the volatility of asset
prices, which is an easily computable endogenous outcome of financial market trading.

Outline. Section 2 describes the model environment and characterizes the equilibrium. Section
3 theoretically explores the relation between volatility and informativeness, formally characterizing
comovement regions. Section 4 develops an empirical framework to analyze the relation between
volatility and informativeness, measuring comovement scores and describing empirical patterns.
Section 5 concludes. The Appendix contains derivations, proofs, and additional results.

2 Model

In this section, we first describe the baseline environment and then characterize the equilibrium.

2.1 Environment

Timing and assets. Time is discrete, with dates denoted by t = 0, 1, 2, . . . ,∞. There are two traded
assets: a riskless asset in perfectly elastic supply with gross return R, normalized to 1, and a risky
asset in fixed supply Q, which is traded at a price pt at date t.

Preferences. At each date t, a continuum of investors in unit measure — indexed by i ∈ I — is
born with wealth wi

0. Each generation of investors lives two dates and maximizes expected utility
with constant absolute risk aversion (CARA) preferences over terminal wealth. Hence, investors
born at date t trade at date t and consume their date t+ 1 wealth. Formally, the flow utility of an
investor over terminal wealth is given by

U (w) = −e−γw,

where the parameter γ ≡ −U ′′(·)
U ′(·) > 0 represents the coefficient of absolute risk aversion.

Payoff process and signals. The risky asset payoff is given by

θt+1 = µθ + ρθt + ηt,

where µθ is a scalar, |ρ| ≤ 1 and θ0 = 0, and where the innovations to the payoff, ηt, are
independently distributed across dates. Note that the innovation to the t+ 1 payoff, ηt, is indexed
by t — instead of t+ 1 — to indicate that investors can potentially learn about the realization of
ηt at date t. The actual realization of the payoff at date t, θt+1, is only observed by the investors
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after they trade at that date. However, before trading at date t, each investor i receives a private
signal si

t about the innovation to the asset payoff ηt, given by

si
t = ηt + εi

st with εi
st ∼ N

(
0, τ−1

s

)
,

where εi
st ⊥ εj

st for all i ̸= j, and ηt ⊥ εi
st for all t and all i.

Noisy heterogeneous priors. Investors have heterogeneous prior beliefs over the distribution of the
innovation to the asset payoff. In particular, from an investor i’s perspective, the innovation to the
asset payoff ηt is distributed according to

ηt ∼i N
(
ηi

t, τ
−1
η

)
,

where ηi
t denotes investor i’s prior expected payoff. We assume that investors’ prior expected payoff

innovations are random and distributed according to

ηi
t = nt + εi

ut,

where
nt ∼ N

(
µn, τ

−1
n

)
with εi

ut
iid∼ N

(
0, τ−1

u

)
,

where εi
ut ⊥ nt, εi

st ⊥ nt, εi
ut ⊥ ηt, εi

st ⊥ ηt, nt ⊥ ηt, and εi
ut ⊥ εj

st for all i, j ∈ I, i ̸= j, and
nt ⊥ ηt for all t. Our formulation implies that an investor’s prior mean has two components: an
aggregate component, nt, which can be interpreted as a measure of market-wide sentiment, and an
idiosyncratic component εi

ut, which reflects the particular perceptions of individual investors.
We assume that investors take their priors as given and do not use them to learn about the

priors of other investors.4 Consequently, they do not infer anything about nt from their own
priors. However, investors know the distribution of priors in the economy and use this knowledge
to learn from the price. The fact that the realized average prior mean nt is unknown introduces an
additional source of aggregate uncertainty besides the innovation to the asset payoff, which prevents
the equilibrium from being fully revealing. We refer to nt as aggregate sentiment or aggregate noise,
indistinctly.We conclude the description of the environment with two remarks.

Remark 1. (Repeated static economy) It is important to highlight that the baseline model
introduced in this section is effectively a repeated static economy. In particular, since investors
are short-lived, the demand for the risky asset is the result of one-period-ahead optimization and
only depends on the future through the equilibrium price at the following date. While it is helpful

4It is possible to assume instead that investors use their priors to learn about the priors of other investors — see
e.g., Dávila and Parlatore (2021).
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to study a dynamic model to guide our empirical analysis in Section 4, the particular dynamic
formulation that we adopt here allows us to keep the model tractable.5

Remark 2. (Alternative sources of noise/general environments) In order to streamline the
exposition, we initially study the relation between volatility and informativeness in the baseline
model introduced in this section, in which the aggregate component of investors’ priors is the source
of aggregate uncertainty that prevents the equilibrium price from being fully-revealing. However,
our theoretical results relating volatility and informativeness hold more generally. In Section E of
the Online Appendix, we show that the relation between volatility and informativeness characterized
in Proposition 1 below holds exactly in any model with linear demands and additive noise, and
approximately in a more general class of models. Moreover, in Section F of the Online Appendix,
we extend our results to environments with alternative sources of aggregate noise. In particular,
we consider environments in which noise emerges from strategic trading or hedging needs.

2.2 Equilibrium

An investor i born at date t chooses a risky asset demand qi
1,t to maximize

max
qi

1,t

E
[
−e−γwi

1,t+1
∣∣∣ Ii

t

]
,

subject to the wealth accumulation equation

wi
1,t+1 = (θt+1 + pt+1) qi

1,t + wi
0 − ptq

i
1,t, (1)

where Ii
t =

{
θt, s

i
t, η

i
t, pt

}
denotes the information set of investor i at date t. As it is customary, we

focus on stationary equilibria in linear strategies.

Definition. (Equilibrium) A stationary rational expectations equilibrium in linear strategies
consists of linear risky asset demands qi

1,t for each investor i born at date t of the form

qi
1,t = αθθt + αss

i
t + αnη

i
t − αppt + ψi,

where αs, αn, αp, and ψi are determined in equilibrium, and a price function pt such that at each
date t: i) each investor i chooses qi

1,t to maximize expected utility subject to the wealth accumulation
equations, defined in Equation (1) and ii) the price function pt is such that the market for the risky
asset clears, i.e.,

´
qi

1,tdi = Q.
5It is well-known that richer overlapping generations models with multiple securities and heterogeneously informed

agents can display rich price and trading dynamics. See e.g., Spiegel (1998) and Watanabe (2008).
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In equilibrium, the price of the risky asset at date t is given by

pt = αθ

αp
θt + αs

αp
ηt + αn

αp
nt + ψ

αp
, (2)

where ψ ≡
´
ψidi−Q. The linearity of asset demands implies that the equilibrium asset price is also

linear in the innovation to the asset payoff ηt, in the already realized payoff θt, and in the common
component of investors’ private trading needs nt.6 Moreover, the stationarity of the environment
guarantees that the coefficients of the equilibrium pricing equation are time-invariant.

The equilibrium price pt imperfectly reveals the innovation to the asset payoff ηt. The sensitivity
of the equilibrium price to the realization of the innovation is modulated by the weight αs that
investors put on their private signals si

t. However, investors’ demands also depend on their priors,
which are orthogonal to the asset payoff. Since investors do not observe the common component
of the beliefs, they cannot distinguish whether a high price is due to a high realization of the
innovation to the asset payoff ηt or due to a high realization of the aggregate sentiment nt. It is in
this sense that investors’ heterogeneous beliefs act as noise, since they prevent the price from being
fully revealing.

Our definition of price informativeness is based on the unbiased signal about the innovation to
the asset payoff ηt contained in the price, which we denote by πt. Formally, πt is given by

πt = αp

αs

(
pt − αθ

αp
θt − αn

αp
E [nt] − ψ

αp

)
= ηt + αn

αs
(nt − E [nt]) , (3)

which guarantees that E [πt|ηt] = ηt. The last term in Equation (3) represents the noise contained
in the price given by the realization of the aggregate sentiment, adjusted by the ratio αn

αs
, so it is

expressed in payoff units.
In the Appendix, we fully characterize the equilibrium of the model, showing that it is uniquely

determined. We formally state this result in Lemma 1 below.

Lemma 1. (Uniqueness of Equilibrium) There exists a unique stationary rational expectations
equilibrium in linear strategies.

We conclude this section with a remark that clarifies which of our results extend to models with
potentially unstable equilibria.

Remark 3. (Stability of equilibria) While our baseline environment features a unique stable

6Since there is a continuum of investors, a law of large numbers guarantees that the terms
´

αsεi
stdi

αp
and

´
αnεi

ntdi

αp

vanish, making the price independent of the idiosyncratic noise in investors’ signals and priors. Otherwise, these
terms operate as additional sources of aggregate noise. In the version of the model with a finite number of investors
that we present in the Online Appendix, the realization of the idiosyncratic components of the investors’ signals and
priors act as the source of aggregate noise.
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stationary rational expectations equilibrium in linear strategies, in alternative environments of
the form we study in the Online Appendix (see Remark 2) there may be multiple equilibria, some
of them unstable. In those cases, Proposition 1 remains valid in any equilibrium. However, the
results characterizing the comovement regions (in particular Propositions 3 through 5) exploit the
stationarity and stability of equilibria, as well as the particular structure of the model. We discuss
these issues further in Section F of the Online Appendix.

3 Relating Volatility and Informativeness

In this section, we provide a systematic theoretical analysis of the relation between volatility and
informativeness. First, using the equilibrium price pt, introduced in Equation (2), and the unbiased
signal about the asset payoff contained in the price πt, introduced in Equation (3), we provide
formal definitions of our two objects of interest, price volatility and price informativeness. Next,
we characterize and study in detail the volatility-informativeness relation, which is a condition that
both variables must satisfy in equilibrium. Finally, we characterize the parameter regions such that
price volatility and price informativeness unambiguously comove, either positively and negatively,
for any change in the model’s parameters. We refer to these as the (volatility-informativeness)
comovement regions.

3.1 Definitions

Definition. (Price volatility) We define price volatility as the conditional variance of the asset
price. Formally, we denote price volatility by

V ≡ Var [pt| θt] .

For our purposes, price volatility is simply the idiosyncratic variance of asset prices conditional
on the current publicly observed realization of the asset payoff. In our setup, there is a one-to-
one mapping between price volatility and return volatility, since investors observe past prices. To
simplify the exposition, we only condition on θt and use the term price volatility but, formally, our
analysis is valid replacing V by Var

[
pt

pt−1

∣∣∣ θt, pt−1
]
.

Definition. (Price informativeness) We define price informativeness as the precision of the
unbiased signal of the innovation to the asset payoff ηt contained in the asset price, πt, defined
in Equation (3), from the perspective of an external observer. Formally, we denote price
informativeness by

τπ ≡ (Var [πt|ηt, θt])−1 . (4)
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Price informativeness, as defined here, is a variable that summarizes the ability of financial
markets to disseminate information through prices. It is the relevant variable that captures
how precise the price is as a signal of the innovation to future payoffs ηt from the perspective
of an external observer who only observes the realization of the asset payoff θt. When price
informativeness is high, an external observer receives a very precise signal about the asset payoff
by observing the asset price pt. On the contrary, when price informativeness is low, an external
observer learns little about the asset payoff by observing the asset price pt. It is worth highlighting
why it is helpful to understand how volatility and informativeness are related before formally
exploring their relation.

Remark 4. (Importance of understanding the relation between volatility and informativeness)
Changes in price informativeness, especially at high frequencies, are hard to measure. A main
objective of this paper is to characterize how price volatility and price informativeness are related
in equilibrium to be able to make inferences about movements in price informativeness, which is
not directly observable, from movements in price volatility, which can be easily computed. An
added benefit of our exercise is to correct the common misconception that idiosyncratic volatility
can be used as a proxy for price informativeness without any further qualifications. As we show
in the following section, whether price volatility and price informativeness positively or negatively
comove depends on the parameters of the economy.

3.2 Volatility-Informativeness Relation

Our first set of results builds on the law of total variance, which is an elementary identity that,
applied here, implies that conditional price volatility can be decomposed as follows.

Var [pt| θt] = E [Var [pt| ηt, θt]| θt] + Var [E [pt| ηt, θt]| θt] .

The law of total variance asserts that the total variation in the equilibrium price pt can be
decomposed into two components, after conditioning on the innovation to the asset payoff ηt.
The first component corresponds to the expectation over the different realizations of the innovation
to the asset payoff ηt of the conditional variance of the equilibrium price pt, given ηt. The second
component corresponds to the variance of the conditional expectation of pt, after learning ηt.
Intuitively, the first component captures learnable uncertainty, captured by the best estimate of
the residual error in pt after learning ηt, while the second term captures residual uncertainty, which
corresponds to the error from the best guess of pt after learning ηt.
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Using the equilibrium price in Equation (2), we can express both components as follows:

E [Var [pt| ηt, θt]| θt] =
(
αs

αp

)2

τ−1
π and Var [E [pt| ηt, θt]| θt] =

(
αs

αp

)2

τ−1
η ,

which allows us to characterize the relation between price volatility and price informativeness in
Proposition 1 below. Intuitively, the variation in E [pt| ηt, θt] is driven by the variance of the
innovation to the asset payoff τ−1

η , while the average residual variance is modulated by changes in
price informativeness τπ.

Proposition 1. (Volatility-informativeness relation: demand sensitivities formulation)
a) Price volatility V and price informativeness τπ satisfy the following relation:

V =
(
αs

αp

)2 (
τ−1

η + τ−1
π

)
. (5)

b) The equilibrium elasticity of price volatility to price informativeness is given by

d log V
d log τπ

= 2
d log

(
αs
αp

)
d log (τπ)︸ ︷︷ ︸

equilibrium-learning

− τ−1
π

τ−1
η + τ−1

π︸ ︷︷ ︸
noise-reduction

. (6)

We refer to Equation (5) as the volatility-informativeness relation. Since both volatility and
informativeness are endogenous objects, the volatility-informativeness relation simply characterizes
the locus over which price volatility and price informativeness will lie in equilibrium for a given set
of parameters.

Part a) of Proposition 1 shows that this equilibrium relation features the exogenous primitive
τ−1

η , which corresponds to the variance of the innovation to the asset payoff, and the equilibrium
object αs

αp
, which we refer to as the signal-to-price sensitivity and depends on τπ.7 After accounting

for the fact that αs
αp

is a function of τπ and other primitives, we identify two distinct channels that
determine the relation between price informativeness and volatility in part b) of Proposition 1.

We refer to the first channel as the equilibrium-learning channel. If a high level of price
informativeness is associated with a high (low) level of the signal-to-price sensitivity αs

αp
, this

induces a positive (negative) relation between price informativeness and volatility. A high value
of the signal-to-price sensitivity αs

αp
amplifies the sensitivity of asset prices to aggregate shocks.8

7Note that we express Equation (6) using a total derivative and not a partial derivative. This notation accounts
for the fact that αs

αp
is related in equilibrium to τπ.

8Note that Var [p| θt] =
(

αs
αp

)2
Var [π| θt], since the variance of the unbiased signal about the asset payoff can be

expressed as Var [π| θt] = τ−1
η + τ−1

π . We can thus interpret asset price volatility as the volatility of the unbiased
signal about the asset payoff, corrected by investors’ endogenous responses through the signal-to-price sensitivity.
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Intuitively, a high αs
αp

implies that, on average, either investors react significantly to their private
signals (high αs), or that they have very steep — under the traditional economics convention that
uses quantities in the horizontal axis — asset demand curves (low αp), so investors barely adjust
the quantity demanded even for large price changes, implying that equilibrium prices substantially
react to the realization of the asset payoff. Alternatively, a low αs

αp
implies that, on average,

investors barely react to their private signals (low αs), or that they have very flat — under the
traditional economics convention — asset demand curves (high αp), so investors significantly adjust
the quantity demanded even for small price changes, implying that equilibrium prices are barely
responsive to the realization of aggregate payoff shocks.

We refer to the second channel as the noise-reduction channel. It is evident from Proposition
1 that, holding αs

αp
constant, a high level of τπ is mechanically associated with a low level of V. In

fact, Equation (5) implies that there exists an inverse relation between both variables. Intuitively,
when prices are very informative, the noise in the price is low and the conditional variance of the
price for a given realization of the asset payoff is necessarily low.

It is worth highlighting that part b) of Proposition 1 is not a comparative statics exercise,
but a characterization of a relation between two endogenous variables that must be satisfied in
any equilibrium, given the economy’s parameters. There are scenarios in which changes in some
primitives do not shift the locus defined in Equation (5). In those cases, Equation (5) can be
interpreted as the possible combinations of V and τπ that can arise in equilibrium for different values
of those primitives. In those scenarios, Proposition 1 implies that equilibria with high volatility
are also equilibria with high (low) price informativeness whenever dlogV

d log τπ
> 0 (< 0). However,

changes in parameters that shift the locus defined in Equation (5) entail a shift of the volatility-
informativeness relation and, in general, also a movement along the curve. Therefore, it is necessary
to determine how αs

αp
and τπ are related in equilibrium as a function of the model’s primitives to

further understand the comovement between price informativeness and price volatility.

Lemma 2. (Signal-to-price sensitivity) The signal-to-price sensitivity can be expressed as a
function of price informativeness τπ and primitives τs, τη, and ρ as follows:

αs

αp
= 1

1 − ρ

τs + τπ

τη + τs + τπ
. (7)

Given that investors have three sources of information about the asset payoff (their prior, their
private signal, and the price signal), the signal-to-price sensitivity corresponds to the share of
information acquired from the new signals at the disposal of investors, discounted by ρ. Therefore,
high values of τs and τπ are associated with high values of αs

αp
, while high values of the prior

precision τη are associated with low values of αs
αp

. Similarly, if the process for the asset payoff is
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(a) Varying the prior precision about the innovation to the
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(b) Varying the precision of investors’ signals, τs

Figure 1: Understanding the signal-to-price sensitivity, αs
αp

Note: Figure 1 shows how the signal-to-price sensitivity αs
αp

, characterized in Equation (7), varies as a function of
price informativeness τπ for different values of τη and τs, respectively, when ρ = 0. Figure 1a is computed using
τs = 1 and Figure 1b is computed using τη = 1.

highly persistent (ρ is high), the signal-to-price sensitivity αs
αp

is high, since new information about
the innovation ηt becomes more valuable.

It is useful to interpret αs
αp

as the sensitivity of the equilibrium price pt to a change in the
realization of the innovation to the asset payoff ηt, since ∂pt

∂ηt
= αs

αp
. Intuitively, a unit increase in the

realization of ηt increases the value of the signals received by investors, increasing aggregate demand
by αs. This increase in aggregate demand increases the equilibrium price, which endogenously
changes investors’ demands, according to 1

αp
, for two reasons: i) a reduction in demand for purely

pecuniary considerations, and ii) an increase in demand for informational reasons, since a higher
price leads investors to infer that other investors received high signals about the asset payoff. Since
substitution effects dominate in our model, the first effect always dominates in equilibrium, so that
asset demands are downward sloping (αp > 0).

Figure 1a illustrates how the behavior of the signal-to-price sensitivity varies with the strength
of the prior precision τη, for a given price informativeness τπ. If the asset payoff is extremely
volatile (τη → 0), investors exclusively rely on the signals about the asset payoff at their disposal,
and αs

αp
→ 1. Alternatively, if investors’ prior information is extremely accurate (τη → ∞), investors

exclusively rely on their prior information, so changes in the realization of ηt barely move at all the
equilibrium price, and αs

αp
→ 0. Intuitively, the more precise the prior information held by investors

(higher τη), the less sensitive the asset price to the realization of ηt.
Figure 1b illustrates how the behavior of the signal-to-price sensitivity varies with the strength
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of the precision of investors’ private signals τs, for a given price informativeness τπ. If investors’
signals are extremely precise (τs → ∞), investors trade one-for-one with their private signals, so
αs
αp

→ 1. Alternatively, if investors’ signals are very inaccurate (τs → 0), investors exclusively rely
on their prior information, so αs

αp
→ τπ

τη+τπ
. For a given τs and τη, changes in τπ have the same

effect as changes in τs given τπ.
Combining Proposition 1 with Lemma 2, we can express the volatility-informativeness relation

in terms of model primitives.

Proposition 2. (Volatility-informativeness relation: model primitives formulation) The
volatility-informativeness relation can be expressed in terms of primitives as follows:

V =
(

1
1 − ρ

τs + τπ

τη + τs + τπ

)2 (
τ−1

η + τ−1
π

)
. (8)

Corollary 2 represents the endogenous relation between V and τπ as a function of only two
(combinations of) primitives: τη and τs, which allows us to explicitly characterize the properties of
the volatility-informativeness relation. Note that the variance of the equilibrium price converges to
the variance of the asset payoff when prices are infinitely informative. Alternatively, the equilibrium
price is infinitely volatile when prices are totally uninformative. Formally,

lim
τπ→∞

V =
( 1

1 − ρ

)2
τ−1

η and lim
τπ→0

V = ∞.

Note also that
lim

τπ→0

dV
dτπ

= −∞ and lim
τπ→∞

dV
dτπ

= 0.

Intuitively, for low levels of price informativeness, the noise-reduction channel dominates the
equilibrium-learning channel, since learning is ineffective. When prices are infinitely informative,
the noise-reduction channel and the equilibrium-learning channel perfectly cancel each other.
Combining both sets of limits with the continuity of the relation, we conclude that the volatility-
informativeness relation has an asymptote at τπ = 0 and that it converges smoothly towards(

1
1−ρ

)2
τ−1

η when prices are sufficiently informative.
We formally show that the volatility-informativeness relation is decreasing for sufficiently low

values of τπ and increasing for sufficiently high values of τπ. The following proposition formalizes
this nonmonotonicity.

Proposition 3. (Slope of volatility-informativeness relation) The volatility-informativeness
relation is increasing (decreasing) in τπ if and only if price informativeness is high (low) enough.
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Figure 2: Volatility-informativeness relation

Note: Figure 2 plots price volatility as a function of price informativeness, as given by the volatility-informativeness
relation in Equation (8), for parameters τη = 0.5, τs = 1, λ = 1, ρ = 0, and R = 1.04. The vertical red dotted line
represents the threshold τ⋆ that delimits the upward and downward-sloping regions of the volatility-informativeness
relation. The horizontal yellow dotted line depicts the limit τ−1

η to which the volatility-informativeness relation
converges when prices are perfectly informative.

Formally, there exists a threshold τ⋆ > 0 such that

dV
dτπ

=

< 0, if τπ < τ⋆

> 0, if τπ > τ⋆
,

where the threshold τ⋆ is given by

τ⋆ ≡
− (τη − 2τs) +

√
τ2

η + 8τ2
s

2 . (9)

Proposition 3 shows that the slope of Equation (8) is positive when τπ is sufficiently large and
negative otherwise. The threshold τ⋆, which determines the boundary between the positive and
negative slope regions, only depends on the precision of the innovation to the asset payoff and
the precision of the private signal. Exploiting our two-channel decomposition, we say that when
prices are sufficiently informative, when τπ > τ⋆, the equilibrium-learning channel dominates the
noise-reduction channel. On the contrary, when τπ < τ⋆, the noise-reduction channel dominates
the equilibrium-learning channel. Figure 2 illustrates the shape of the volatility-informativeness
relation in Equation (5) and the threshold τ⋆.

Proposition 3 implies that any change among the subset of parameters that do not enter
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the volatility-informativeness relation directly must induce a positive comovement between price
informativeness and volatility when prices are sufficiently informative and a negative comovement
otherwise. When interpreted through the lens of our two-channel decomposition, when prices are
sufficiently informative, the equilibrium-learning channel, which is driven by the change in investors’
equilibrium behavior induced by learning, becomes overwhelmingly important and dominates the
noise-reduction channel, and vice versa.

The slope of the volatility-informativeness relation is not enough to characterize how price
informativeness and price volatility are related in equilibrium since there are parameters that move
such relation as well as price informativeness.9 In the next section, we characterize comovement
regions between price informativeness and price volatility in terms of primitives. Before doing so,
it is worth including a remark on the notion of price informativeness considered in this section.

Remark 5. (Notion of price informativeness) The notion of price informativeness defined above in
Equation (4) is exactly the precision of the price as a signal of the innovation to the asset payoff.
This measure allows us to isolate the ability of prices to aggregate the information that is dispersed
in the economy. A different variable that is at times used to measure the informational content of
prices is the posterior variance of the future payoff conditional on the price (and the current payoff),
given by VP ≡ Var [ηt| pt, θt]. The posterior variance VP corresponds to the residual uncertainty
about future payoffs after observing the price. When uncertainty is Gaussian, VP and τπ are related
as follows.

VP = 1
τη + τπ

. (10)

From a theoretical perspective, the one-to-one mapping in Equation (10) implies that using τπ

or VP to measure price informativeness will yield the same results. However, Equation (10) also
illustrates the challenge faced by the posterior variance to empirically identify the precision of
the price as a signal: VP confounds the effect of uncertainty about future payoffs (τ−1

η ) with the
precision of the price as a signal about future payoffs, τπ. For example, VP can be low because
the payoff is not very volatile (high τη) or because asset prices give very precise information about
future payoffs (high τπ). Therefore, measuring informativeness using VP is inadequate to capture
the amount of information contained in asset prices, which is ultimately what we care about in this
paper.10

9A direct implication of this observation is that there is no apparent cross-sectional relation between the level of
price informativeness and the relation between volatility and informativeness.

10Evidently, if τη is fixed, then VP and τπ satisfy again a one-to-one mapping.
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3.3 Comovement Regions

In our model, it is possible to explicitly compute price informativeness in terms of primitives, as
follows:

τπ =
(
τs

τη

)2

τn. (11)

Hence, when combined with Equation (8), it becomes evident that different primitives may impact
volatility and informativeness differently. In particular, without knowing which particular change
in primitives drives changes in volatility and informativeness, it is in general not possible to know
whether volatility and informativeness move in the same or opposite directions. In this section,
we bypass this concern by characterizing regions in which price informativeness and price volatility
positively or negatively comove for changes in any of the underlying model parameters.

First, in Proposition 4, we show that price informativeness is high (low) enough when price
informativeness and price volatility positively (negatively) comove after any parameter change,
including those that appear in the volatility-informativeness relation.

Proposition 4. (Comovement regions: price informativeness formulation) There exist
thresholds τ⋆ > 0 and τ ∈ [0, τ⋆] such that

a) [Positive comovement region] If τπ > τ⋆, price volatility V and price informativeness τπ

positively comove across equilibria after any parameter change.

b) [Negative comovement region] If τπ < τ , price volatility V and price informativeness τπ

negatively comove across equilibria after any parameter change.

c) [Ambiguous comovement region] If τπ ∈ [τ , τ⋆], price volatility V and price informativeness τπ

may comove positively or negatively across equilibria, depending on which parameter changes.

Proposition 4 identifies three regions depending on the comovement between price informativeness
and price volatility: a positive comovement region, a negative comovement region, and an
ambiguous comovement region. In the positive comovement region price informativeness is above
the threshold τ⋆ above which the volatility-informative relation is upward sloping. Intuitively, why
is there positive comovement when prices are very informative? For instance, an increase in the
precision of investors’ private signals about the asset payoff shifts the volatility-informativeness
relation upwards because investors are more responsive to their information for any level of
price informativeness, as we describe above when explaining Lemma 2. As expected, price
informativeness also increases when investors receive more precise signals. When the equilibrium-
learning channel dominates, the upward shift in the volatility-informativeness relation and the
increase in price informativeness guarantee an increase in price volatility, which yields the positive
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comovement described above. Alternatively, an increase in the precision of investors’ priors about
the fundamental shifts the volatility-informativeness relation downwards, since investors are less
responsive to their information. As expected, price informativeness decreases when investors rely
more on their priors. When the equilibrium-learning channel dominates, the downward shift in the
volatility-informativeness relation and the decrease in price informativeness guarantee a decrease
in volatility, which yields again positive comovement.

In the negative comovement region, price informativeness is low and below the threshold τ < τ⋆.
In this case, the volatility-informativeness relation is downward sloping. In principle, this implies
that the comovement between price volatility and price informativeness is ambiguous since variables
that increase price informativeness also shift the volatility-informativeness relation upwards, and
vice-versa. However, exploiting the fact, illustrated in Figure 2, that the volatility-informativeness
relation has an asymptote at τπ = 0, it is possible to show that there exists a region of the
parameter space such that volatility and informativeness comove negatively for any parameter
changes. Intuitively, when informativeness is sufficiently low, the noise-reduction channel dominates
for any change in primitives. Finally, in the ambiguous comovement region, whether price volatility
and price informativeness comove positively or negatively depends on the underlying parameter that
is leading to the change.

The characterization in Proposition 4 in terms of price informativeness is useful to understand
the comovement regions through the equilibrium-learning and noise-reduction channels. However,
note that the results in this proposition hold within a parameterization of the economy. More
specifically, the thresholds τ⋆ and τ that characterize the comovement regions depend on the
primitives of the economy. Therefore, different economies are likely to have different levels of price
informativeness and different thresholds characterizing the comovement regions. Importantly, two
economies that have the same level of price informativeness in equilibrium may be in different
comovement regions, as we illustrate in Figure 3 of the Online Appendix. This implies that the
results in Proposition 4 cannot be used to derive neither cross-sectional nor time-series correlations
between price informativeness and the comovement between volatility and informativeness.

Next, we show in Proposition 5 that it is possible to characterize whether a given asset is in the
positive, negative, or ambiguous comovement region as a function of a subset of model primitives.
These results lay the foundation for our empirical analysis in Section 4.

Proposition 5. (Comovement regions: model primitives formulation)

a) [Positive comovement region] Price volatility V and price informativeness τπ positively comove
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in response to any parameter change if

τn

τη
>

√
1 + 8 τs

τη
− 1 + 2 τs

τη

2
(

τs
τη

)2 . (12)

b) [Negative comovement region] Price volatility V and price informativeness τπ negatively
comove in response to any parameter change if

τn

τη
<

τs
τη

− 2 +
√(

2 − τs
τη

)2
+ 8

(
τs
τη

)2

4
(

τs
τη

)2 . (13)

c) [Ambiguous comovement region] Whenever neither of the inequalities in Equations (12) and
(13) are satisfied, price volatility V and price informativeness τπ may comove positively or
negatively, depending on which parameter changes.

Equations (12) and (13) explicitly characterize conditions on model primitives that guarantee
a positive or negative comovement between price volatility and price informativeness in response
to any change in model primitives. Interestingly, these conditions can be expressed exclusively in
terms of two ratios of precisions, which are scale-invariant. In particular, both Equations (12) and
(13) remain valid regardless of the values of investors’ risk aversion γ, the dispersion of investors’
heterogeneous beliefs τu, or the supply of the risky asset Q. When either τs

τη
, which measures the

ratio of the precision of private information to the precision of investors’ prior information, or τn
τη

,
which measures the relative volatility of the innovation to the asset payoff relative to the volatility
of sentiment, is sufficiently large, the economy features positive comovement. In these cases, either
due to investors receiving precise signals or to aggregate noise being low, price informativeness is
high enough to guarantee that the economy is in the positive comovement region. When Equation
(13) is satisfied, either τs

τη
or τn

τη
is small enough such that price informativeness is small enough to

guarantee that the economy is in the negative comovement region. Figure 3 graphically illustrates
the combinations of signal-to-payoff τs

τη
and noise-to-payoff τn

τη
precisions that delimit the positive

and negative comovement regions.
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Figure 3: Comovement regions and price informativeness isoquants

Note: Figure 3 shows i) the combination of ratios of primitives τn
τη

and τs
τη

that are consistent with an economy that is
in the positive, negative, or ambiguous comovement region, as defined in Proposition 5, and ii) price informativeness
isoquants. The highest solid yellow line determines the lower bound of the positive comovement region. The lowest
solid yellow line represents the upper bound of the negative comovement region. The region in between both solid
yellow lines determines the ambiguous comovement region. The blue dashed lines represent combinations of ratios
τn
τη

and τs
τη

associated with the same (relative) price informativeness, for τπ
τη

∈ {0.5, 1.5, 2.5}.

While Propositions 4 and 5 characterize the comovement regions, it is important to highlight
the differences between both results. Proposition 4 characterizes the comovement regions in terms
of the level of price informativeness within a particular equilibrium. In contrast, Proposition
5 presents the combinations of signal-to-payoff τs

τη
and noise-to-payoff τn

τη
ratios that delimit the

positive and negative comovement regions. Importantly, these results do not imply that there
exists a positive relation between the level of price informativeness and the comovement between
volatility and informativeness. The statements in Proposition 4 depend on thresholds that vary
with the parameters in the economy. Therefore, one can find economies with high levels of
price informativeness in the positive or negative comovement regions, depending on the particular
combination of parameters. To illustrate this point, Figure 3 includes price informativeness
isoquants in addition to the boundaries of the positive and negative comovement regions. The
blue dotted lines represent the combinations of parameters that yield the same normalized price
informativeness τπ

τη
, for three different values.11 Figure 3 clearly illustrates that, depending on

11Since the positive and negative comovement regions are expressed in terms of the ratios τs
τη

and τn
τη

, the isoquants
are expressed in terms of price informativeness relative to the precision of the fundamental, τπ

τη
.
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Figure 4: Comparative statics

Note: Figure 4 shows comparative statics of price informativeness τπ and price volatility V = Var [pt| θt] as a
function of all five primitives of the model considered. All plots feature two y-axes: the left y-axis corresponds to the
values of τπ, while the right y-axis corresponds to the values of V = Var [pt| θt]. The parameters of this model are
the following: τs, precision of private signals about the innovation to the asset payoff; τη, precision of the innovation
to the asset payoff; τn, precision of the average prior; τu, precision of investors’ dispersion of heterogeneous beliefs;
and γ, investors’ coefficient of absolute risk aversion. The reference values are τs = 1, τη = 3, τn = 1.5, τu = 1, and
γ = 0.5.

the combination of parameters, there can be economies in the positive and negative comovement
regions with the same level of normalized price informativeness.

In terms of magnitudes, our model implies that when investors’ private signals and priors about
the innovation are of equal precision, i.e., τs

τη
= 1, volatility and informativeness positively comove

whenever the variance of the aggregate component of beliefs is less than one half of the variance
of the innovation to the asset payoff ( 1

τn
< 1

2
1
τη

) and negatively comove whenever the variance of
the aggregate component of beliefs is greater than twice the variance of the innovation to the asset
payoff ( 1

τn
> 2 1

τη
), regardless of the value of the remaining parameters of the model. Moreover, our

model implies that when the variance of the innovation to the asset payoff and the variance of the
aggregate component of beliefs are of equal magnitude, i.e., τn

τη
= 1, volatility and informativeness

positively comove provided that the precision of investors’ private signals is greater than 2.2 times
the precision of their prior about the innovation to the asset payoff (τs > 2.2τη). Figure 3 illustrates
all remaining possible combinations.
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Finding an unambiguously positive or negative comovement between both variables for any
change in primitives, even for specific regions of the parameter space, may come as a surprise,
since the prior about the sign of the relationship should not be obvious ex-ante. It is worth
highlighting that our results apply to comparative static exercises that are valid for changes in any
of the underlying model parameters, including those that appear in the volatility-informativeness
relation. Figure 4 shows the comparative statics for τπ and V as a function of the five primitives
of the model: τs, τη, τn, τu, and γ. Interestingly, both price volatility and informativeness are
independent of investors’ risk aversion, γ, and of the dispersion in investors’ priors, τu, although
there are other equilibrium variables that do depend on γ or τu, for example, the risk premium and
trading volume.

4 Comovement Score: Definition, Measurement, and Validation

In this section, building on our theoretical results, we develop an empirical framework to analyze
the relation between volatility and informativeness. First, we introduce the notion of comovement
score. The comovement score is a statistic that measures the relative distance of a given asset to
the positive/negative comovement regions. This measure is useful because, in practice, many stocks
will fall in the ambiguous comovement region characterized in Proposition 5.

Next, we go on to empirically recover stock-specific estimates of the comovement score for
the cross-section of US stocks over time. We find that roughly half of our observations fall in the
ambiguous region, with comovement scores between 0 and 1. Empirically, we find that comovement
scores have trended downwards in recent decades, correlate positively to value and idiosyncratic
volatility, and negatively to size and institutional ownership. We find that both the empirical
time series and cross-sectional variation in comovement scores is mostly due to changes in noise-to-
payoff ratios, and discuss plausible explanations that rationalize these findings. Finally, we show
that stocks with higher comovement scores are more likely to experience positive comovement,
which is consistent with the theoretical framework developed in the paper.

Going forward, we use the index j to denote a given individual stock and τ j to denote the
signal-to-payoff/noise-to-payoff pair of a given stock j, formally given by τ j =

(
τ j

s

τ j
η
, τ j

n

τ j
η

)
.

4.1 Comovement Score: Definition

In Proposition 5, we show that, depending on primitives, a given stock j can be in the positive
comovement region, the negative comovement region, or the ambiguous comovement region. In
practice, as we will show shortly, many stocks will be assigned to the ambiguous comovement region.
Hence, in order to define a continuous measure of (the likelihood of) comovement between volatility
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and informativeness, we introduce the “comovement score”. The definition of the comovement score
is meant to capture the idea that stocks closer to the positive (negative) comovement region are
more likely to experience positive (negative) comovement between volatility and informativeness.

Definition. (Comovement score) The comovement score for a given asset j, S (j) ∈ [0, 1], is
defined as the relative distance in the space of signal-to-payoff and noise-to-payoff primitives from
the positive comovement region. Formally,

S (j) =


0, if τ j ∈ C−

d−(j)
d+(j)+d−(j) , if τ j /∈ C− ∪ C+

1, if τ j ∈ C+

,

where d+ (j) and d− (j) respectively denote the minimum distances from the positive and negative
comovement regions, given by

d+ (j) = min
τ

{
d
(
τ j ; τ

)
: τ ∈ ∂+

}
and d− (j) = min

τ

{
d
(
τ j ; τ

)
: τ ∈ ∂−

}
,

where d
(
τ j ; τ

)
denotes the Euclidean distance in the signal-to-payoff/noise-to-payoff space, that is,

d
(
τ j ; τ ′

)
=

√√√√(τ j
s

τ j
η

− τ ′
s

τ ′
η

)2

+
(
τ j

n

τ j
η

− τ ′
n

τ ′
η

)2

,

and where ∂+ and ∂− denote the boundaries of the positive and negative comovement regions,
characterized in Proposition 5, and respectively, given by

∂+ =

τ : τn
τη

=

√
1 + 8 τs

τη
− 1 + 2 τs

τη

2
(
τs

τη

)2

 and ∂− =

τ : τn
τη

=
τs

τη
− 2 +

√(
2 − τs

τη

)2
+ 8

(
τs

τη

)2

4
(
τs

τη

)2

 .

Conceptually, it is straightforward to compute the comovement score. First, if given primitives,
a stock is assigned to the positive comovement region, then S (j) = 1; or S (j) = 0 if assigned
to the negative comovement region. For those stocks in the ambiguous comovement region,
one computes the minimum euclidean distance to the boundaries of the positive and negative
comovement regions. Finally, the comovement score simply corresponds to the relative distance
from the positive comovement region. That is, when the distance to the negative comovement
region d− (j) is large relative to d+ (j) + d− (j), then a given asset j is closer in relative terms to
the positive comovement region, and S (j) → 1. Alternatively, when the distance to the positive
comovement region d+ (j) is large relative to d+ (j) + d− (j), then a given asset j is closer in
relative terms to the negative comovement region, so S (j) → 0. At times, it is helpful to report
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the comovement score in the form of log-odds, which we denote by O (j) ≡ ln
(

S(j)
1−S(j)

)
and refer

to as “comovement log-odds”.12

It is important to highlight that the comovement score and price informativeness are completely
different notions, and that both are of independent interest, as we explain in the following two
remarks.

Remark 6. (Comovement score vs. price informativeness: Notions) The purpose of introducing
the comovement score is to define a continuous measure of (the likelihood of) comovement between
volatility and informativeness. That is, the comovement score tells us whether changes in volatility
are positively or negatively associated with changes in informativeness. Hence, by measuring the
comovement score, it is possible to justify using future changes in volatility to make inferences about
changes in price informativeness in response to changes to any of the model primitives. However,
the comovement score is not a measure of the level of price informativeness, which is a measure of
the signal-to-noise ratio contained in asset prices.13

Remark 7. (Comovement score vs. price informativeness: Practical use) In practical terms, one
may question the usefulness of the comovement score in practice, since estimating the comovement
score seems (weakly) harder than measuring price informativeness directly in a given sample.14

Indeed, given that price informativeness is the ultimate object of interest, if one could easily and
directly measure price informativeness at all times, understanding the relation between volatility
and informativeness would be of little practical value. However, in practice, it is easier to compute
price volatility, which is a highly salient static; see e.g., Campbell et al. (2022). It is for this reason
that being able to readily conclude whether a change in volatility is also associated with a particular
directional change in informativeness for any change in primitives is a contribution of independent
value.

4.2 Comovement Score: Measurement

Next, we show how to empirically measure stock-specific comovement scores. Since modeling
log-payoffs as difference-stationary is often perceived as a better assumption when dealing with
actual data (see e.g., Campbell (2017)), in Proposition 6 we show how to recover the stock-specific
primitives necessary to compute comovement scores in a reformulation of our baseline model that is

12Log-odds/logit transformations are common in models that deal with probabilities/likelihoods — see e.g., Greene
(2003). In our case, working with comovement log-odds enhances the variation of comovement scores in the ambiguous
comovement region.

13In fact, high comovement scores can be associated with high or low price informativeness depending on the
primitives of the economy. We illustrate this possibility in Figure 3. Formally, for a given parameterization of the
economy, while volatility and informativeness positively comove if and only if equilibrium price informativeness is
above a particular threshold, τ⋆, as shown in Proposition 4, τ⋆ is itself a function of τs, τn, and τη.

14Proposition 1 in Dávila and Parlatore (2020) implies that it is possible to recover price informativeness from the
R-squares from Regressions R1 and R2.
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difference-stationary in logs once linearized, formally described in Section G of the Online Appendix.
More specifically, in this reformulation of the model, the (log) payoff θt follows a unit-root process
given by

∆θt+1 = µ∆θ + ηt, (14)

where ∆θt+1 = θt+1 − θt, and µ∆θ is a scalar. As in the baseline model, investors receive linear
signals about the innovation ηt, while the realized payoff θt is common knowledge to all investors
before the (log) price pt is determined and that the realized (log) payoff at date t+ 1, θt+1, is only
revealed to investors at date t+ 1.

There are two steps to measure the comovement score for a stock j. First, one must recover the
stock’s signal-to-payoff/noise-to-payoff pair. Second, one needs to compute the minimum distance
between the estimated primitives and the comovement boundaries as defined in Proposition 5.

Proposition 6. (Comovement score estimation) Let β, β0, and β1 denote the coefficients of
the following regression of log asset price changes, denoted by ∆pt, on changes on log asset payoffs,
denoted by ∆θt:

∆pt = β + β0∆θt + β1∆θt+1 + et, (R1)

where ∆pt ≡ pt − pt−1 denotes the change in the ex-dividend log-price at date t and θt denotes the
log asset-payoff realized at date t. Let ζ and ζ0 denote the coefficients of the following regression of
log price changes on changes on lagged log asset payoffs:

∆pt = ζ + ζ0∆θt + eζ
t . (R2)

Let R2
∆θt+1,∆θt

and R2
∆θt

be the R-squareds of Regressions R1 and R2, respectively.

a) (Recovering stock-specific signal-to-payoff/noise-to-payoff pair) Then, it is possible to find
consistent estimates of τs

τη
and τn

τη
as follows:

τs

τη
= β1

1 − β1
−
R2

∆θt+1,∆θt
−R2

∆θt

1 −R2
∆θt+1,∆θt

(15)

τn

τη
=
(

β1
1 − β1

−
R2

∆θt+1,∆θt
−R2

∆θt

1 −R2
∆θt+1,∆θt

)−2
R2

∆θt+1,∆θt
−R2

∆θt

1 −R2
∆θt+1,∆θt

. (16)

b) (Recovering stock-specific comovement scores) Combining Equations (15) and (16) with the
definition of the comovement score in Proposition 5, it is possible to recover stock-specific
comovement scores.

Proposition 6 shows that it is possible to recover the signal-to-payoff/noise-to-payoff ratios τs
τη

and τn
τη

that allow us to assign a given stock to a comovement region by using regressions of price
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Figure 5: Relative-frequency histograms

Note: Figure 5 presents relative-frequency histograms of the estimated comovement scores. The left panel of Figure
5 shows the distribution of comovement scores for all periods and stocks. The right panel of Figure 5 shows the
associated distribution of comovement log-odds. Note that comovement scores are estimated for rolling windows of
40-quarters using data between 1961 and 2017. Comovement log-odds, O (j), are computed from comovement scores,
S (j), as follows: O (j) ≡ ln

(
S(j)

1−S(j)

)
. By construction, log-odds are not defined when S (j) is 0 or 1.

changes on changes on asset payoffs. In practice, recovering both ratios simply requires using the
coefficient β1 from Regression R1, and the R-squareds from both regressions. We describe the
data used to compute estimates of these variables next. Combining Equations (15) and (16) with
the definition of the comovement score in Proposition 5, it is possible to recover stock-specific
comovement scores.

Data Description/Estimation. We provide here a brief description of the data and the sample
selection procedure. The companion R notebooks include a more detailed description. We
obtain information on stock prices and earnings (our payoff measure) from the CRSP/Compustat
dataset, as distributed by WRDS. Our sample selection procedure follows the conventional approach
described in Bali, Engle and Murray (2016). We conduct our analysis using quarterly data, available
from 1961 to 2017. To match the timing of our model and to ensure that the accounting data were
public on the trading date, we merge the Compustat data with CRSP data three months ahead,
although our findings are robust to using alternative windows. We use the personal consumption
expenditure index (PCEPI), obtained from FRED, to deflate all nominal variables.

We implement Proposition 6 by running time-series regressions for each individual stock —
indexed by j here — over rolling windows of 40 quarters. We denote by pj

t the log price of stock j,
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adjusted for splits. We use earnings — as measured by EBIT — as the relevant measure of payoffs,
since stock-level measures of dividends are problematic for various reasons.15 We winsorize payoff
and price values at the 2.5th and 97.5th percentile to reduce the impact of outliers. Since earnings
can be negative, we compute ∆θj

t directly as a growth rate as follows: when the lagged payoff is
positive, the growth rate is defined as payoff/payofft−1 − 1. When the lagged payoff is negative, the
growth rate is defined as payofft/|payofft−1| + 1. We disregard the observations (less than 0.1%) for
which the lagged payoff is exactly zero. Formally, in a given rolling window, we run time-series
regressions of the form

∆pj
t = β

j + βj
0∆θj

t + βj
1∆θj

t+1 + dj,q
t + εj

t ⇒ R2,j
∆θt+1,∆θt

(17)

∆pj
t = ζ

j + ζj
0∆θj

t + dj,q
t + ε̂j

t ⇒ R2,j
∆θt

, (18)

where ∆pj
t is a measure of capital gains, ∆θj

t and its one-period ahead counterpart ∆θj
t+1 are

measures of earnings growth, and dj,q
t denote stock-specific quarterly dummies. The introduction

of dj,q
t accounts for seasonality patterns. We estimate the regression coefficients and errors using

OLS and recover βj
1, R2,j

∆θt+1,∆θt
, and R2,j

∆θt
, which can be combined according to Proposition 6

to find estimates of τ j
s

τ j
η

and τ j
n

τ j
η

per stock in each rolling window. Consistently with the theory,
we restrict our attention to stocks for which the estimates of β1, τs

τη
, and τn

τη
are strictly positive,

with contiguous observations, and whose maximum leverage score across observations is lower than
0.95.16

Empirical Findings. Figure 5 presents relative-frequency histograms of the estimated comove-
ment scores. The left panel of Figure 5 shows the actual estimated comovement scores for the
whole sample. The right panel of Figure 5 shows the implied comovement log-odds, which are
computed directly from the comovement scores. By considering comovement log-odds we are able
to better illustrate that there is a well-behaved distribution of comovement scores in the ambiguous
comovement region, in which S (j) ∈ (0, 1).

We find that roughly 14% of the estimated comovement scores are in or near the negative
comovement region (S (j) ≈ 0). For these stocks, increases in volatility can be interpreted as
decreases in informativeness. We also find that roughly 40% of the comovement scores are in or near
the positive comovement region (S (j) ≈ 1). In these cases, increases in volatility reflect increases
in informativeness through the lens of our analysis. For the remaining stocks in our sample, which
lie in the ambiguous comovement region, whether one should feel more or less comfortable inferring
informativeness from volatility depends on the stock’s comovement score. More specifically, more

15In the log-difference specification, it is equivalent to use EBIT or EBIT-per-share as a measure of payoffs.
16For the study of the relation between comovement scores and measured positive comovement in the next

subsection we discard observations with implausibly large estimates of informativeness.
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Figure 6: Comovement scores over time: aggregate findings

Note: The left panel of Figure 6 shows the time-series evolution of the cross-sectional mean and median comovement
scores. The right panel of Figure 6 shows the time-series evolution of the cross-sectional standard deviation of
comovement scores. The red dashed lines show linear trends starting in 1985. In both panels, the dots correspond to
the average within a quarter of the comovement scores computed using quarterly data.

extreme comovement scores, either closer to 0 or closer to 1, are more likely to allow us to make
inferences about price informativeness from price volatility. Overall, we find that 71% of estimated
scores are above 0.5 while 29% are lower or equal than 0.5. In what follows, we describe in detail
the time series evolution of comovement scores in the aggregate and depending on cross-sectional
characteristics.

Comovement Scores over Time: Aggregate Results. An advantage of computing time-varying stock-
specific comovement scores is that we are able to show how the distribution of comovement scores
evolves over time. Tables OA-1 and OA-2 in the Appendix include detail information on the
time evolution of the distribution of comovement scores. To better illustrate the results, we show
the behavior of the median, mean, and standard deviation of the cross-sectional distribution of
informativeness between 1980 and 2017 graphically in Figure 6.

We find that both the mean and median of the distribution of comovement scores have steadily
decreased since the mid-1980s. The median moved from roughly 0.75 to roughly 0.65 between 1985
and 2017, while the mean experienced a similar decrease from being close to 1 to roughly 0.85. The
quickly varying statistics from the earlier dates of the sample are due to the smaller sample sizes
in those periods. For that reason, we emphasize the steady decrease that starts in the mid-1980s.

Through the lens of our framework, these results imply that volatility and informativeness are
less likely to positively comove in recent times. Moreover, the results on cross-sectional volatility
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Table 1: Cross-sectional results

Estimate Std. Error t-stat

Size -0.05762 0.00135 -42.62
Value 0.15424 0.00659 23.42
Turnover 0.00092 0.00025 3.63
Idiosyncratic Volatility 1.91267 0.06569 29.12
Institutional Ownership -0.31201 0.01241 -25.13

Note: This table reports the estimates (âc
1) of panel regressions of comovement scores on cross-sectional characteristics

(in twentiles) with year fixed effects (ξt): Sb
t = ac

0 + ac
1c

b
t + ξt + ϵb

t , where Sb
t denotes the average comovement score

bin (twentile) in a given period, cb
t denotes the value of the given characteristic per bin (twentile) in a given period,

ξt denotes a year fixed effect, ac
0 and ac

1 are parameters, and ϵt
b is an error term. Figures OA-3 through OA-7 in the

Online Appendix provide the graphical counterpart of the results in this table. Size is measured as the natural log of
stock market capitalization, value is measured as the ratio between a stock’s book value and its market capitalization,
turnover is measured as the ratio between trading volume and shares outstanding, idiosyncratic volatility is measured
as the standard deviation — over a 30 month period — of the difference between the returns of a stock and the
market return, and institutional ownership is measured as the proportion of a stock held by institutional investors.

of the comovement score estimates imply that there is in principle higher variation in the cross-
section in terms of the volatility-informativeness relation. This fact supports the idea that making
inferences about informativeness from volatility is not straightforward, and needs to be studied on
a case-by-case basis.

Comovement Scores: Cross-sectional Results. By computing stock-specific comovement scores,
we are able to establish a new set of cross-sectional patterns relating comovement scores and
stock characteristics. We focus on five stock characteristics that have been widely used to explain
patterns in the cross section of stock returns — see, e.g., Bali, Engle and Murray (2016). These
are i) size, measured as the natural log of stocks market capitalization; ii) value, measured as the
ratio between a stock’s book value and its market capitalization; iii) turnover, measured as the
ratio between trading volume and shares outstanding; iv) idiosyncratic volatility, measured as the
standard deviation — over a 30 month period — of the difference between the returns of a stock
and the market return; and v) institutional ownership, measured as the proportion of shares held
by institutional investors.

In Table 1, we report the estimates of panel regressions of comovement scores (in twentiles)
on each of the five explanatory variables, using year fixed effects. The coefficients that we
report can be interpreted as a weighted average of the slopes of running year-by-year regressions
of comovement scores on a given explanatory variable (size, value, turnover, return volatility,
institutional ownership). Figures OA-3 through OA-7 in the Online Appendix provide an alternative
graphical illustration of our results. These figures show that the cross-sectional relations identified
in Table 2 are stable over time.
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Figure 7: Comovement scores: cross-sectional results

Note: Each of the panels in Figure 7 shows the time-series evolution of the mean comovement score for the top and
bottom of the distribution of comovement scores for each characteristic (size, turnover, value, idiosyncratic volatility,
and institutional ownership). The red dashed lines correspond to the top half of the distribution, while the solid blue
lines correspond to the bottom half of the distribution. In this figure, stocks are assigned to each half every quarter
and observations are aggregated at the annual level.

Our cross-sectional analysis yields several robust patterns. First, we find a strong negative cross-
sectional relation between a stock’s size (market capitalization) and comovement scores; that is,
large stocks have lower comovement scores. Second, we find a strong positive cross-sectional relation
between a stock’s book-to-market ratio and comovement scores; that is, value stocks have higher
comovement scores. Third, we find a strong positive cross-sectional relation between a stock’s
turnover and comovement scores; that is, stocks that trade frequently have higher comovement
scores. Fourth, we find a positive and strong cross-sectional relation between a stock’s idiosyncratic
return volatility and comovement scores; that is, stocks whose returns are more volatile have higher
comovement scores. Finally, we find a strong negative cross-sectional relation between a stock’s
institutional ownership share and comovement scores, that is, stocks owned mostly by institutional
investors have lower comovement scores.

Comovement Scores over Time: Cross-sectional Results. Finally, we look at the evolution of the
distribution of comovement scores over time across the five stock characteristics described above:
size, turnover, value, idiosyncratic volatility, and institutional ownership. Figure 7 shows the
average and the standard deviation of the top and bottom halves of the distribution of comovement
scores along each of the five characteristics. We find that the gap in comovement scores among top
and bottom halves of the distributions of different characteristics is rather stable across time, only
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Figure 8: Interpreting aggregate time series results

Note: The left panel of Figure 6 shows the time-series evolution of the median signal-to-payoff ratio. The right panel
of Figure 6 shows the time-series evolution of the median noise-to-payoff ratio. In both panels, the dots correspond
to the average within a quarter of the respective ratio computed using quarterly data.

slightly widening for size and idiosyncratic volatility.

Interpretation of Empirical Findings. In addition to understanding the evolution of
comovement scores over time and cross-sectionally, it is valuable to explore which mechanisms
may explain the empirical variation in comovement scores that we observe. With that goal in sight,
we first show in Figure 8 how median signal-to-payoff and noise-to-payoff ratios evolve over time.

Interestingly, by comparing Figures 6 and 8, it seems that the patterns of time series variation
in comovement scores share the same evolution as the noise-to-payoff ratio, with peaks in the
mid-1990’s and the early 2010’s, despite showing an overall downwards trend since the 1990’s.
Increases (decreases) in the noise-to-payoff ratio τn

τη
are associated with a reduction (increase) in

trading motives orthogonal to fundamentals. Hence, the downward trend in the noise-to-payoff —
which drives the changes in the comovement score — can be interpreted as a secular increase in
trading motives orthogonal to fundamentals. For instance, this is consistent with the increase in
institutional ownership and benchmarking experienced in the past three decades.

It is also possible to find whether signal-to-payoff and noise-to-payoff ratios explain the cross-
sectional patterns in comovement scores that we find. In Table 2, we report regressions of signal-to-
payoff and noise-to-payoff on cross-sectional characteristics. As in Table 1, we report the estimates
of panel regressions of each of the two ratios (in twentiles) on each of the five explanatory variables
we consider, using year fixed effects. Once again, we find robust cross-sectional patterns. We
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Table 2: Interpreting cross sectional results

Signal-to-payoff Noise-to-payoff
Estimate Std. Error t-stat Estimate Std. Error t-stat

Size 0.01659 5.8e-04 28.64 -13.9922 0.6433 -21.75
Value -0.03156 1.9e-03 -16.43 17.6418 0.7011 25.16
Turnover -0.00011 8.9e-05 -1.20 0.1856 0.0403 4.61
Idiosyncratic Volatility -0.48440 2.5e-02 -19.29 541.2846 16.0383 33.75
Institutional Ownership 0.09340 5.1e-03 18.17 -55.5538 3.4789 -15.97

Note: This table reports the estimates (âc
1) of panel regressions of signal-to-payoff (left columns) or noise-to-payoff

(right columns) ratios (R =
{

τs
τn
, τn

τη

}
) on cross-sectional characteristics (in twentiles) with year fixed effects (ξt):

Rb
t = ac

0 + ac
1c

b
t + ξt + ϵb

t , where Rb
t denotes the average ratio bin (twentile) in a given period, cb

t denotes the value of
the given characteristic per bin (twentile) in a given period, ξt denotes a year fixed effect, ac

0 and ac
1 are parameters,

and ϵt
b is an error term. Size is measured as the natural log of stock market capitalization, value is measured as the

ratio between a stock’s book value and its market capitalization, turnover is measured as the ratio between trading
volume and shares outstanding, idiosyncratic volatility is measured as the standard deviation — over a 30 month
period — of the difference between the returns of a stock and the market return, and institutional ownership is
measured as the proportion of a stock held by institutional investors.

find that large stocks and stocks with high institutional ownership, which have low comovement
scores (see Table 1), have high signal-to-payoff ratios and low noise-to-payoff ratios, while value
and high idiosyncratic volatility stocks, which have high comovement scores (see Table 1), have low
signal-to-payoff ratios and high noise-to-payoff ratios.

In principle, it is not obvious how these patterns impact the comovement score — see, for
instance, Figure 3, where higher τs

τη
typically increases the comovement score, while a lower τn

τη

typically reduces the comovement score. However, as in the time series case, it seems that the
empirical cross-sectional variation in comovement scores is explained by cross-sectional variation
in noise-to-payoff ratios.17 Hence, the lower noise-to-payoff ratios for large and high institutional
ownership — which explain why these stocks feature low comovement scores — can be explained
by the fact that the share of trading motives orthogonal to fundamentals (such as the rebalancing
trades of index funds) is typically higher for those stocks. In contrast, it is plausible that value
and high idiosyncratic volatility stocks have a relatively smaller share of these trades orthogonal
to fundamentals.

17Mechanically, the relative magnitudes of the estimates of signal-to-payoff and noise-to-payoff ratios explain why
comovement scores are mostly driven by noise-to-payoff ratios. We estimate signal-to-payoff ratios that are much
smaller in magnitude (around 0.1) than noise-to-payoff ratios (around 5). When used to compute the comovement
score (see Figure 3 for how these magnitudes can be mapped into the comovement regions) change in noise-to-payoffs
ratios are quantitatively more important at those particular magnitudes.
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Figure 9: Relation between comovement scores and measured volatility-informativeness comove-
ment

Note: Figure 9 shows the relation between comovement scores, recovered as explained in Subsection E.1, and
estimated measures of actual comovement between volatility and informativeness, recovered as explained in this
subsection. The R-squared of this relation is R2 = 16.5%, with a slope coefficient of 0.019 and a standard error of
0.103. In this figure, comovement scores are aggregated into twentiles, after winsorizing the top and bottom 5% of
the distribution of estimated comovement scores, which we separately compare to show that stocks with comovement
scores close to 1 experience higher positive comovement that stocks with comovement scores close to 0. The total
number of unique comovement score observations used to build this figure is 21202.

4.3 Comovement Score: Validation

Finally, we proceed to determine whether a central relation implied by our model, that is, that
stocks with higher comovement scores are more likely to experience positive comovement between
volatility and informativeness, holds empirically. To do this, we construct an empirical measure
of comovement between estimates of changes in volatility and informativeness one quarter ahead
for each of the estimated comovement scores and then test whether higher comovement scores
are associated with a stronger measured positive comovement between changes in volatility and
informativeness.

For each stock/rolling window for which we have computed a comovement score, we first
estimate idiosyncratic return volatility for that rolling window and one quarter ahead using daily
data and then recover the estimates of price informativeness for the exact same time periods. To
do so, we rely on Equation (2) to provide a structural interpretation to Regression R1, from which
it follows that price informativeness can be consistently recovered as β2

1
Var[et] . With the estimates of

volatility and informativeness at hand, we define, for each stock/window, a positive comovement
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variable that takes the value of 1 when the product of the one period ahead changes in volatility and
informativeness has positive sign and the value of 0 when such product has negative sign. We then
group the stocks in our sample into twentiles according to their comovement score and compute
the fraction of stocks within each twentile that experiences positive comovement between volatility
and informativeness, that is, we compute the average of the positive comovement variable.18

Figure 9 shows the relation between the average comovement score by twentiles of the
distribution of comovement scores and the fraction of stocks that experience positive comovement
between volatility and informativeness among each group. This figure shows that there exists
a positive correlation between the comovement score and the likelihood of positive comovement,
which is consistent with the theoretical predictions of our framework.

5 Conclusion

This paper systematically studies the equilibrium relation between price informativeness and price
volatility, identifying two different channels (noise-reduction and equilibrium-learning) through
which changes in price informativeness are associated with changes in price volatility. We show
that whenever prices are sufficiently informative (uninformative), changes in parameters induce a
positive (negative) comovement between price informativeness and price volatility in response to
changes in any of the model primitives. Moreover, we characterize simple conditions in terms of
primitives that allow us to assign stocks to positive, negative, or ambiguous comovement regions.
Building on our theoretical analysis, we introduce the notion of the comovement score, which is a
statistic that measures the relative distance of a given asset to the positive/negative comovement
regions.

Empirically, we compute stock-specific comovement scores and describe their time series and
cross-sectional behavior. We find that comovement scores trend downwards over the last decades.
In the cross-section, we find that comovement scores are positively related to value and idiosyncratic
volatility and negatively related to size and institutional ownership. We show that both the
empirical time series and cross-sectional variation in comovement scores is mostly due to changes
in noise-to-payoff ratios, and discuss plausible explanations that rationalize these findings. Finally,
consistent with our theoretical framework, we show that stocks with higher comovement scores are
more likely to experience positive comovement between volatility and informativeness.

An important practical takeaway from this paper is that using volatility to make inferences
about informativeness is only justified in a particular set of circumstances. By introducing the
comovement score, we show how it is possible to determine in practical scenarios whether price

18Note that our test is designed to be out-of-sample. That is, we compute comovement scores using past data, but
we compute changes in volatility and changes in informativeness using future data.
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volatility is a valid proxy for price informativeness. We hope that future work further explores
in detail the relation between volatility and informativeness in more general environments, both
theoretically and empirically.
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Appendix
A Variable Definitions
Table 3 below summarizes the notation and variable definitions used in the paper.

Table 3: Notation summary and variable description

Variable Description
γ CARA coefficient
ωi

t initial endowment of investor i born at date t
wi

1,t+1 date t+ 1 wealth of investor i born at date t
θt risky asset payoff at date t
µθ drift in risky asset payoff process
ηt date t innovation to the asset payoff
ρ persistence coefficient in risky asset payoff process
si

t private signal about ηt received by investor i born at date t
εi

st idiosyncratic noise in si
t

τ−1
s variance of noise in si

t

ηi
t prior mean of innovation ηt of investor i born at date t

τ−1
η prior variance or ηt for an investor
nt average prior mean of innovation ηt (aggregate sentiment)
µn expected average prior mean of innovation ηt, E [nt] = µn

τ−1
n variance of prior mean of innovation ηt, Var [nt] = τ−1

n

εi
ut idiosyncratic component of beliefs ηi

t

τ−1
u variance of idiosyncratic component of beliefs, Var

[
εi

ut

]
= τ−1

u

qi
1,t quantity demanded by an investor i born at date 1
pt risky asset price at date t
αs individual demand sensitivity to private signal
αθ individual demand sensitivity to previous realization of asset payoff
αp individual demand sensitivity to price
πt unbiased signal about ηt contained in price pt

τπ price informativeness, τπ ≡ (Var [πt|ηt, θt])−1

V price volatility, V ≡ Var [pt| θt]
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B Proofs and Derivations: Section 2
Characterization of equilibrium Given the CARA-Gaussian setup that we consider in Section 2
and the wealth accumulation constraint in Equation 1, the demand for the risky asset of an investor i is
given by the solution to

max
qi

1,t

(
E
[
θt+1 + pt+1|Iit

]
− pt

)
qi1,t − γ

2Var
[
(θt+1 + pt+1) qi1,t|Iit

]
,

where Iit =
{
θt, s

i
t, η

i
t, pt

}
is the information set of investor i at date t. Then, the net asset demand of

investor i is
qi1,t =

E
[
θt+1 + pt+1|Iit

]
− pt − γVar

[
θt+1 + pt+1|Iit

]
γVar

[
θt+1 + pt+1|Iit

] . (A.1)

In a stationary symmetric equilibrium in linear strategies, we guess and subsequently verify that the net
demand of an investor i born at date t is of the form

qi1,t = αθθt + αss
i
t + αnη

i
t − αppt + ψi.

Market clearing in the asset market is given by
´
I
qi1tdi = Q, which yields the following equilibrium price

function:
pt = αθ

αp
θt + αs

αp

(
ηt +

ˆ
εistdi

)
+ αn
αp

(
nt +

ˆ
εintdi

)
+ ψ

αp
,

where ψ ≡
´
ψidi − Q. Note that the equilibrium price contains information about the innovation to the

payoff, ηt. We can define the unbiased signal about ηt contained in the price as

πt ≡ αp
αs

(
pt − αθ

αp
θt − αn

αp
E [nt] − ψ

αp

)
= ηt + αn

αs
(nt − E [nt])

and we define the precision of this signal as τπ = Var [πt|ηt]−1
.

Given our guesses for the demand functions and the resulting linear structure of prices we have

E
[
θt+1 + pt+1|Iit

]
=
(

1 + αθ
αp

)
E
[
θt+1|Iit

]
+ αs
αp

E [ηt+1] + αn
αp

E [nt+1] + ψ

αp

=
(

1 + αθ
αp

)(
µθ + ρθt + E

[
ηt|Iit

])
+ αs
αp

E [ηt+1] + αn
αp
µn + ψ

αp
,

and

Var
[
θt+1 + pt+1|Iit

]
=
(

1 + αθ
αp

)2
Var

[
θt+1|Iit

]
+
(
αs
αp

)2
Var [ηt+1] + αn

αp

2
Var [nt+1]

=
(

1 + αθ
αp

)2
Var

[
ηt|Iit

]
+
(
αs
αp

)2
Var [ηt+1] +

(
αn
αp

)2
τ−1
n .

The normal linear structure of the signals and the price implies we can express investors ex-post variances
about the innovation to the asset payoff after solving their filtering problem as

Var
[
ηt
∣∣sit, ηit, pt, θt ] = (τη + τs + τπ)−1

.

Similarly, investors’ means can be expressed as

E
[
ηt
∣∣sit, ηit, pt ] = τηη

i
t + τss

i
t + τππt

τη + τs + τπ
.
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Using these expressions in the equilibrium demand in Equation (A.1) and matching coefficients we have

αs =
1 + αθ

αp

κ

τs
τη + τs + τπ

, αp = 1
κ

(
1 −

(
1 + αθ

αp

)
τπ

τη + τs + τπ

αp
αs

)
, (A.2)

αn =
1 + αθ

αp

κ
τη, and αθ =

1 + αθ

αp

κ

(
ρ− τπ

τη + τs + τπ

αθ
αs

)
(A.3)

where

κ ≡ γVar
[
θt+1 + pt+1|Iit

]
= γ

((
1 + αθ

αp

)2
Var

[
ηt|Iit

]
+
(
αs
αp

)2
Var [ηt+1] +

(
αη
αp

)2
τ−1
n

)
.

Lemma 1 (Uniqueness of Equilibrium)

Proof. Solving the system in Equations (A.2) and (A.3), we have

αθ
αs

=
ρ− τπ

τη+τs+τπ

αθ

αs

τs

τη+τs+τπ

⇒ αθ
αs

= τη + τs + τπ
τs + τπ

ρ (A.4)

αn
αs

=
τη

τη+τs+τπ

τs

τη+τs+τπ

⇒ αn
αs

= τη
τs

(A.5)

αθ
αp

=

(
1 + αθ

αp

)(
ρ− τπ

τη+τs+τπ

αθ

αs

)
1 −

(
1 + αθ

αp

)
τπ

τη+τs+τπ

αp

αs

⇒ αθ
αp

= ρ

1 − ρ
(A.6)

αs
αp

=

(
1 + αθ

αp

)
τs

τη+τs+τπ

1 −
(

1 + αθ

αp

)
τπ

τη+τs+τπ

αp

αs

⇒ αs
αp

= 1
1 − ρ

τs + τπ
τη + τs + τπ

. (A.7)

Then, the equilibrium demand sensitivities are uniquely determined and given by

αs = 1
κ (1 − ρ)

τs
τη + τs + τπ

(A.8)

αp = 1
κ

τs
τs + τπ

(A.9)

αn = 1
κ (1 − ρ)

τη
τη + τs + τπ

(A.10)

αθ = ρ

κ (1 − ρ)
τs

τs + τπ
. (A.11)

Proposition 1. (Volatility-informativeness relation: demand sensitivities formulation)

Proof. a) From the Law of Total Variance we have

Var [pt| θt] = Var [E [pt| ηt, θt]| θt] + E [Var [pt| ηt, θt]| θt] .

Moreover, using the equilibrium price in Equation (2) we have

E [Var [pt| ηt, θt]] =
(
αn
αp

)2
τ−1
n and Var [E [pt| ηt, θt]] =

(
αs
αp

)2
τ−1
η .
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Using that price informativeness is given by τπ =
(
αs

αn

)2
τn , price volatility can be expressed as follows

V =
(
αs
αp

)2 (
τ−1
η + τ−1

π

)
,

where τη = Var [ηt]−1 and τπ denote precisions (inverse of variances).
b) Differentiating V with respect to τπ in Equation (5), we have that

dV
dτπ

= 2αs
αp

d
(
αs

αp

)
dτπ

(
τ−1
η + τ−1

π

)
−
(
αs
αp

)2
(τπ)−2

= V
τπ

2
d log

(
αs

αp

)
d log (τπ) − τ−1

π

τ−1
η + τ−1

π

 ,

which corresponds to Equation (6) in the text.

Lemma 2. (Signal-to-price sensitivity)

Proof. Equation (7) in the text follows directly from Equation (A.8) and Equation (A.9).

Proposition 2. (Volatility-informativeness relation: model primitives formulation)

Proof. The proof follows directly from part a) of Proposition 1 and Lemmas 2.

Proposition 3. (Slope of volatility-informativeness relation)

Proof. From Equation (7) it follows that

d log
(
αs

αp

)
d log (τπ) = τη

τη + τs + τπ

τπ
τs + τπ

.

Therefore, from Lemma 2 it follows that

dlogV
d log τπ

= 2
d log

(
αs

αp

)
d log (τπ) − τ−1

π

τ−1
η + τ−1

π

= 2 τη
τη + τs + τπ

τπ
τs + τπ

− τη
τη + τπ

= τη
(τπ)2 + τπ (τη − 2τs) − τs (τη + τs)
(τη + τs + τπ) (τs + τπ) (τη + τπ) .

We can then conclude that

sgn
(
d log V
d log τπ

)
= sgn

[
(τπ)2 + τπ (τη − 2τs) − τs (τη + τs)

]
.

Note that the expression on the right hand side is a convex quadratic function of τπ with only one positive
root given by

τ⋆ ≡
− (τη − 2τs) +

√
τ2
η + 8τ2

s

2 . (A.12)

Then,
dV
dτπ

< 0 ⇐⇒ τπ < τ⋆ and dV
dτπ

> 0 ⇐⇒ τπ > τ⋆.
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C Proofs and Derivations: Section 3.3

Characterization of comovement regions
We use the following result:

dV
dτπ

= 1
1 − ρ

αs
αp

(τπ)−2

(τη + τs + τπ)2

(
(τπ)2 + (τη − 2τs) τπ − τs (τη + τs)

)
, (A.13)

which follows directly from Equation (A.22).

Proposition 4. (Comovement regions: price informativeness formulation)

Proof. From the characterization of equilibrium in the previous section we have that the variance of π, which
we denote by τ−1

π and whose inverse we adopt as the relevant measure of price informativeness, is given by

τπ =
(
αs
αη

)2
τn =

(
τs
τη

)2
τn.

The change in volatility when a parameter x changes is given by

dV
dx

= ∂V
∂x

+ dV
dτπ

dτπ
dx

,

where ∂V
∂x and dτπ

dx can be obtained from Equation (5) and Equation (7) using the definition of τπ. Note that

dτπ
dτu

= 0 and ∂V
∂τu

= 0,

dτπ
dγ

= 0 and ∂V
∂γ

= 0,

and
dτπ
dρ

= 0 and ∂V
∂ρ

> 0,

so the comovement in this proposition is weak.
a) Positive comovement

For changes in τn, we have that dτπ

dτn
=
(
τs

τη

)2
> 0, and ∂V

∂τn
= 0. Hence, dV

dτπ
> 0 is a sufficient and

necessary condition for dV
dτn

= dV
dτπ

dτπ

dτn
to be positive.

For changes in τs, it follows that dτπ

dτs
= 2τπ

τs
> 0, and

∂V
∂τs

= 2αs
αp

1
1 − ρ

τη

(τη + τs + τπ)2
(
τ−1
η + τ−1

π

)
> 0.

Then, ∂V
∂τπ

> 0 is a sufficient condition for dV
dτs

= ∂V
∂τs

+ dV
dτπ

dτπ

dτs
to be positive.

Similarly, for changes in τη, we have that dτπ

dτη
< 0, and

∂V
∂τη

= −2αs
αp

1
1 − ρ

τs + τπ

(τη + τs + τπ)2
(
τ−1
η + τ−1

π

)
−
(
αs
αp

)2
τ−2
η .
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Then, dV
dτπ

> 0 is a sufficient condition for dV
dτη

= ∂V
∂τη

+ dV
dτπ

dτπ

dτη
to be negative.

Therefore, if τπ > τ⋆ an increase in price volatility reflects a weak increase in price informativeness for
any parameter change.
b) Negative comovement

For changes in τn, price volatility and price informativeness negatively comove if τπ < τ⋆.
For changes in τs, it follows that

dV
dτs

= 2
1 − ρ

αs
αp

1
(τη + τs + τπ)2

τs
τπ

1
τ2
η

((
τn
τη

)2
τ2
s − τnτs − τη(τη − τn)

)
.

Note that there are two case. If τη < τn the expression above is positive and there cannot be negative
comovement between price volatility and price informativeness. In this case, we define ττs

= 0. If τη > τn,
there exists a threshold s such that for all τs < s, dV

dτs
and price informativeness and price volatility negatively

comove when τs changes. This threshold is given by

s ≡
τn +

√
τ2
n + 4

(
τn

τη

)2
τη(τη − τn)

2
(
τn

τη

)2 =
τ2
η

2τn

(
1 +

√
1 + 4τ−1

η (τη − τn)
)
.

This implies that if τη > τn, price informativeness and price volatility negatively comove when τs changes
for all τπ < ττs , where

ττs
≡ τη

−
(

1 − τs

τη

)
+
√(

1 − τs

τη

)2
+ 4

(
τs

τη

)2

2 . (A.14)

For changes in τη we have that

dV
dτη

= − 2
1 − ρ

αs
αp

τ−1
π

(τη + τs + τπ)2
1
τη

(
2
(
τs
τη

)4
τ2
n + (2τη − τs)

(
τs
τη

)2
τn − τ2

s

)
.

Then,

sgn
(
dV
dτη

)
= − sgn

(
2
(
τs
τη

)4
τ2
n + (2τη − τs)

(
τs
τη

)2
τn − τ2

s

)
.

Since

lim
τη→∞

2
(
τs
τη

)4
τ2
n + (2τη − τs)

(
τs
τη

)2
τn − τ2

s = −τ2
s ,

there exists a threshold η > 0 such that dV
dτη

is positive for all τη > η. This implies that there exists a
threshold ττη

such that dV
dτη

> 0 for all τπ < ττη
where

ττη
≡ τη

−
(

2 − τs

τη

)
+
√(

2 − τs

τη

)2
+ 8

(
τs

τη

)2

4 . (A.15)

Therefore, price volatility and price informativeness negative comove is τπ < τ ≡ min
{
ττs
, ττη

}
, where

τ < τ⋆ since it is necessary for dV
dτπ

< 0 for price informativeness and price volatility to comove negatively
for changes in τs and τη.
c) Ambiguous comovement

Finally, if neither Equation (A.16) nor Equation (A.17) are satisfied, price volatility and price
informativeness positively comove after some parameter changes and negatively comove after others. This
is the ambiguous comovement region.
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Proposition 5. (Comovement regions: model primitives formulation)

Proof. a) Positive comovement
Using that price informativeness is given by τπ =

(
τs

τη

)2
τn and τ⋆ is given by equation (A.12), τπ > τ⋆

can be written in terms of primitives as

τn
τη

>

√
1 + 8

(
τs

τη

)2
− 1 + 2 τs

τη

2
(
τs

τη

)2 ,

which is exactly Equation (12) in the text.
b) Negative comovement
If τη > τn, using the definition for ττs

in Equation (A.14) in the proof of the previous proposition and

that τπ =
(
τs

τη

)2
τn, condition τπ < ττs

becomes

τn
τη

<
−
(

1 − τs

τη

)
+
√(

1 − τs

τη

)2
+ 4

(
τs

τη

)2

2
(
τs

τη

)2 . (A.16)

Similarly, using the definition for ττη
in Equation (A.15) above, condition τπ < ττη

becomes

τn
τη

<

τs

τη
− 2 +

√(
2 − τs

τη

)2
+ 8

(
τs

τη

)2

4
(
τs

τη

)2 . (A.17)

Therefore, putting Equations (A.16) and (A.17) together with the condition τn

τη
< 1, we have that the

negative comovement region is characterized by (A.17) since for all x > 0

min

x− 1 +
√

5x2 − 2x+ 1
2x2 ,

τs

τη
− 2 +

√
(2 − x)2 + 8x2

4x2 , 1

 =
x− 2 +

√
(2 − x)2 + 8x2

4x2 ,

which is exactly Equation (13) in the text.

D Proofs and Derivations: Section 4
Proposition 6. (Comovement score estimation)

Proof. a) Using the equilibrium expression for the price in Equation and Regression R1, and the equilibrium
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coefficients in Equations (A.39) - (A.43) we have

β1 = αs
αp

= τs + τπ
τs + τη + τπ

,

β0 =
(
αθ
αp

− αs
αp

)
τη

τs + τη + τπ
,

Var [εt] = Var
[
αn
αp
nt

]
=
( τη

τs+τη+τπ

τs

τs+τπ

)2

τ−1
n , and

Var
[
εζt

]
= Var

[
αs
αp
ηt + αn

αp
nt

]
=
(

τs + τπ
τs + τη + τπ

)2
τ−1
η +

( τη

τs+τη+τπ

τs

τs+τπ

)2

τ−1
n .

Note that
β1

1 − β1
= τs + τπ

τη

and
Var

[
εζt

]
− Var [εt]

Var [εt]
=

(
αs

αp

)2
τ−1
η(

αn

αp

)2
τ−1
n

=
(
τs
τη

)2
τn
τη

= τπ
τη
.

Then, one can write

τs
τη

= β1

1 − β1
−

Var
[
εζt

]
− Var [εt]

Var [εt]

and

τn
τη

=

 β1

1 − β1
−

Var
[
εζt

]
− Var [εt]

Var [εt]

−2
Var

[
εζt

]
− Var [εt]

Var [εt]
.

Noting that
Var

[
εζt

]
− Var [εt]

Var [εt]
=
R2

∆θt+1,∆θt
−R2

∆θt

1 −R2
∆θt+1,∆θt

,

where R2
∆θt+1,∆θt

≡ 1 − Var[εt]
Var[∆pt] and R2

∆θt
≡ 1 − Var[εζ

t ]
Var[∆pt] denote the R-squared of the regressions R1 and

R2, respectively. Under the conditions specified, it is straightforward to show that the OLS estimates are
consistent.
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Online Appendix
In this Online Appendix, we show that the results derived on the paper apply more generally. We start

by deriving the volatility-informativeness in a general model with additive noise and linear demands. Then,
we specialize the analysis to CARA-Normal models and consider two alternative sources of noise to the
heterogeneous beliefs considered in the main body of the paper: strategic traders and hedging needs.

E Volatility-Informativeness Relation: General Environment
In this section, we characterize the equilibrium relation between price informativeness and price volatility in
models in which investors have linear asset demands and face additive noise. For completeness, we reproduce
part of the analysis and results presented in the main body of the paper in this Online Appendix.

E.1 General Environment
Time is discrete, with dates denoted by t = 0, 1, 2, . . . ,∞. There are two assets: a riskless asset in perfectly
elastic supply with gross return R > 1 and a risky asset in fixed supply Q, which is traded at a price pt at
date t. The asset payoff, which accrues at the beginning of date t+ 1, is given by

θt+1 = µθ + ρθt + ηt,

where µθ is a scalar, |ρ| ≤ 1, and θ0 = 0, and where the innovations to the payoff, ηt, have mean zero, finite
variance τ−1

η , and are independently distributed.19 Note that the innovation to the t + 1 payoff difference,
ηt, is indexed by t — instead of t+ 1 — to indicate that investors can potentially learn about the realization
of ηt at date t.

A set of investors, indexed by i ∈ I, trade both assets at each date t. Before trading at date t, each
investor i observes the already realized value of the asset payoff θt and a private signal sit of the innovation
to the future asset payoff ηt. Moreover, investors have additional motives for trading the risky asset that
are orthogonal to the asset payoff. We denote by nit investor i’s additional trading motive at date t. These
trading motives are private information of each investor.

We derive our first set of results under two assumptions. The first assumption imposes an additive
informational structure, while the second assumption imposes a linear structure for investors’ equilibrium
asset demands. In Section F, we provide fully specified sets of primitives that are consistent with Assumptions
1 and 2.

Assumption 1. (Additive noise) Each date t, every investor i receives an unbiased private signal sit about
the innovation to the payoff, ηt, of the form

sit = ηt + εist, (A.18)

where εist, ∀i ∈ I, ∀t, are random variables with mean zero and finite variances, whose realizations are
independent across investors and over time. Each date t, every investor i has a private trading need nit, of
the form

nit = nt + εint, (A.19)

where nt is a random variable with finite mean, denoted by µn, and finite variance, and where εint, ∀i ∈ I,
∀t, are random variables with mean zero and finite variances, whose realizations are independent across
investors and over time.

19When ρ = 0, the model effectively behaves as if it were static. When ρ = 1, asset payoffs and prices are
non-stationary and follow a random walk.
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Assumption 1 imposes a noise structure that is additive and independent across investors for the signals
about the innovation to the future payoff ηt as well as for other sources of investors’ private trading needs
nit. This assumption does not restrict the distribution of any random variable beyond the existence of finite
first and second moments. Our second assumption describes the structure of the investors’ net demands for
the risky asset ∆qit.

Assumption 2. (Linear asset demands) Investors’ net asset demands satisfy

∆qit = αiss
i
t + αiθθt + αinn

i
t − αippt + ψi,

where αis, αiθ, αin, αip, and ψi are individual demand coefficients, potentially determined in equilibrium.

Assumption 2 imposes that the net asset demand for the risky asset for a given investor is linear in his
signal about the asset payoff and his private trading needs, as well as in the asset price pt and the realized
asset payoff θt. It also allows for an individual specific invariant component ψi. This linear structure arises
endogenously under CARA utility and Gaussian uncertainty, as we show in Section F in the paper. More
broadly, linear asset demands can be interpreted as a linear approximation to general asset demand functions,
so the results in Proposition 7 are valid generally up to a first-order approximation.

E.2 Equilibrium Price Characterization
Market clearing in the risky asset market implies that

´
∆qitdi = 0 must hold at each date t.20 Assumptions

1 and 2, when combined with market clearing, imply that the equilibrium asset price must satisfy

pt = αθ
αp
θt + αs

αp
ηt + αn

αp
nt +

´
I
αisε

i
stdi

αp
+
´
I
αinε

i
ntdi

αp
+ ψ

αp
,

where we denote the cross sectional averages of individual demand coefficients by αθ =
´
I
αiθdi, αs =

´
I
αisdi,

αn =
´
I
αindi, αp =

´
I
αipdi, and ψ =

´
I
ψidi. The linearity of net demands implies that the equilibrium

asset price is also linear in the innovation to the asset payoff ηt, in the already realized payoff θt, and in the
common component of investors’ private trading needs nt. When there is a continuum of investors, a law of
large numbers guarantees that the terms

´
I
αi

sε
i
stdi

αp
and

´
I
αi

nε
i
ntdi

αp
vanish. Otherwise, these terms operate as

additional sources of aggregate noise.
The equilibrium price pt imperfectly reveals the innovation to the asset payoff ηt. The sensitivity of the

equilibrium price to the realization of the innovation is modulated by the average weight that investors put
on their private signals sit. However, investors’ demands also depend on their private trading motives nit,
which are orthogonal to the asset payoff. Since investors do not observe the common component of these
additional trading motives, they cannot distinguish whether a high price is due to a high realization of the
innovation to the asset payoff ηt or due to a high aggregate trading need unrelated to the asset payoff nt.
In this sense, investors’ private trading motives act as noise, since they prevent their signals about the asset
payoff from being revealed by their quantity demanded and, consequently, they prevent the price from being
fully revealing. In our applications, we map the variable nt to random heterogeneous priors and hedging
needs, which become sources of noise in the filtering problem solved by investors.

Finally, we denote the unbiased signal about the innovation to the asset payoff ηt contained in the price
by πt. We make use of the unbiased signal πt in our definition of price informativeness. Formally, we define
πt as

πt = αp
αs

(
pt − αθ

αp
θt − αn

αp
E [nt] − ψ

αp

)
= ηt + αn

αs
(nt − E [nt]) +

´
I
αisε

i
stdi

αs
+
´
I
αinε

i
ntdi

αs
, (A.20)

20To accommodate a continuum or a finite number of agents, all integrals in the paper represent Lebesgue integrals.
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which guarantees that E [πt|ηt] = ηt. The last three terms in Equation (A.20) represent the noise contained
in the price. The first of these three terms is the realization of the common component of the investors’
private trading needs, adjusted by the ratio αn

αs
, so it is expressed in payoff units. The final two terms

in Equation (A.20) capture the sources of aggregate noise that arise from the imperfect aggregation of
idiosyncratic shocks when there is a finite number of investors. Note that our definition of πt allows us to
write pt = αs

αp
πt + αθ

αp
θt + αn

αp
E [nt] + ψ

αp
, which allows us to interpret αs

αp
as ∂p

∂π .

E.3 Relating Price Informativeness and Price Volatility
Using the equilibrium price pt and the unbiased signal about the asset payoff contained in the price πt, we
can formally define our two objects of interest as follows.

Definition 1. (Price informativeness) We define price informativeness as the precision of the unbiased
signal of the innovation to the asset payoff ηt contained in the asset price, πt, defined in Equation (A.20),
from the perspective of an external observer. We denote price informativeness by

τπ ≡ (Var [πt|ηt, θt])−1
. (A.21)

Price informativeness is a variable that summarizes the ability of financial markets to disseminate
information through prices. It is the relevant variable that captures how precise the price is as a signal
of ηt from the perspective of an external observer who only observes the realization of the asset payoff θt.
When price informativeness is high, an external observer receives a very precise signal about the asset payoff
by observing the asset price pt. On the contrary, when price informativeness is low, an external observer
learns little about the asset payoff by observing the asset price pt.

Definition 2. (Price volatility) We define price volatility as the conditional variance of the asset price.
We denote price volatility by

V ≡ Var [pt| θt] .

For our purposes, price volatility is simply the idiosyncratic variance of asset prices conditional on
the current publicly observed realization of the asset payoff. In our setup, there is a one-to-one mapping
between price volatility and return volatility, since investors observe past prices. To simplify the exposition,
we only condition on θt and use the term price volatility but, formally, our analysis is valid replacing V by
Var

[
pt

pt−1

∣∣∣ θt, pt−1

]
.

One goal of this paper is to understand how price volatility and price informativeness are related in
equilibrium to be able to make inferences about price informativeness, which is not directly observable, from
conditional price volatility, which is easily computable. Characterizing the equilibrium relation between
these two endogenous variables is the first step to understand how price informativeness and price volatility
react to changes in primitives.

Our first set of results builds on the law of total variance, which is an elementary identity that, applied
here, implies that conditional price volatility can be decomposed into two components:

Var [pt| θt] = E [Var [pt| ηt, θt]| θt] + Var [E [pt| ηt, θt]| θt] .

The law of total variance asserts that the total variation in the equilibrium price pt can be decomposed
into two components, after conditioning on the innovation to the asset payoff ηt. The first component
corresponds to the expectation over the different realizations of the innovation to the asset payoff ηt of the
conditional variance of the equilibrium price pt, given ηt. The second component corresponds to the variance
of the conditional expectation of pt, after learning ηt. Intuitively, the first component captures learnable
uncertainty, captured by the best estimate of the residual error in pt after learning ηt, while the second term
captures residual uncertainty, which corresponds to the error from the best guess of pt after learning ηt.
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Under Assumptions 1 and 2, we can express both components as follows

E [Var [pt| ηt, θt]] =
(
αs
αp

)2
τ−1
π and Var [E [pt| ηt, θt]] =

(
αs
αp

)2
τ−1
η ,

which allows us to establish the most general characterization of the relation between price informativeness
and volatility in Proposition 7. Intuitively, the variation in E [pt| ηt, θt] is driven by the variance of the
innovation to the asset payoff τ−1

η , while the average residual variance is modulated by changes in price
informativeness τπ.

Proposition 7. (General volatility-informativeness relation)
a) Given Assumptions 1 and 2, price volatility V and price informativeness τπ satisfy the following

relation:

V =
(
αs
αp

)2 (
τ−1
η + τ−1

π

)
. (A.22)

b) The equilibrium elasticity of price volatility to price informativeness is given by

d log V
d log τπ

= 2
d log

(
αs

αp

)
d log (τπ)︸ ︷︷ ︸

equilibrium-learning

− τ−1
π

τ−1
η + τ−1

π︸ ︷︷ ︸
noise-reduction

. (A.23)

We refer to Equation (A.22) as the volatility-informativeness relation between price informativeness and
price volatility. Note that this result is exactly the same one we derived in the main body of the paper under
CARA-Normal assumptions.

Part a) of Proposition 7 shows that this equilibrium relation features the exogenous primitive τ−1
η , which

corresponds to the variance of the innovation to the asset payoff, and the equilibrium object αs

αp
, which we

refer to as the signal-to-price sensitivity and in general depends on τπ.21 By expressing αs

αp
as a function of

τπ and potentially other primitives, we identify two distinct channels that determine the relation between
price informativeness and volatility at this level of generality in part b) of Proposition 7.

We refer to the first channel as the equilibrium-learning channel. If a high level of price informativeness
is associated with a high (low) level of the signal-to-price sensitivity αs

αp
, this induces a positive (negative)

relation between price informativeness and volatility. A high value of the signal-to-price sensitivity αs

αp

amplifies the sensitivity of asset prices to aggregate shocks.22 Intuitively, a high αs

αp
implies that, on average,

either investors react significantly to their private signals (high αs), or that they have very steep — under the
traditional economics convention that uses quantities in the horizontal axis — asset demand curves (low αp),
so investors barely adjust the quantity demanded even for large price changes, implying that equilibrium
prices substantially react to the realization of the asset payoff. Alternatively, a low αs

αp
implies that, on

average, investors barely react to their private signals (low αs), or that they have very flat — under the
traditional economics convention — asset demand curves (high αp), so investors significantly adjust the
quantity demanded even for small price changes, implying that equilibrium prices are barely responsive to
the realization of aggregate payoff shocks.

We refer to the second channel as the noise-reduction channel. It is evident from Proposition 7 that,
holding αs

αp
constant, a high level of τπ is mechanically associated with a low level of V. In fact, Equation

21Note that we express Equation (A.23) using a total derivative and not a partial derivative. This notation accounts
for the fact that αs

αp
may be related in equilibrium to τπ.

22Note that Var [p| θt] =
(

αs
αp

)2
Var [ p̂| θt], since the variance of the unbiased signal about the asset payoff can be

expressed as Var [ p̂| θt] = τ−1
η + τ−1

π . We can thus interpret asset price volatility as the volatility of the unbiased
signal about the asset payoff, corrected by investors’ endogenous responses through the signal-to-price sensitivity.
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(A.22) implies that there exists an inverse relation between both variables. Intuitively, when prices are very
informative, the noise in the price is low and the conditional variance of the price for a given realization of
the asset payoff is necessarily low.

It is worth highlighting that part b) of Proposition 7 is not a comparative statics exercise, but a
characterization of a relation between two endogenous variables that must be satisfied in any equilibrium,
given the economy’s parameters. There are scenarios in which changes in some primitives do not shift
the locus defined in Equation (A.22). In those cases, Equation (A.22) can be interpreted as the possible
combinations of V and τπ that can arise in equilibrium for different values of those primitives. In those
scenarios, Proposition 7 implies that equilibria with high volatility are also equilibria with high (low) price
informativeness whenever dlogV

d log τπ
> 0 (< 0). However, changes in parameters that shift the locus defined

in Equation (A.22) entail a shift of the volatility-informativeness relation and, in general, also a movement
along the curve. Therefore, it is necessary to determine how αs

αp
and τπ are related in equilibrium as a

function of the model’s parameters to further understand the relation between price informativeness and
price volatility.

Before we study the link between αs

αp
and the model’s primitives in more detail, it is worth emphasizing

that the volatility-informativeness relation can only have a positive slope when investors learn from asset
prices. When investors do not learn from prices, changes in the level of price informativeness do not affect
investors’ behavior, so d log

(
αs
αp

)
/d log(τπ) = 0. In this case, only the noise-reduction channel is active, and the

relation between price informativeness and price volatility in Equation (A.22) is monotonic and decreasing.
However, as we show next, in the CARA-Gaussian case αs

αp
is increasing in τπ, so the equilibrium-learning

channel and the noise-reduction channel operate in opposite directions.

F Volatility-Informativeness Relation: CARA-Normal Applica-
tions

In this section, we specialize our results to a canonical CARA-Gaussian environment with general aggregate
noise, which endogenously satisfies Assumptions 1 and 2. This allows us to further characterize the relation
between the signal-to-price sensitivity αs

αp
and price informativeness τπ. We then provide two alternative

sources of aggregate noise to show the robustness of our results. We first present an application in which
there is a finite number of strategic investors with heterogeneous beliefs. Second, we consider the case in
which the investors private trading needs are giving by heterogeneous hedging needs that are random in the
aggregate.

F.1 General Aggregate Noise
Timing and assets. Time is discrete, with dates denoted by t = 0, 1, 2, . . . ,∞. There are two traded assets:
a riskless asset in perfectly elastic supply with gross return R = 1 and a risky asset in fixed supply Q, which
is traded at a price pt at date t.

Preferences. A new set of investors, indexed by i ∈ I, is born at each date t. Investors born at date
t trade at date t and consume their terminal wealth at date t + 1. Each generation of investors lives two
dates and has constant absolute risk aversion (CARA) preferences over terminal wealth. The flow utility of
an investor i born at date t is given by

U
(
wi1,t

)
= −e−γwi

1,t , (A.24)

where Equation (A.24) imposes that investors consume all their terminal wealth wi1,t. The parameter γ > 0
represents the coefficient of absolute risk aversion, γ ≡ −U ′′

U ′ .
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Payoff process and signals. The asset payoff is given by

θt+1 = µθ + ρθt + ηt,

where µθ is a scalar, |ρ| ≤ 1, and θ0 = 0, and where the innovations to the payoff, ηt, have mean zero, finite
variance, τ−1

η , and are independently and normally distributed. Before trading in at date t, each investor i
observes the current realized asset payoff θt. Each investor i receives a private signal sit about the innovation
to the asset payoff ηt, given by

sit = ηt + εist with εist ∼ N
(
0, τ−1

s

)
.

Private trading needs. As before, the investors’ privately observed trading motives are sources of
aggregate noise in the economy that prevent the price from being fully revealing. In particular, every
investor i privately observes nit, which takes the form

nit = nt + εint, with εint ∼ N
(
0, τ−1

ε

)
,

where nt ∼ N
(
µn, τ

−1
n

)
, which can be interpreted as the aggregate sentiment in the economy, is orthogonal

to εint. We assume that the private trading needs of the investor are orthogonal to the asset payoff and that
all error terms are independent of each other, of the common component of the private trading needs, and
of the innovation to the asset payoff.

In the CARA-Gaussian setup presented in this section, all equilibria in linear strategies satisfy
Assumption 2. As it is standard in this body of work, we focus on symmetric equilibria in linear strategies.23

Investors in the model have more information than external observers because they receive a private signal
about ηt and they observe their private trading need. For example, investors could learn about the aggregate
noise in the price from their private trading need. If an investor’s private trading need were perfectly
informative about the aggregate trading need in the economy, the investor could perfectly observe the asset
payoff by looking at the equilibrium price. Therefore, the amount of information that is contained in the price
from an internal investor’s perspective, which determines the investor’s equilibrium-learning, may differ from
the informational content of prices from an external observer’s point of view. To account for this discrepancy,
we introduce the notion of internal price informativeness.

Definition 3. (Internal price informativeness) We define internal price informativeness as the precision
of the additional information contained in the unbiased signal of the innovation to the asset payoff ηt
contained in the asset price, πt as defined in Equation (A.20), from the perspective of an investor in the
model. Formally, we define internal price informativeness as

τ Iπ ≡
(
Var

[
πt|ηt, θt, nit

])−1
. (A.25)

The notion of internal price informativeness becomes relevant in models in which investors’ private
trading needs are informative about the aggregate noise in the price, and in strategic environments. In the
first case, internal price informativeness is higher than price informativeness for an external observer, since
investors have additional information about the noise. In the second case, internal price informativeness
is lower than price informativeness for an external observer. The new information contained in the price
aggregates the signals of all investors from an external observer’s perspective. Since one of these signals is
the private signal observed by the investor, the price contains one new signal fewer for an strategic investor
than for an external observer.

23To ease the exposition, we describe our results in the text as if the model had a unique equilibrium, although we
consider the possibility of multiplicity in the Appendix. If there were multiple equilibria, our analysis would be valid
for locally stable equilibria as long as the economy does not jump from one equilibrium to another.
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Using the first order condition of the investor’s problem in Equation (A.1) and using the linear guess for
the net demand and matching coefficients we have that the equilibrium demand sensitivities are given by

αs = 1
κ (1 − ρ)

τs
τη|s,π

, αp = 1
κ

τs
τs + τ Iπ

,

αnαθ = χ

κ (1 − ρ)
τs

τs + τ Iπ
τ̂ε

τ̂ε+τn

, and = ρ

κ (1 − ρ)
τs

τs + τ Iπ
, (A.26)

where

κ ≡ γ

((
1 + αθ

αp

)2
Var

[
ηt|Iit

]
+
(
αs
αp

)2
Var [ηt+1] +

(
αη
αp

)2
τ−1
n

)
and where we denote by χ the loading of the private trading need on the investors’ utility, which will vary
across applications, and τ̂ε is the precision of the investors’ private trading need as a signal of the aggregate
noise contained in the price.

Note that the equilibrium coefficients are expressed as a function of internal price informativeness, τ Iπ ,
so we need to further understand the relation between internal and external price informativeness to fully
characterize the volatility-informativeness relation in Equation (A.22). We do so in the following Lemma.

Lemma 3. (Relating internal price informativeness and price informativeness for an external
observer) In the CARA-Gaussian setup, there exists a scalar λ > 0 that can be expressed exclusively in
terms of model primitives, such that

τ Iπ = λτπ,

where τπ and τ Iπ are respectively defined in Equations (A.21) and (A.25).

Lemma 3 shows that both notions of informativeness are related in this setup. Intuitively, when there is
a continuum of investors and investors’ private trading needs reveal information about the aggregate noise,
λ > 1 and τπ < τ Iπ . If investors do not learn about the aggregate sources of noise from their own private
trading needs, then τ Iπ = τπ, as in the applications with heterogeneous priors in Section 2 in the main body
of the paper. Alternatively, when there is a finite number of strategic investors N , investors perceive the
price to be less informative than an external observer, because the price aggregates N new signals for an
external observer, while for an investor in the model it only aggregates N − 1 new signals, so λ < 1 and
τπ > τ Iπ .

Combining the equilibrium characterization and 3, we specialize the volatility-informativeness relation
between price volatility and price informativeness to the CARA-Gaussian environment in the following
Lemma.

Lemma 4. (Volatility-informativeness relation CARA-Gaussian setup) In a stationary equilibrium
in the CARA-Gaussian setup, the volatility-informativeness relation between price volatility V and price
informativeness τπ is given by

V =
(

1
1 −R−1ρ

τs + λτπ
τη + τs + λτπ

)2 (
τ−1
η + τ−1

π

)
, (A.27)

where λ = τI
π

τπ
.

Lemma 4 represents the endogenous relation between V and τπ as a function of only three (combinations
of) primitives: τη, τs, and λ, which allows us to explicitly characterize the properties of the volatility-
informativeness relation.

Whether the relation between price volatility and price informativeness in Equation (A.22) is monotonic
depends on the value of λ. In particular, when λ < 2, which encompasses the scenario in which internal
and external price informativeness are equal, the volatility-informativeness relation is non-monotonic. The
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variable λ represents how much more new information is contained in the price for an investor relative to an
external observer. If λ > 2, the investor learns more than twice as much as an external observer by using
the price as a signal. Although one could argue that active investors may have better information about the
noise embedded in asset prices, hence learning more from the price than external observers, it is not easy
to argue why there should be a two-fold difference between both groups. In fact, most models considered
in the literature on learning in financial markets (e.g., Veldkamp (2011) and Vives (2016)) implicitly adopt
parameterizations that imply λ = 1. In two of our three applications, λ is also weakly less than one.
Therefore, in what follows, we focus on and state our formal results for the case λ < 2.24

We formally show that the volatility-informativeness relation is decreasing for sufficiently low values of τπ
and increasing for sufficiently high values of τπ. The following proposition formalizes this non-monotonicity.

Proposition 8. (Slope of volatility-informativeness relation) The volatility-informativeness relation
between price volatility and price informativeness is increasing (decreasing) if and only if price informative-
ness is high (low) enough. Formally, there exists a threshold τ⋆ > 0 such that

dV
dτπ

< 0 ⇐⇒ τπ < τ⋆ and dV
dτπ

> 0 ⇐⇒ τπ > τ⋆,

where

τ⋆ ≡
−λ (τη − 2τs) +

√
λ (λτη (τη − 8τs) + 8τs (τη + τs))

2 (2 − λ)λ . (A.28)

Proposition 8 shows that, regardless of the source of noise in the model, the slope of Equation (A.27)
is positive when τπ is sufficiently large and negative otherwise. The threshold τ⋆, which determines the
lower boundary of the positive slope region, only depends on the precision of the innovation to the asset
payoff, the precision of the private signal, and the value of λ. Interestingly, the threshold τ⋆ only depends
on the remaining model parameters indirectly through λ. In particular, the specific source of noise may
only affect τ⋆ through λ. Exploiting our two-channel decomposition, we say that when prices are sufficiently
informative, when τπ > τ⋆, the equilibrium-learning channel dominates the noise-reduction channel. On the
contrary, when τπ < τ⋆, the noise-reduction channel dominates the equilibrium-learning channel.

Proposition 8 implies that any change among the subset of parameters that do not enter the volatility-
informativeness relation directly must induce a positive comovement between price informativeness and
volatility when prices are sufficiently informative and a negative comovement otherwise. When interpreted
through the lens of our two-channel decomposition, when prices are sufficiently informative, the equilibrium-
learning channel, which is driven by the change in investors’ equilibrium behavior induced by learning,
becomes overwhelmingly important and dominates the noise-reduction channel, and vice versa. Proposition
8 also implies that to fully characterize the relation between price informativeness and price volatility across
equilibria whenever there is a change among the subset of parameters that at the same time shifts the
volatility-informativeness relation upwards or downwards and increases or decreases price informativeness,
it is necessary to look at fully specified models in which the source of noise is explicitly modeled. In the
following subsections, we consider two alternative ways of modeling aggregate noise to the one in the main
body of the paper: a finite number of investors and heterogeneous hedging needs.

F.2 Strategic Traders
While the application with heterogeneous beliefs in the main body of the paper features a continuum of
price-taking investors, we now allow for strategic behavior.25 We specialize the environment presented in

24In previous versions of the paper, we also studied the case of classic noise traders, which also features λ = 1.
25There is a large literature that explores the strategic behavior in models of trading with dispersed information,

following Kyle (1985). See Du and Zhu (2017), who explore the optimal frequency of trading, and Kacperczyk, Nosal
and Sundaresan (2020), who theoretically analyze the relation between market power and price informativeness, for
recent contributions
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Figure OA-1: Comparative statics: Strategic Traders

Note: Figure OA-1 shows comparative statics of price informativeness τπ and price volatility V = Var [pt| θt] as a
function of all five primitives of the model considered in Application 2. All plots feature two y-axes: the left y-axis
corresponds to the values of τπ, while the right y-axis corresponds to the values of V = Var [pt| θt]. The parameters
of this model are the following: τs, precision of private signals about the innovation to the asset payoff, τη, precision
of the innovation to the asset payoff, N , number of investors, τn, precision of aggregate noise, and γ, risk aversion.
The reference values are τs = 6, τη = 2, τn = 1, γ = 0.5, and N = 100.
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the previous section to a finite number of investors, N , who have heterogeneous priors over the value of the
asset.26 In particular, from the perspective of investor i, the asset payoff θ is distributed according to

θt+1 = µθ + ρθt + ηt,

where θ0 = 0,
ηt ∼i N

(
ηit, τ

−1
η

)
, and ηit

i.i.d∼ N
(
0, (N + 1) τ−1

n

)
,

where the variance of noise increases with the number of investors to ensure the economy converges to the
competitive economy in the main body of the paper. In a symmetric equilibrium in linear strategies, we
postulate net demand functions given by

∆qit = αss
i
t + αθθt + αnη

i
t − αppt + ψ,

where αs, αθ, αn, and αp are positive scalars, while ψ can take positive or negative values. Market clearing
in the asset market implies that the equilibrium price takes the form

pt = αs
αp

(
ηt +

∑N
i=1 ε

i
st

N

)
+ αθ
αp
θt + αη

αp

∑N
i=1 η̄

i
t

N
+ ψ

αp
,

In this case, the price is not fully revealing because the noise contained in the signals on which the investors’
trade and the noise contained in the investors’ priors do not wash out in the aggregate. There is aggregate
uncertainty coming from the realized signals and priors.

The equilibrium demand sensitivities are given by Equations (A.26) setting χ = τη

τη|s,p
, τ̂ε = 0, λ = N−1

N ,
and κ = γVar

[
θt|sit, πt

]
+ ξ = γ

τη+τs+τI
π

+ ξ, where ξ = 1
(N−1)αp

is the price impact of an investor. In
equilibrium, αs

αn
= τs

τη
, price informativeness is given by

τπ = N
τs

τη

τn

τη
+N + 1

(
τs
τη

)2
τn, (A.29)

and internal price informativeness is

τ Iπ = N − 1
τs

τη

τn

τη
+N + 1

(
τs
τη

)2
τn.

Therefore, the volatility-informativeness relation can expressed as

V =
(

1
1 − ρ

τs + N−1
N τπ

τη + τs + N−1
N τπ

)2 (
τ−1
η + τ−1

π

)
.

Note that when investors behave strategically, the price is more informative for an external observer than
for an investor inside the model. The price aggregates the N signals received by the active investors, which
is all new information for an external observer. However, since an investor already knows the realization
of his own signal, from the investor’s perspective the price conveys new information only about N − 1 new
signals.

Figure OA-1 shows the comparative statics of τπ and V as a function of the five primitives of the model:
τs, τη, N , τn, and γ. As in the disagreement model with a continuum of agents, price informativeness
and volatility are invariant to the level of risk aversion γ. Figure OA-1 also illustrates the existence of

26The heterogeneity in beliefs introduces the additional trading motive needed to escape the no-trade theorem —
see, for instance, Brunnermeier (2001).
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positive and negative comovement regions, as established in Proposition 3. The intuition behind the results
is identical to the one provided in the application with heterogeneous beliefs in the main body of the paper.
Interestingly, changes in the value of aggregate noise τn induce a positive comovement between volatility and
informativeness when price informativeness is high enough. On the other hand, when price informativeness
is low enough and in the negative comovement region, volatility and informativeness move in different
directions.

This application includes a new comparative static exercise on the number of investors. In this model,
price informativeness is increasing in the number of investors N . However, price volatility is non-monotonic in
the number of investors, initially decreasing in N in the negative comovement region, and finally increasing
with N once price informativeness is sufficiently high. Finally, as in the main application in the paper,
note that while price informativeness varies monotonically with all the parameters, price volatility is
non-monotonic in changes on primitives, which is consistent with the existence of positive and negative
comovement regions.

Lemma 5. (Comparative statics strategic traders) Price informativeness is increasing in τs, τn, and
N and decreasing in τη.

Proof. From the definition of price informativeness in Equation (A.29) we have that

dτπ
dτs

= N
1
τ2
η

2τs
(
τs

τη

τn

τη
+N + 1

)
− τs

τs

τη

τn

τη(
τs

τη

τn

τη
+N + 1

)2 τn = N

τs

τη

τn

τη
+ 2 (N + 1)(

τs

τη

τn

τη
+N + 1

)2
τs
τη

τn
τη

> 0.

Moreover,
dτπ
dτn

= N (N + 1)(
τs

τη

τn

τη
+N + 1

)2

(
τs
τη

)2
> 0,

dτπ
dN

=
τs

τη

τn

τη
+ 1(

τs

τη

τn

τη
+N + 1

)2

(
τs
τη

)2
τn > 0,

and
dτπ
dτη

= − 2N (N + 1)(
τs

τη

τn

τη
+N + 1

)2
τ2
s

τ2
η

τn
τη

< 0.

Proposition 9. (Comovement strategic traders) a) Price volatility and price informativeness positively
comove (weakly) across equilibria if price informativeness is high enough. Formally, there exists τ ∈ (τ⋆,∞)
such that if τπ > τ , V and τπ move in the same direction after any parameter change.

b) Price volatility and price informativeness negatively comove (weakly) across equilibria if price
informativeness is low enough. Formally, there exists a threshold τ ∈ [0, τ⋆] such that, if τπ < τ , V and τπ
move in opposite directions after any parameter change.

Proof. Note that
dτπ
dρ

= 0 and dV
dρ

> 0,

so the comovements in this proposition are weak. Moreover,

dτπ
dτn

< 0 and dV
dτn

= 0.

Hence, movements in τn will induce positive (negative) comovement between price informativeness and price
volatility if and only if τπ > (<) τ⋆.
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a) Positive comovement
From Lemma 5 and using that

αs
αp

= 1
1 − ρ

τs + N−1
N τπ

τη + τs + N−1
N τπ

,

we have

dτπ
dτs

> 0, dτπ
dτη

< 0, dτπ
dN

> 0 and,

dV
dτs

> 0, dV
dτη

< 0, dV
dN

> 0.

Therefore, whenever τπ > τ⋆, price informativeness and price volatility positively comove.
b) Negative comovement
For changes in τs we have

dV
dτs

= ∂V
∂τs

+ dV
dτπ

dτπ
dτs

,

where we can write

dV
dτs

= 2αs
αp

1
1 − ρ

τη(
τη + τs + N−1

N τπ
)2

(
τη + τπ
τητπ

)

+
(

2αs
αp

1
1 − ρ

N−1
N τη(

τη + τs + N−1
N τπ

)2

(
τη + τπ
τητπ

)
−
(
αs
αp

)2
(τπ)−2

)
N

τs

τη

τn

τη
+ 2 (N + 1)(

τs

τη

τn

τη
+N + 1

)2 τn

dV
dτs

= αs
αp

1
1 − ρ

(τπ)−2(
τη + τs + N−1

N τπ
)2

 2 (τη + τπ) τπ+(
2N−1

N (τη + τπ) τπ −
(
τη + τs + N−1

N τπ
) (
τs + N−1

N τπ
))
N

τs
τη

τn
τη

+2(N+1)(
τs
τη

τn
τη

+N+1
)2 τn


Using the definition of τπ we have limτs→0 τπ = 0. Then, taking limits when τs → 0, we have

lim
τs→0

dV
dτs

= lim
τs→0

αs
αp

1
1 − ρ

(τπ)−2(
τη + τs + N−1

N τπ
)2

(
−τηN

2 (N + 1)
(N + 1)2

)
= −∞.

Then there exists a threshold ŝ such that dV
dτs

< 0 for τs < ŝ, which implies there exists a threshold ττs
such

that for τπ < ττs
price volatility and price informativeness negatively comove.

For changes in τη we have

dV
dτη

= − 1
τη

(
αs

αp

)2( 2
τη + τs + N−1

N
τπ

τη + τπ

τπ
+ 1
τη

)
−

 2 αs
αp

1
1−R−1ρ

N
N−1 τη

(τη+τs+ N
N−1 τπ)2

τη+τπ

τητπ
−(

αs
αp

)2
(τπ)−2

 2N (N + 1)(
τs
τη

τn
τη

+N + 1
)2

τ2
s

τ2
η

τn

τη

= −2αs

αp

1
1 − ρ

τητ
−1
π(

τη + τs + N−1
N

τπ

)2

 (
τs
τη

+ N−1
N

τπ
τη

)(
1 + τπ

τη

)
+(

2 N
N−1

(
1 + τπ

τη

)
−
(

1 + τs
τη

+ N
N−1

τπ
τη

)
τ−1

π

)
N(N+1)

(τsτn+N+1)2 τ
2
s

τn
τη

−
(
αs

αp

1
τη

)2

Using the definition of τπ we have limτη→∞ τπ = 0. Hence, taking limits when τη → ∞ we have

lim
τη→∞

dV
dτη

= lim
τη→∞

2αs
αp

1
1 − ρ

(τπ)−2(
τη + τs + N−1

N τπ
)2

N (N + 1)
(τsτn +N + 1)2 τ

2
s τn = ∞
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since

lim
τη→∞

(τπ)−2(
τη + τs + N−1

N τπ
)2 = lim

τη→∞

(
N

τs

τη

τn

τη
+N + 1

(
τs
τη

)2
τn

(
τη + τs + N − 1

N
τπ

))−2

= ∞.

Hence, there exists a threshold η such that for all τη > η we have dV
dτη

> 0. Then, there exists a threshold
ττη

such that for all τπ < ττη
informativeness and volatility negatively comove after changes in τη where

ττη
≡ N

τsτn + (N + 1) η2 (τs)2
τn.

For changes in N we have

dV
dN

= 2αs

αp

1
1 − ρ

τητπ

(
1

N2

)(
τη + τs + N−1

N
τπ

)2

(
τη + τπ

τητπ

)

+

(
2αs

αp

1
1 − ρ

N−1
N

τη(
τη + τs + N−1

N
τπ

)2

(
τη + τπ

τητπ

)
−
(
αs

αp

)2

(τπ)−2

)
τs
τη

τn
τη

+ 1(
τs
τη

τn
τη

+N + 1
)2

(
τs

τη

)2

τn

dV
dN

= αs

αp

1
1 − ρ

(τπ)−2(
τη + τs + N−1

N
τπ

)2

 2 (τη + τπ)
(

τπ
N

)2 +(
2 N−1

N
(τη + τπ) τπ −

(
τη + τs + N−1

N
τπ

) (
τs + N−1

N
τπ

)) τs
τη

τn
τη

+1
τs
τη

τn
τη

+N+1
τπ
N

 .

Moreover,

lim
N→0

dV
dN

= lim
N→0

αs
αp

1
1 − ρ

(τπ)−2
(

1
τs
τη

τn
τη

+1

(
τs

τη

)2
τn

)2

(
τη + τs + 1

τs
τη

τn
τη

+1

(
τs

τη

)2
τn

)2

−

(
τη + τs − 1

τs
τη

τn
τη

+1

(
τs

τη

)2
τn

)
1

τs
τη

τn
τη

+1

(
τs

τη

)2
τn

 = −∞

because limN→0 τπ = 0 and limN→0
τπ

N = 1
τs
τη

τn
τη

+1

(
τs

τη

)2
τn. Hence, there exists a threshold N such that

for all N < N we have dV
dN < 0. This implies that there exists a threshold τN such that for all τπ < τN

informativeness and volatility negatively comove after changes in N . Note that for an equilibrium to exists
we need N ≥ 3. The threshold N depends on all other parameters in the economy. When τπ is low, N is
larger. Moreover, for all N there exist parameters such that dV

dN < 0 when τπ is low enough.
Therefore, for all τπ < τ informativeness and volatility (weakly) negatively comove for any parameter

change, where τ = min
{
ττs
, ττη

, τN
}

since max
{
ττs
, ττη

, τN
}
< τ⋆.

F.3 Hedging Needs
In this second application, we use aggregate hedging needs as an alternative formulation for investors’ private
trading needs. In particular, we assume that the asset payoff has both a learnable and an unlearnable
component. Formally, we assume that

θt+1 = µθ + ρθt + ηt,

where θ0 = 0,
ηt = ηlt + ηut ,

and
ηlt ∼ N

(
0, τ−1

η

)
and ηut ∼ N

(
η, τ−1

u

)
.

The random variables ηut and ηlt, which represent the unlearnable and learnable components of the innovation
to the asset payoff, are orthogonal to each other. The realized asset payoff θt is observable at t.
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Figure OA-2: Comparative statics: Hedging Needs

Note: Figure OA-2 shows comparative statics of price informativeness τπ and price volatility V = Var [pt| θt] as a
function of all five primitives of the model considered in Application 3. All plots feature two y-axes: the left y-axis
corresponds to the values of τπ, while the right y-axis corresponds to the values of V = Var [pt| θt]. The parameters
of this model are the following: τs; precision of private signals about the innovation to the asset payoff; τη, precision
of the innovation to the asset payoff, τn; precision of aggregate hedging term, τh; precision of individual hedging
need; and γ, investors’ coefficient of absolute risk aversion. The reference values are τs = 1, τη = 1, τn = 2, τh = 1,
and γ = 0.5.
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We further assume that investors born in generation t have an endowment ωit+1 realized at date t+1 which
is potentially correlated with the unlearnable component of the asset payoff ηut+1 and is independent of the
learnable component. Investors’ hedging needs, given by the correlation between the investors’ endowment
and the asset payoff, are given by a random variable hit, which is distributed as follows

hit ≡ Cov
(
θt+1, ω

i
t+1
∣∣ θt) = Cov

(
ηut , ω

i
t+1
)

= nt + εiht,

where
nt ∼ N

(
0, τ−1

n

)
and εiht

iid∼ N
(
θ, τ−1

h

)
.

The hedging needs hit are private information of investor i and have two components: an aggregate component
nit and an idiosyncratic component εiht. Investors only observe their total hedging need hit and cannot
distinguish between the aggregate and idiosyncratic components.

Investors receive a private signal of the learnable component of the asset’s payoff

sit = ηlt + εist, with εist
iid∼ N

(
θ, τ−1

s

)
.

Depending on parameters, this model can potentially feature multiple equilibria, as described in detail in
Dávila and Parlatore (2021). Consistent with our definition of λ in Lemma 3, in this application,

λ = τh + τn
τn

> 1,

so the volatility-informativeness relation can be expressed as

V =
(

1
1 − ρ

τs + τn+τh

τn
τπ

τη + τs + τn+τh

τn
τπ

)2 (
τ−1
η + τ−1

π

)
.

Note that when investors are aware that the source of aggregate noise has a common component, the
price is less informative for an external observer than for an individual investor. In this case, an individual
investor can use the realization of his hedging need to partially infer the level of aggregate hedging needs,
which allows him to better filter the information conveyed by the price.

Figure OA-2 shows the comparative statics of τπ and V as a function of the five primitives of the
model: τs, τη, τn, τh, and γ. In this model, all five primitives determine the equilibrium values of τπ
and V. As in the previous applications, and consistently with Proposition 4, Figure OA-2 shows that,
when price informativeness is high enough, changes in τs, τη, τh, τn, and γ move price volatility and price
informativeness in the same direction. Interestingly, a negative comovement region between price volatility
and informativeness does not exist in this application, that is, the threshold τ , defined in Proposition 4,
is equal to zero. Figure OA-2 shows that even when price informativeness is arbitrarily small, changes in
parameters other than τn and γ imply a positive comovement between volatility and informativeness.

In this case, λ = τn+τh

τn
. Therefore, λ < 2 implies τh < τn. If τh < τn, there exists τ⋆ such that

dV
dτπ

> 0 ∀τπ > τ⋆.

Moreover, the equilibrium demand sensitivities are given by Equation (A.8), Equation (A.9), Equation
(A.10), and Equation (A.11) setting π = 1 and τ̂ε = τh and

κ = γ

((
1 + αθ

αp

)2
Var

[
ηlt|Iit

]
+
(
αs
αp

)2
Var

[
ηlt+1

]
+
(
αη
αp

)2
τ−1
n + τ−1

u

)
.
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Then, in equilibrium,

τπ =
(
αs
αn

)2
τn, (A.30)

where αs

αn
solves the following fixed point:

J

(
αs
αn

)
=

τs

τη+τs+ τn+τh
τn

τπ

γ −
τn+τh

τn
τπ

τη+τs+ τn+τh
τn

τπ

αn

αs

τh

τn+τh

, (A.31)

where we used the equilibrium demand sensitivities that depend on αs

αn
directly and through τπ.27 J (x)

determines the ratio αs

αn
when investors expect the signal-to-noise ratio in the price to be x. The fixed point

of Equation (A.31) can also be found as the solution to

Ĥ

(
αs
αn

)
≡ −γ (τn + τh)

(
αs
αn

)3
+ τh

(
αs
αn

)2
− γ (τs + τη)

(
αs
αn

)
+ τs = 0. (A.32)

The polynomial Ĥ
(
αs

αn

)
always has a positive root but there may be multiple equilibria (generically, one

or three).28 We adopt a conventional notion of stability. The function Ĥ
(
αs

αn

)
is defined such that if

Ĥ (x0) > 0, then J (x0) > x0, which implies that if investors in the model expect the signal-to-noise ratio
to be x0, the realized value of this ratio will be x1 > x0. Let x∗ be a solution to Ĥ (x∗) = 0. Then, we will
say that the equilibrium x∗ is stable if for all x0 ∈ (x∗ − δ, x∗ − δ) for some δ > 0, the sequence {xm}∞

m=0
where xm = J (xm−1) for m > 1 converges to x∗. This sequence will converge only if J ′ (x∗) < 1, which is
equivalent to Ĥ ′ (x∗) < 0. Hence, in all stable equilibria, Ĥ ′ (x∗) < 0. Finally, note that when τs = 0, the
only root of Ĥ (x∗) is at x∗ = 0. In what follows, we will focus on stable equilibria.29

Lemma 6. (Comparative statics hedging needs) In any stable stationary equilibrium, the signal to
noise ration αs

αn
increases with τs and τh and it decreases with τη, τn, and γ.

Proof. From Equation (A.32) we have

∂Ĥ

∂τh
= −γ

(
αs
αn

)3
+
(
αs
αn

)2
=
(
αs
αn

)2(
−γ
(
αs
αn

)
+ 1
)
> 0,

∂Ĥ

∂τs
= −γ

(
αs
αn

)
+ 1 > 0,

∂Ĥ

∂γ
= − (τn + τh)

(
αs
αn

)3
− (τs + τη)

(
αs
αn

)
< 0,

∂Ĥ

∂τη
= −γ αs

αn
< 0,

∂Ĥ

∂τn
= −γ

(
αs
αn

)3
< 0,

27We could have alternatively adopted similar notions of trading with stochastic hedging needs, as in Ganguli and
Yang (2009) and Manzano and Vives (2011).

28Goldstein, Li and Yang (2014) find that multiple equilibria may also arise when market segmentation leads to
heterogeneous hedging needs.

29Positive and negative comovement regions exist for unstable equilibria. However, in this case, the regions are
flipped. Within an equilibrium, the economy is in the negative comovement region if price informativeness is high
enough and it is in the positive comovement region if price informativeness is low enough.
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since αs

αn
< 1

γ . Using the implicit function theorem and that in any stable equilibrium Ĥ ′ < 0, we have

d
(
αs

αn

)
dτh

> 0,
d
(
αs

αn

)
dτs

> 0,
d
(
αs

αn

)
dγ

< 0,
d
(
αs

αn

)
dτη

< 0, and
d
(
αs

αn

)
dτn

< 0.

Proposition 10. (Comovement hedging needs) a) Price volatility and price informativeness positively
comove (weakly) across stable stationary equilibria if price informativeness is high enough. Formally, there
exists τ ∈ (τ⋆,∞) such that if τπ > τ , V and τπ move in the same direction after any parameter change.

b) Price volatility and price informativeness negatively comove (weakly) across stable stationary equilibria
if price informativeness is low enough for changes in τn and γ. For changes in τs, τh, and τη price
informativeness and price volatility always comove positively. Hence, there does not exist a negative
comovement region.

Proof. Note that
dτπ
dρ

= 0 and ∂V
∂ρ

> 0,

so the comovements in this proposition are weak. Moreover,

dτπ
dγ

= 2αs
αn

d
(
αs

αn

)
dγ

τn < 0 and ∂V
∂γ

= 0.

Hence, price informativeness and price volatility positively (negatively) comove after a change in γ if
τπ > (<)τ⋆.

a) Positive comovement. Using Lemma 6 and the definition of equilibrium price informativeness in
Equation (A.30), we get

dτπ
dτs

= 2αs
αn

d
(
αs

αn

)
dτs

τn > 0

dτπ
dτh

= 2αs
αn

d
(
αs

αn

)
dτh

τn > 0

dτπ
dτη

= 2αs
αn

d
(
αs

αn

)
dτη

τn < 0.

Then, since

V =
(

1
1 − ρ

)2
(

τs + τn+τh

τn
τπ

τη + τs + τn+τh

τn
τπ

)2 (
τ−1
η + τ−1

π

)
,

we have
∂V
∂τs

=
(

1
1 − ρ

)2
2

(
τs + τn+τh

τn
τπ

)
τη(

τη + τs + τn+τh

τn
τπ

)3
(
τ−1
η + τ−1

π

)
> 0,

∂V
∂τh

=
(

1
1 − ρ

)2
2

(
τs + τn+τh

τn
τπ

)
τη
τπ

τn(
τη + τs + τn+τh

τn
τπ

)3
(
τ−1
η + τ−1

π

)
> 0, and

∂V
∂τη

= −
(

1
1 − ρ

)2
(

τs + τn+τh

τn
τπ

τη + τs + τn+τh

τn
τπ

)2(
2

τ−1
η + τ−1

π

τη + τs + τn+τh

τn
τπ

+ 1
τ2
η

)
< 0.

OA-17



Hence, if τπ > τ⋆ price volatility and price informativeness (weakly) comove when τs, τη, or τh change.
For changes in τn we have that

∂V
∂τn

= −
(

1
1 − ρ

)2
2

(
τs + τn+τh

τn
τπ

)
τη

τh

τ2
n
τπ(

τη + τs + τn+τh

τn
τπ

)3
(
τ−1
η + τ−1

π

)

= −
(

1
1 − ρ

)2
2

(
τs + τn+τh

τn
τπ

)
τη

τh

τ2
n
τπ(

τη + τs + τn+τh

τn
τπ

)3
(
τ−1
η + τ−1

π

)
,

which is increasing in τπ with limτπ→∞
∂V
∂τn

= 0. Also,

∂
(
αs

αn

)
∂τn

=
γ
(
αs

αn

)3

−3γ (τn + τh)
(
αs

αn

)2
+ 2τh αs

αn
− γ (τs + τη)

< 0

since the denominator is negative in any stable equilibrium. Moreover,

dτπ
dτn

= 2αs
αn

∂
(
αs

αn

)
∂τn

τn +
(
αs
αn

)2
=
(
αs
αn

)2
2

d
(
αs

αn

)
dτn

τn
αs

αn

+ 1


=
(
αs
αn

)2
 2γ

(
αs

αn

)2
τn

−3γ
(

1 + τh

τn

)(
αs

αn

)2
τn + 2τh αs

αn
− γ (τs + τη)

+ 1


=
(
αs
αn

)2
−γ

(
1 + 3 τh

τn

)
τπ + 2τh αs

αn
− γ (τs + τη)

−3γ
(

1 + τh

τn

)
τπ + 2τh αs

αn
− γ (τs + τη)

 .

Note that the numerator can be written as

−γ
(

1 + 3 τh
τn

)
τπ + 2τh

αs
αn

− γ (τs + τη) = −γ
(

1 + 3 τh
τn

)
τπ + 2τh

√
τπ
τn

− γ (τs + τη) .

This is a concave quadratic function of √
τπ which is negative at √

τπ = 0. Then, if 4 τ
2
h

τn
−4γ2

(
1 + 3 τh

τn

)
(τs + τη) <

0 we have dτπ

dτn
> 0 for all τπ and if 4 τ

2
h

τn
− 4γ2

(
1 + 3 τh

τn

)
(τs + τη) > 0 it is less than dτπ

dτn
> 0 if

τπ >

−2 τh√
τn

−
√

4 τ
2
h

τn
− 4γ2

(
1 + 3 τh

τn

)
(τs + τη)

−2γ
(

1 + 3 τh

τn

)


2

≡ n,

or if

τπ <

−2 τh√
τn

+
√

4 τ
2
h

τn
− 4γ2

(
1 + 3 τh

τn

)
(τs + τη)

−2γ
(

1 + 3 τh

τn

)


2

≡ n.

Then, when λ < 2, there exists a threshold τ̃ such that

dV
dτn

> 0
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for all τπ > τ̃ , where τ̃ = τ⋆ if 4 τ
2
h

τn
− 4γ2

(
1 + 3 τh

τn

)
(τs + τη) < 0 and τ̃ = max {τ⋆, n} otherwise.

Hence, if τπ > τ̃ price informativeness and price volatility weakly positively comove for any parameter
change.

b) Negative comovement
For changes in τn we have from part a) of this proof that for τn < n, dτπ

dτn
> 0. Moreover, we know that

∂V
∂τn

< 0 and dV
dτπ

< 0 for all τπ < τ⋆. Hence, since dV
dτn

= ∂V
∂τn

+ dV
dτπ

dτπ

dτn
, there exists a threshold ττn

< τ⋆

such that for all τπ < τ⋆ we have dV
dτn

< 0 and price informativeness and price volatility negatively comove
when τn changes.

For changes in τs, we have

dV
dτs

= 2
(

1
1 − ρ

)2 (
τs + τn+τh

τn
τπ

)
τ−1

π(
τη + τs + τn+τh

τn
τπ

)3

 τη + τπ+(
τn+τh

τn

(
2 − τn+τh

τn

) (τπ)2

τs
− τn+τh

τn

τπ
τs

(2τs − τη) − (τη + τs)
)

τs
αs
αn

d
(

αs
αn

)
dτs

 .

We know that limτs→0
αs

αn
= 0. Moreover, using the definition of αs

αn
in Equation (A.32), we have that

τs
αs

αn

= γ

(
τη + τs + (τn + τh)

(
αs
αn

)2
)

− τh
αs
αn

,

which allows us to compute limτs→0
τs
αs
αn

= γτη and limτs→0
τπ

τs
= 0. Therefore,

lim
τs→0

dV
dτs

= 2
(

1
1 − ρ

)2
τ−1
n

(τη)2

(
τn + τh
τn

− γ2τη

)
,

where we use the fact that limτs→0
τs
αs
αn

∂
(

αs
αn

)
∂τs

= 1. Hence, dV
dτs

> 0 and price informativeness and price

volatility positively comove for changes in τs.
For τη, we have

dV
dτη

= −
(

1
1 − ρ

)2
(

τs + τn+τh
τn

τπ

τη + τs + τn+τh
τn

τπ

)2(
2

(
τ−1

η + τ−1
π

)(
τη + τs + τn+τh

τn
τπ

) + 1
τ2

η

)

+

(
2αs

αp

1
1 − ρ

τn+τh
τn

τη(
τη + τs + τn+τh

τn
τπ

)2

(
τη + τπ

τητπ

)
−
(
αs

αp

)2

(τπ)−2

)
2αs

αn

∂
(

αs
αn

)
∂τη

τn.

Since limτη→∞
αs

αn
= 0 and limτη→∞

αs

αn
τη = τs

γ , it is the case that

lim
τη→∞

dV
dτη

= lim
τη→∞

(
1

1 − ρ

)2
τs

(τη + τs)3
1

(τπ)2
τ2
η

(−τ2
η τs (τη + τs)

)
2γ

(
αs

αn

)2

(
−H ′

(
αs

αn

))τn


= lim
τη→∞

(
1

1 − ρ

)2
τs(

1 + τs

τη

)3
1

(τπ)2
τ2
η

(
−
(

1 + τs
τη

)
2τsτn
τn + τh

)
= −∞

Then, ττη
= 0 and when τη changes, volatility and informativeness always positively comove.

Finally, for changes in τh, we have

dV
dτh

=
2 αs

αp

1 − ρ

τ−1
π(

τη + τs + τn+τh
τn

τπ

)2

 1
τn

(τη + τπ) τπ+(
τn+τh

τn

(
2 − τn+τh

τn

)
(τπ)2 + τn+τh

τn
(τη − 2τs) τπ − τs (τη + τs)

)
αs
αn

(
−γ
(

αs
αn

)
+1
)(

−H′
(

αs
αn

))

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and

lim
τh→0

dV
dτh

=
(

1
1 − ρ

)2 2 (τs + τπ)
(τη + τs + τπ)3 τ

−1
π

(
1
τn

(τη + τπ) τπ +
(
(τπ)2 + (τη − 2τs) τπ − τs (τη + τs)

) αs

αn

(
−γ αs

αn
+ 1
)(

−H ′
(

αs
αn

))) ,
where limτh→0 τπ ∈ (0,∞). Note that

sgn
(

lim
τh→0

dV
dτh

)
= sgn

 1
τn

(τη + τπ) τπ +
(

(τπ)2 + (τη − 2τs) τπ − τs (τη + τs)
) αs
αn

(
−γ αs

αn
+ 1
)

(
−H ′

(
αs

αn

))
 ,

which is positive for low enough values of price informativeness since −γ
(
αs

αn

)
+ 1 > 0 and in any stable

equilibrium H ′
(
αs

αn

)
< 0. Hence, ττh

= 0 and price volatility and price informative always comove positively
for changes in τh.

Hence, for τπ < τ = min
{
ττs
, ττη

, ττn
, ττh

, τγ
}

= 0 and there is no negative comovement region.

G Log-linear Approximation

Environment
The economy is populated by a continuum of investors, indexed by i ∈ I, who live for two dates. Each
investor i is born with wealth w0 and has well-behaved expected utility preferences over his terminal wealth
wi1, with flow utility given by U

(
wi1,t

)
, where U ′ (·) > 0 and U ′′ (·) < 0.

There are two long-term assets in the economy: a risk-free asset in perfectly elastic supply, with gross
return R > 1, and a risky asset in fixed supply Q, whose date t (log) payoff is θt = ln (Xt) and which trades
at a (log) price pt = ln (Pt). The process followed by θt is given by

∆θt+1 = µ∆θ + ηt, (A.33)

where ∆θt+1 = θt+1 − θt, µ∆θ is a scalar, and θ0 = 0. The realized payoff θt is common knowledge to
all investors before the price pt is determined. The realized payoff at date t + 1, θt+1, is only revealed to
investors at date t+ 1.

We assume that investors receive private signals about the innovation to the risky asset payoff. Formally,
each investor receives a signal about the payoff innovation ηt given by

sit = ηt + εist with εist ∼ N
(
0, τ−1

s

)
,

where εist ⊥ εjst for all i ̸= j, and ηt ⊥ εist for all t and all i.
We also assume that investors have additional private trading motives coming from heterogeneous priors

that are random in the aggregate. Formally, each investor i born at date t has a prior over the innovations
to the payoff difference ηt given by

ηt ∼i,t N
(
nit, τ

−1
η

)
,

where
nit = nt + εint with εint

iid∼ N
(
0, τ−1

n

)
,

and
nt = µn + εnt with εnt

iid∼ N
(
0, τ−1

∆n
)
,

where µn is a scalar, and where εnt ⊥ εint for all t and all i. The variable nt, which can be interpreted as the
aggregate sentiment in the economy, is not observed and acts as a source of aggregate noise, preventing the
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asset price from being fully revealing. Without loss of generality, we assume that ut+s ∼i,t N
(
0, τ−1

η

)
for all

s > 0.
Each investor i born at date t optimally chooses a portfolio share in the risky asset, denoted by qit, to

solve
max
qi

t

E
[
U
(
wi1,t

)∣∣ Iit] (A.34)

subject to a wealth accumulation constraint

wi1,t =
(
R+ qit

(
Xt+1 + Pt+1

Pt
−R

))
w0, (A.35)

where the information set of an investor i at date t is given by Iit =
{
sit, n

i
t, {Xs}s≤t , {Ps}s≤t

}
.

Portfolio Demand Approximation
The optimality condition of an investor that maximizes the investor’s expected utility subject to the wealth
accumulation constraint is given by

E
[
U ′ (wi1,t)(Xt+1 + Pt+1

Pt
−R

)∣∣∣∣ Iit] = 0. (A.36)

We approximate an investor’s first-order condition in three steps.
First, we take a first-order Taylor expansion of an investor’s future marginal utility U ′ (wi1,t) around the

current date t wealth level wi0. Formally, we approximate U ′ (wi1,t) as follows

U ′ (wi1,t) ≈ U ′ (w0) + U ′′ (w0) ∆wi1,t,

which allows us to express Equation (A.36) as

U ′ (w0)Ei
t

[
Xt+1 + Pt+1

Pt
−R

]
+ U ′′ (w0)w0Ei

t

[(
(R− 1) + qi

t

(
Xt+1 + Pt+1

Pt
−R

))(
Xt+1 + Pt+1

Pt
−R

)]
≈ 0.

Second, we impose that terms that involve the product of two or more net interest rates are negligible. In
continuous time, these terms would be of order (dt)2. Formally, it follows that

(R− 1)Eit
[
Xt+1 + Pt+1

Pt
−R

]
≈ 0 and

(
Eit
[
Xt+1 + Pt+1

Pt
−R

])2
≈ 0,

which allows us to express Equation (A.36) as

U ′ (w0)Eit
[
Xt+1 + Pt+1

Pt
−R

]
+ U ′′ (w0)w0q

i
tVarit

[
Xt+1 + Pt+1

Pt

]
≈ 0.

Therefore, we can express an investor’s risky portfolio share qit as

qit ≈ 1
γ

Eit
[
Xt+1+Pt+1

Pt
−R

]
Varit

[
Xt+1+Pt+1

Pt

] , (A.37)

where γ ≡ −w0U
′′(w0)

U ′(w0) denotes the coefficient of relative risk aversion.
Third, as in Campbell and Shiller (1988), we take a log-linear approximation of returns around a
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predetermined dividend-price ratio. Formally, note that

Xt+1 + Pt+1

Pt
= e

ln

((
1+

Pt+1
Xt+1

)
Xt+1

Xt
Pt
Xt

)
,

which implies that

ln
(
Xt+1 + Pt+1

Pt

)
= ln

(
1 + Pt+1

Xt+1

)
+ θt+1 − θt − (pt − θt)

= ln
(
1 + ept+1−θt+1

)
+ ∆θt+1 − (pt − θt) ,

where yt = lnYt for any given variable Yt. Following Campbell and Shiller (1988), we approximate the first
term around a point PX = ep−θ, to find that

ln
(
1 + ept+1−θt+1

)
≈ ln (1 + PX) + PX

PX + 1 (pt+1 − θt+1 − (p− θ)) .

= k0 + k1 (pt+1 − θt+1) ,

where k1 ≡ PX
PX+1 and k0 ≡ ln (1 + PX) − k1 (p− θ).

Therefore, starting from Equation (A.37), we can express an investor’s risky portfolio share qit as

qit ≈ 1
γ

k0 + k1Eit [pt+1 − θt+1] + Eit [∆θt+1] − (pt − θt) − r

Var [k1 (pt+1 − θt+1) + ∆θt+1] ,

where we define r ≡ lnR and we used that ey ≈ 1 + y.

Forming Expectations
In order to characterize the equilibrium it is necessary to characterize investors’ expectations. We
conjecture and subsequently verify that k1Eit [pt+1 − θt+1] + Eit [∆θt+1] is linear in sit, nit, and θt and that
Var [k1 (pt+1 − θt+1) + ∆θt+1] is a constant. Under this conjecture, qit is a linear function of sit, θt, and nit,
given by

qit ≈ αθθt + αss
i
t + αnn

i
t − αppt + ψ.

This expression and the market clearing condition
´
qitw

i
0di = Q imply that

pt ≈ αθ
αp
θt + αs

αp
ηt + αn

αp
nt + ψ

αp
.

As in Vives (2008), we make use the Strong Law of Large Numbers, since the sequence of independent
random variables

{
εist, ε

i
nt

}
has uniformly bounded variance and mean zero. This expression can also be

written as
pt ≈

(
αθ
αp

− αs
αp

)
θt + αs

αp
θt+1 + αn

αp
nt + ψ

αp
− αs
αp
µ∆θ. (A.38)

Investors in the model learn from the price. The information contained in the price for an investor in the
model is

πt = αp
αs

(
pt −

(
αθ
αp
θt + αn

αp
µn + ψ

αp

))
,

which has a precision

τπ ≡ Var
[
πt| ηt, {θs}s≤t , pt−1

]−1
=
(
αs
αn

)2
τn.
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Then,

Eit [ηt] = E
[
ηt|Iit

]
= τss

i
t + τηn

i
t + τππt

τs + τη + τπ
=
τss

i
t + τηn

i
t + τπ

αp

αs

(
pt − αθ

αp
θt − αn

αs
µ∆n − ψ

αp

)
τs + τη + τπ

and
Var

[
ηt| Iit

]
= (τs + τη + τπ)−1

,

where Iit =
{
sit, n

i
t, {ps}s≤t , {θs}s≤t

}
. Note that these two expressions imply that our conjecture about qit

is satisfied. To see this, note that

k1Ei
t [pt+1 − θt+1] + Ei

t [∆θt+1] = k1Ei
t

[
αθ

αp
θt+1 + αs

αp
ηt+1 + αn

αp
nt+1 + ψ

αp
− θt+1

]
+ µ∆θ + Ei

t [ηt]

= k1

(
Ei

t

[(
αθ

αp
− 1
)
θt+1 + αs

αp
ηt+1

]
+ αn

αp
µn + ψ

αp

)
+ µ∆θ + Ei

t [ηt]

= k1

((
αθ

αp
− 1
)(

µ∆θ + Ei
t [ηt]

)
+
(
αθ

αp
− 1
)
θt + αn

αp
µn + ψ

αp

)
+ µ∆θ + Ei

t [ηt]

= k1

((
αθ

αp
− 1 + 1

k1

)(
µ∆θ + Ei

t [ηt]
)

+
(
αθ

αp
− 1
)
θt + αn

αp
µn + ψ

αp

)
,

where we used that Eit [ηt+1] = 0 and that Eit
[
εnt+1

]
= 0. Moreover,

Varit [k1 (pt+1 − θt+1) + ∆θt+1] = Varit
[
k1

((
αθ
αp

− 1 + 1
k1

)
∆θt+1 + αs

αp
ηt+1 + αn

αp
nt+1

)]
= k2

1

(
αθ
αp

− 1 + 1
k1

)2
Varit [ηt] + k2

1

(
αs
αp

)2
Varit [ηt+1] + k2

1

(
αn
αp

)2
Varit [εnt ]

= k2
1

(
αθ
αp

− 1 + 1
k1

)2
(τs + τη + τπ)−1 + k2

1

(
αs
αp

)2
τ−1
η + k2
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Using these expressions in the first-order condition and matching coefficients gives
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,

where κ ≡ γVar [k1 (pt+1 − θt+1) + ∆θt+1].
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Then, the equilibrium coefficients are

αθ = 1
κ

τs
τs + τπ

(A.39)

αs = 1
κ

τs
τs + τη + τπ

(A.40)

αn = 1
κ

τη
τs + τη + τπ

(A.41)

αp = 1
κ

τs
τs + τπ

(A.42)

ψ = 1
κ

(
k0 + k1

(
− 1
k1

τπ
τs + τπ

+ 1
)
αn
αp
µn + µ∆θ − r

)(
1 +

1
k1

τπ

τs+τπ
− k1

τs

τs+τπ

)−1

. (A.43)

H Comovement Scores: Additional Empirical Results
Figures OA-3 through OA-7 are the counterparts of the cross-sectional results presented in Table 1. Each
figure shows scatter plots of cross-sectional regressions of comovement scores (in twentiles) on each of the
five variables considered: size, value, turnover, idiosyncratic return volatility, and institutional ownership,
for each of the years between 1981 and 2016.

Table OA-1 reports year-by-year summary statistics on the panel of comovement scores recovered.
Finally, Table OA-2 reports the cross-sectional correlation between comovement scores measured in year
t and comovement scores measured in prior years, following the methodology of Chapter 4 of Bali, Engle
and Murray (2016). This table shows that comovement scores are highly persistent over time. As one might
expect, the strength of the correlation decays over time, with one-year cross correlations consistently above
0.9, while five-year cross-correlations can be as low as 0.5.
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Figure OA-3: Comovement score and size
Note: Figure OA-3 shows year-by-year cross-sectional regressions of comovement scores(in twentiles) on size, defined
as the log of market capitalization — see e.g. Bali, Engle and Murray (2016). The estimate reported in Table 1 can
be interpreted as a weighted averaged of the year-by-year slope coefficient illustrated here.
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Figure OA-4: Comovement score and value
Note: Figure OA-4 shows year-by-year cross-sectional regressions of comovement scores (in twentiles) on value,
defined as the ratio between a stock’s book value and its market capitalization. The estimate reported in Table 1 can
be interpreted as a weighted averaged of the year-by-year slope coefficient illustrated here.
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Figure OA-5: Comovement score and turnover
Note: Figure OA-5 shows year-by-year cross-sectional regressions of comovement scores (in twentiles) on turnover,
defined as the ratio between trading volume and shares outstanding. The estimate reported in Table 1 can be
interpreted as a weighted averaged of the year-by-year slope coefficient illustrated here.
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Figure OA-6: Comovement score and idiosyncratic return volatility
Note: Figure OA-6 shows year-by-year cross-sectional regressions of comovement scores (in twentiles) on idiosyncratic
volatility, define as the standard deviation over a 30 month period of the difference between the returns of a stock and
the market return. The estimate reported in Table 1 can be interpreted as a weighted averaged of the year-by-year
slope coefficient illustrated here.
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Figure OA-7: Comovement score and institutional ownership
Note: Figure OA-7 shows year-by-year cross-sectional regressions of comovement scores (in twentiles) on institutional
ownership, defined as the proportion of a stock held by institutional investors. The estimate reported in Table 1 can
be interpreted as a weighted averaged of the year-by-year slope coefficient illustrated here.
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Table OA-1: Comovement scores: year-by-year summary statistics, annual data

t Median Mean SD Skew Kurt P5 P25 P75 P95 n

1980 0.8645 0.6860 0.3662 -0.8667 -0.8011 0 0.4020 0.9969 1 56
1981 0.8083 0.6658 0.3640 -0.7911 -0.8876 0 0.4371 0.9941 1 74
1982 0.6729 0.5704 0.3876 -0.3687 -1.4655 0 0.1290 0.9454 1 140
1983 0.7518 0.6042 0.3818 -0.4733 -1.3556 0 0.2554 0.9804 1 156
1984 0.8698 0.6960 0.3547 -0.8963 -0.7168 0 0.4124 0.9912 1 241
1985 0.9012 0.7148 0.3456 -0.9707 -0.5447 0 0.4684 0.9965 1 383
1986 0.9167 0.7126 0.3583 -0.9708 -0.6088 0 0.4603 0.9977 1 372
1987 0.9464 0.7601 0.3327 -1.2620 0.1272 0 0.5719 0.9987 1 435
1988 0.9610 0.7623 0.3366 -1.2793 0.1636 0 0.6184 0.9995 1 357
1989 0.9699 0.7478 0.3531 -1.1905 -0.1467 0 0.5997 0.9995 1 349
1990 0.9616 0.7572 0.3468 -1.2629 0.0639 0 0.5880 0.9993 1 354
1991 0.9715 0.7611 0.3498 -1.2713 0.0441 0 0.6208 0.9997 1 455
1992 0.9766 0.7726 0.3442 -1.3374 0.2166 0 0.6607 0.9998 1 496
1993 0.9696 0.7662 0.3467 -1.3292 0.2043 0 0.6347 0.9998 1 522
1994 0.9758 0.7687 0.3456 -1.3449 0.2542 0 0.6606 0.9998 1 506
1995 0.9847 0.7802 0.3394 -1.3966 0.4275 0 0.6350 0.9998 1 544
1996 0.9843 0.7814 0.3398 -1.4068 0.4433 0 0.6896 0.9998 1 584
1997 0.9853 0.7683 0.3474 -1.3036 0.1478 0 0.6206 0.9998 1 622
1998 0.9800 0.7684 0.3524 -1.3256 0.1334 0 0.6661 0.9999 1 631
1999 0.9842 0.7547 0.3664 -1.2212 -0.1980 0 0.5973 0.9999 1 603
2000 0.9754 0.7329 0.3697 -1.0704 -0.5049 0 0.4819 0.9998 1 562
2001 0.9814 0.7323 0.3724 -1.0482 -0.5776 0 0.4705 0.9999 1 548
2002 0.9733 0.7169 0.3862 -0.9837 -0.7408 0 0.3992 0.9999 1 579
2003 0.9524 0.6811 0.3983 -0.7773 -1.1171 0 0.3026 0.9998 1 632
2004 0.9504 0.6812 0.3992 -0.7895 -1.1039 0 0.3001 0.9998 1 675
2005 0.9331 0.6721 0.3997 -0.7323 -1.1878 0 0.2786 0.9997 1 683
2006 0.9115 0.6602 0.3984 -0.6691 -1.2627 0 0.2540 0.9993 1 699
2007 0.9065 0.6541 0.4024 -0.6386 -1.3095 0 0.2255 0.9994 1 711
2008 0.9457 0.6833 0.3963 -0.8029 -1.0727 0 0.3222 0.9996 1 762
2009 0.9630 0.6974 0.3947 -0.8665 -0.9812 0 0.3295 0.9998 1 764
2010 0.9760 0.7064 0.3903 -0.9087 -0.8882 0 0.3796 0.9998 1 753
2011 0.9812 0.7092 0.3876 -0.9134 -0.8655 0 0.3949 0.9998 1 753
2012 0.9704 0.7050 0.3918 -0.9100 -0.8973 0 0.3569 0.9998 1 765
2013 0.9642 0.7081 0.3871 -0.9306 -0.8466 0 0.3812 0.9998 1 733
2014 0.9461 0.6996 0.3883 -0.8948 -0.8979 0 0.3698 0.9999 1 722
2015 0.9060 0.6687 0.3969 -0.7394 -1.1463 0 0.2776 0.9996 1 695
2016 0.8878 0.6522 0.4016 -0.6440 -1.2898 0 0.2378 0.9993 1 645
2017 0.8747 0.6398 0.4061 -0.5907 -1.3566 0 0.2043 0.9994 1 572

Note: This table reports year-by-year summary statistics on the panel of comovement scores recovered. It provides
information on the median; mean; standard deviation; skewness; excess kurtosis; and 5th, 25th, 75th, and 95th
percentiles of each yearly distribution, as well as the number of stocks in each year. Since our panel of comovement
scores is quarterly, we average the measures of quarterly comovement scores at the yearly level before computing the
summary statistics. Comovement scores in year t are computed over a rolling window of 40 quarters prior.
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Table OA-2: Persistence of comovement scores

t ρt,t−1 ρt,t−2 ρt,t−3 ρt,t−4 ρt,t−5

1980 0.9801 0.9904 0.9569 0.9411 0.8531
1981 0.9818 0.9525 0.9574 0.8967 0.8677
1982 0.9739 0.9307 0.9026 0.9168 0.8835
1983 0.9557 0.8415 0.7163 0.6307 0.4347
1984 0.9171 0.8707 0.7555 0.6337 0.4964
1985 0.8663 0.7424 0.7443 0.6135 0.5704
1986 0.9402 0.7487 0.6604 0.6623 0.5005
1987 0.9362 0.8528 0.6446 0.5614 0.5553
1988 0.9581 0.8861 0.7930 0.5763 0.5505
1989 0.9727 0.9086 0.8409 0.7497 0.5833
1990 0.9358 0.9032 0.8255 0.7331 0.6774
1991 0.9530 0.8577 0.8203 0.7796 0.7230
1992 0.9540 0.9100 0.8099 0.7777 0.7312
1993 0.9573 0.9191 0.8998 0.8140 0.8067
1994 0.9735 0.9204 0.8662 0.8797 0.8178
1995 0.9330 0.8921 0.8223 0.7591 0.7946
1996 0.9324 0.8526 0.8048 0.7426 0.6714
1997 0.9398 0.8385 0.7718 0.7288 0.6590
1998 0.9253 0.8262 0.6850 0.6541 0.5879
1999 0.9418 0.8541 0.8096 0.7006 0.6538
2000 0.9702 0.9155 0.8482 0.7857 0.6959
2001 0.9256 0.8498 0.7936 0.7654 0.7061
2002 0.9407 0.8056 0.7190 0.6526 0.6594
2003 0.9403 0.8973 0.7853 0.7095 0.6327
2004 0.9604 0.8662 0.8289 0.7385 0.6773
2005 0.9404 0.8679 0.7694 0.6934 0.6613
2006 0.9428 0.8437 0.7792 0.7001 0.6133
2007 0.9501 0.8797 0.7654 0.6913 0.6299
2008 0.9310 0.8389 0.7775 0.6629 0.5924
2009 0.8740 0.7828 0.7083 0.6775 0.6068
2010 0.9455 0.8027 0.7246 0.6550 0.6208
2011 0.9538 0.8860 0.7470 0.6905 0.6213
2012 0.9396 0.8656 0.7890 0.6490 0.5620
2013 0.9640 0.8872 0.8348 0.7497 0.5889
2014 0.9657 0.9217 0.8395 0.7866 0.7031
2015 0.9659 0.9256 0.8935 0.8219 0.7699
2016 0.9803 0.9312 0.8913 0.8622 0.7949
2017 0.9633 0.9285 0.8945 0.8437 0.8119

Note: This table reports the cross-sectional correlation between comovement scores measured in year t and
comovement scores measures in year t−k, where k = {1, 2, 3, 4, 5}. Since our panel of comovement scores is quarterly,
we average the measures of quarterly comovement scores at the yearly level before computing the correlations. We
start reporting the correlations in 1980, since that is the first year with more than 250 stocks. Comovement scores
in year t are computed over a rolling window of 40 quarters prior.
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