Discussion Self-Fulfilling Asset Prices by Alexander Zentefis

Eduardo Dávila

Yale/NYU Stern and NBER

AFA Meetings Atlanta, January 4, 2019

Summary

 Dynamic model of trading in financial markets with collateral constraints

- Generates multiple equilibria
- ► Feedback: ↑ prices, ↑ collateral values, ↑ increase leverage, ↑ asset demand, ↑ prices

Summary

 Dynamic model of trading in financial markets with collateral constraints

- Generates multiple equilibria
- ► Feedback: ↑ prices, ↑ collateral values, ↑ increase leverage, ↑ asset demand, ↑ prices
- Main results
 - Extrinsic uncertainty as driver of asset prices
 - Crashes
 - Booms
 - Leverage cycles
 - Overshooting
 - etc

Discussion

- 1. Describe the model, highlighting some assumptions
- 2. General comments/thoughts

- Infinite horizon, discrete time
- Ex-ante identical agents with log preferences

- Infinite horizon, discrete time
- Ex-ante identical agents with log preferences
 - Myopic portfolio choice
- Two risky assets, two possible payoffs, perfectly negatively correlated cash flows, markov transition
- Risk-free asset market, fixed supply of funds for borrowing
 - No aggregate uncertainty

- Infinite horizon, discrete time
- Ex-ante identical agents with log preferences
 - Myopic portfolio choice
- Two risky assets, two possible payoffs, perfectly negatively correlated cash flows, markov transition
- Risk-free asset market, fixed supply of funds for borrowing

No aggregate uncertainty

- Cost κ of investing in asset with low payoff
 - This creates an asymmetry

No short sales

- Infinite horizon, discrete time
- Ex-ante identical agents with log preferences
 - Myopic portfolio choice
- Two risky assets, two possible payoffs, perfectly negatively correlated cash flows, markov transition
- Risk-free asset market, fixed supply of funds for borrowing

No aggregate uncertainty

• Cost κ of investing in asset with low payoff

This creates an asymmetry

- No short sales
- Borrowing constraints (only asset with high payoff is collateralizable)

► Paper:

$$\left(1-\phi_{f,t}^{i}\right)\phi_{coll,t}^{i}R_{coll,t+1}^{min}+\phi_{f,t}^{i}R_{f,t}\geq 0$$

- Infinite horizon, discrete time
- Ex-ante identical agents with log preferences
 - Myopic portfolio choice
- Two risky assets, two possible payoffs, perfectly negatively correlated cash flows, markov transition
- Risk-free asset market, fixed supply of funds for borrowing

No aggregate uncertainty

• Cost κ of investing in asset with low payoff

This creates an asymmetry

- No short sales
- Borrowing constraints (only asset with high payoff is collateralizable)

► Paper:

$$\left(1-\phi_{f,t}^{i}\right)\phi_{coll,t}^{i}R_{coll,t+1}^{min}+\phi_{f,t}^{i}R_{f,t}\geq 0$$

Conventional:

$$b_t R_t^f \ge -\theta q_{t+1} k_t$$

• Benchmark $\kappa = 0$, symmetric unique steady state

- Benchmark $\kappa = 0$, symmetric unique steady state
- Symmetric equilibrium with $\kappa
 eq 0$
 - Does not exist
 - Makes sense, asymmetric investment opportunities
 - ► Everyone is ex-ante identical ⇒ Equilibria with mixing

- Benchmark $\kappa = 0$, symmetric unique steady state
- Symmetric equilibrium with $\kappa \neq 0$
 - Does not exist
 - Makes sense, asymmetric investment opportunities
 - Everyone is ex-ante identical ⇒ Equilibria with mixing
- Asymmetric equilibrium
 - Agents must be indifferent between
 - Buying both assets while borrowing
 - Investing on a single asset (high payoff)
 - Arbitrageur's collateral constraint will bind
 - Synthetic risk-free asset yields a higher return to compensate for κ

- Benchmark $\kappa = 0$, symmetric unique steady state
- Symmetric equilibrium with $\kappa
 eq 0$
 - Does not exist
 - Makes sense, asymmetric investment opportunities
 - ► Everyone is ex-ante identical ⇒ Equilibria with mixing
- Asymmetric equilibrium
 - Agents must be indifferent between
 - Buying both assets while borrowing
 - Investing on a single asset (high payoff)
 - Arbitrageur's collateral constraint will bind
 - > Synthetic risk-free asset yields a higher return to compensate for κ
- Source of multiplicity different from fire-sales models
 - More selling, lower prices
 - Lower prices, more need to sell

Multiplicity

Figure 4: Multi-valued Dynamical System

Multiplicity

Figure 4: Multi-valued Dynamical System

Multiplicity

Figure 4: Multi-valued Dynamical System

- Multiple P_{t+1} for a given P_t
- My reading of the paper is that it cannot accomodate a random extrinsic aggregate shock ζ_t ⇒ Analysis valid for perfect foresight shocks ζ_t
 - Bacchetta, Tille, Van Wincoop AER 12: "Self-Fulfilling Risk Panics"

- 1. Relation to the literature
 - A fair of number of papers identify collateral constraints as source of multiplicity, at least since Kiyotaki/Moore 97
 - see e.g. Krishnamurthy JET 03, Lorenzoni Restud 08, Gai et al EJ 10, Benhabib and coauthors, Davila/Korinek Restud 18
 - Schmitt-Grohe and Uribe WP 16: "Multiple Equilibria in Open Economy Models with Collateral Constraints

- 1. Relation to the literature
 - A fair of number of papers identify collateral constraints as source of multiplicity, at least since Kiyotaki/Moore 97
 - see e.g. Krishnamurthy JET 03, Lorenzoni Restud 08, Gai et al EJ 10, Benhabib and coauthors, Davila/Korinek Restud 18
 - Schmitt-Grohe and Uribe WP 16: "Multiple Equilibria in Open Economy Models with Collateral Constraints
 - Some of these papers find multiple equilibrium with constraints that include *current* prices

$$b_{t+1} \leq q_t k_{t+1}$$

- Purely on the theory side: What are we learning?
 - Is the arbitrage setup essential? (closer to Gromb/Vayanos, but that model does not have multiplicity)
 - Additional assumptions in addition to collateral constraint? Short selling?
 - Cost of trading?
 - Timing of constraints?

2. Motivation of the choice of framework

- How to map these two assets to reality? Why this arbitrage framework?
- ► In the model when P goes up, 1 P goes down, by construction
- Which assets are those that alternate being collateralizable and not?

2. Motivation of the choice of framework

- How to map these two assets to reality? Why this arbitrage framework?
- ► In the model when P goes up, 1 P goes down, by construction
- Which assets are those that alternate being collateralizable and not?
- 3. Refinements
 - Multiplicity if often seen as a nuisance, not a feature
 - Robustness of the multi-valued region to information structure
 - Robustness to specifications of extrinsic uncertainty