Discussion of Coordinating Business Cycles by Edouard Schaal and Mathieu Taschereau-Dumouchel

> Eduardo Dávila NYU Stern

Wharton Liquidity Conference October 10 2015

Summary

Motivation

- Amplification and persistence of shocks
- Persistent output drops (e.g. 2008 recession)

Summary

Motivation

- Amplification and persistence of shocks
- Persistent output drops (e.g. 2008 recession)

This paper: A quantitative theory of business cycles with coordination failures

Summary

Motivation

- Amplification and persistence of shocks
- Persistent output drops (e.g. 2008 recession)
- This paper: A quantitative theory of business cycles with coordination failures
 - Two key-ingredients
 - 1. **Non-convexity** in production side of the economy (discrete choice of technology with fixed cost)
 - 2. Complementarity due to CES production/utility

A number of sharp results

1. Static economy

- Multiple equilibria possible if enough feedback (positive)
- Coordination failure (normative)

A number of sharp results

- 1. Static economy
 - Multiple equilibria possible if enough feedback (positive)
 - Coordination failure (normative)
- 2. Dynamic economy
 - Unique equilibrium (under conditions)
 - Multiple steady states
 - Calibration

A number of sharp results

- 1. Static economy
 - Multiple equilibria possible if enough feedback (positive)
 - Coordination failure (normative)
- 2. Dynamic economy
 - Unique equilibrium (under conditions)
 - Multiple steady states
 - Calibration
 - Policy
 - (Constrained) First best
 - Government expenditure (Keynesian)

- 1. Macro business cycle literature on coordination failures
 - Early New-Keynesian literature (monopolistic competition and/or increasing returns)
 - Diamond 82, Weitzman 82, Hart 82, Solow 86, Blanchard/Kiyotaki 87, Kiyotaki 88, Cooper/John 88, Startz 89, Mankiw/Romer 91

- Early New-Keynesian literature (monopolistic competition and/or increasing returns)
 - Diamond 82, Weitzman 82, Hart 82, Solow 86, Blanchard/Kiyotaki 87, Kiyotaki 88, Cooper/John 88, Startz 89, Mankiw/Romer 91
- Neoclassical papers with non-convexities
 - Benhabib, Farmer, Azariadis, and coauthors

- Early New-Keynesian literature (monopolistic competition and/or increasing returns)
 - Diamond 82, Weitzman 82, Hart 82, Solow 86, Blanchard/Kiyotaki 87, Kiyotaki 88, Cooper/John 88, Startz 89, Mankiw/Romer 91
- Neoclassical papers with non-convexities
 - Benhabib, Farmer, Azariadis, and coauthors
- (Lost the battle to sticky price framework)

- Early New-Keynesian literature (monopolistic competition and/or increasing returns)
 - Diamond 82, Weitzman 82, Hart 82, Solow 86, Blanchard/Kiyotaki 87, Kiyotaki 88, Cooper/John 88, Startz 89, Mankiw/Romer 91
- Neoclassical papers with non-convexities
 - Benhabib, Farmer, Azariadis, and coauthors
- (Lost the battle to sticky price framework)
- (Growth literature too: Shleifer 86, Murphy/Shleifer/Vishny 89, Krugman 91)

- Early New-Keynesian literature (monopolistic competition and/or increasing returns)
 - Diamond 82, Weitzman 82, Hart 82, Solow 86, Blanchard/Kiyotaki 87, Kiyotaki 88, Cooper/John 88, Startz 89, Mankiw/Romer 91
- Neoclassical papers with non-convexities
 - Benhabib, Farmer, Azariadis, and coauthors
- (Lost the battle to sticky price framework)
- (Growth literature too: Shleifer 86, Murphy/Shleifer/Vishny 89, Krugman 91)
- 2. Global games (appealing equilibrium refinement)
 - Growing literature after Morris/Shin 98
 - Smaller scale models: currency attacks, bank runs (Goldstein/Pauzner 05), etc.

- Early New-Keynesian literature (monopolistic competition and/or increasing returns)
 - Diamond 82, Weitzman 82, Hart 82, Solow 86, Blanchard/Kiyotaki 87, Kiyotaki 88, Cooper/John 88, Startz 89, Mankiw/Romer 91
- Neoclassical papers with non-convexities
 - Benhabib, Farmer, Azariadis, and coauthors
- (Lost the battle to sticky price framework)
- (Growth literature too: Shleifer 86, Murphy/Shleifer/Vishny 89, Krugman 91)
- 2. **Global games** (appealing equilibrium refinement)
 - Growing literature after Morris/Shin 98
 - Smaller scale models: currency attacks, bank runs (Goldstein/Pauzner 05), etc.
- This paper: Business cycle model + Global game
 - Quantitatively

• Households max $\mathbb{E} \sum_{t=0}^{\infty} \beta^t U(C_t, L_t)$, GHH for proofs

- Households max $\mathbb{E} \sum_{t=0}^{\infty} \beta^t U(C_t, L_t)$, GHH for proofs
- Budget constraint

$$C_t + K_{t+1} - (1 - \delta)K_t = W_t L_t + R_t K_t + \Pi_t$$

- Households max $\mathbb{E} \sum_{t=0}^{\infty} \beta^t U(C_t, L_t)$, GHH for proofs
- Budget constraint

$$C_t + K_{t+1} - (1 - \delta)K_t = W_t L_t + R_t K_t + \Pi_t$$

Final good producers (competitive)

$$Y_t = \left(\int_0^1 Y_{jt}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

- Households max $\mathbb{E} \sum_{t=0}^{\infty} \beta^t U(C_t, L_t)$, GHH for proofs
- Budget constraint

$$C_t + K_{t+1} - (1 - \delta)K_t = W_t L_t + R_t K_t + \Pi_t$$

Final good producers (competitive)

$$Y_t = \left(\int_0^1 Y_{jt}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

Intermediate good producers (monopolistic competition)

$$Y_{jt} = A e^{\theta_t} u_{jt} K_{jt}^{\alpha} L_{jt}^{1-\alpha}$$

- ► Capacity utilization choice: u_{jt} > 1 high at cost f (per period fixed cost, units of final good), otherwise u_{jt} = 1
- Strong non-convexity

Multiple equilibria if

$$\frac{1+\nu}{\alpha+\nu} > \sigma - 1$$

Multiple equilibria if

$$\frac{1+\nu}{\alpha+\nu} > \sigma - 1$$

- Labor supply elasticity ν
- \blacktriangleright Labor contribution α
- \blacktriangleright CES parameter σ

Multiple equilibria if

$$\frac{1+\nu}{\alpha+\nu} > \sigma - 1$$

- Labor supply elasticity ν
- Labor contribution α
- CES parameter σ
- **Fourth:** Degree of nonconvexity in production (implicit)

Multiple equilibria if

$$\frac{1+\nu}{\alpha+\nu} > \sigma - 1$$

- Labor supply elasticity ν
- Labor contribution α
- CES parameter σ
- Fourth: Degree of nonconvexity in production (implicit)
- Calibration: $\alpha = 0.3$, $\nu = 0.4$, $\sigma = 3$

Multiple equilibria if

$$\frac{1+\nu}{\alpha+\nu} > \sigma - 1$$

Three forces:

- Labor supply elasticity ν
- Labor contribution α
- CES parameter σ
- Fourth: Degree of nonconvexity in production (implicit)
- Calibration: $\alpha = 0.3$, $\nu = 0.4$, $\sigma = 3$

► Hint for dynamics: K ↑ ⇒ high capacity equilibrium more likely

Multiple equilibria if

$$\frac{1+\nu}{\alpha+\nu} > \sigma - 1$$

- Labor supply elasticity ν
- Labor contribution α
- CES parameter σ
- Fourth: Degree of nonconvexity in production (implicit)
- Calibration: $\alpha = 0.3$, $\nu = 0.4$, $\sigma = 3$
- ► Hint for dynamics: K ↑ ⇒ high capacity equilibrium more likely
- ▶ Endogenous TFP (increasing in *m*) (~ Hsieh-Klenow)

Multiple equilibria if

$$\frac{1+\nu}{\alpha+\nu} > \sigma - 1$$

- Labor supply elasticity ν
- Labor contribution α
- CES parameter σ
- Fourth: Degree of nonconvexity in production (implicit)
- Calibration: $\alpha = 0.3$, $\nu = 0.4$, $\sigma = 3$
- ► Hint for dynamics: K ↑ ⇒ high capacity equilibrium more likely
- ▶ Endogenous TFP (increasing in *m*) (~ Hsieh-Klenow)
- Interesting normative result
 - Planner wants to eliminate multiplicity but also correct the unique low activity equilibrium (preexistent distortion)

• Intermediate producers observe private signals on θ (TFP)

- Intermediate producers observe private signals on θ (TFP)
- Main result: If private signals are sufficiently precise, there exists a unique equilibrium

- Intermediate producers observe private signals on θ (TFP)
- Main result: If private signals are sufficiently precise, there exists a unique equilibrium
 - Threshold equilibrium form

- Intermediate producers observe private signals on θ (TFP)
- Main result: If private signals are sufficiently precise, there exists a unique equilibrium
 - Threshold equilibrium form
 - Proof based on Euler equation as monotone operator

Result: multiple steady states

Capital K

Figure 6: Multiple steady states as a function of θ

Remark: Multiple equilibria vs. multiple steady states

Result: multiple steady states

Capital K

Figure 6: Multiple steady states as a function of θ

Remark: Multiple equilibria vs. multiple steady statesPoverty traps

Result: main mechanism

Capital K

Figure 7: Phase diagram with basins of attraction

1. Calibration

Precision of private signal, from SPF data (?)

- 1. Calibration
 - Precision of private signal, from SPF data (?)
 - Ergodic distribution: bimodal and skewed (interesting)

- 1. Calibration
 - Precision of private signal, from SPF data (?)
 - Ergodic distribution: bimodal and skewed (interesting)
 - Impulse response: fits the 08 episode

- 1. Calibration
 - Precision of private signal, from SPF data (?)
 - Ergodic distribution: bimodal and skewed (interesting)
 - Impulse response: fits the 08 episode
- 2. Normative results
 - (Constrained) first best planning problem (Angeletos/Pavan)
 - Two (one?) tax instruments + Lump-sum transfer: target the distortion

- 1. Calibration
 - Precision of private signal, from SPF data (?)
 - Ergodic distribution: bimodal and skewed (interesting)
 - Impulse response: fits the 08 episode
- 2. Normative results
 - (Constrained) first best planning problem (Angeletos/Pavan)
 - Two (one?) tax instruments + Lump-sum transfer: target the distortion
 - Suggestion: variational/perturbation argument at the CE

- 1. Calibration
 - Precision of private signal, from SPF data (?)
 - Ergodic distribution: bimodal and skewed (interesting)
 - Impulse response: fits the 08 episode
- 2. Normative results
 - (Constrained) first best planning problem (Angeletos/Pavan)
 - Two (one?) tax instruments + Lump-sum transfer: target the distortion
 - Suggestion: variational/perturbation argument at the CE
 - Government expenditure G_t
 - Standard effect: G ↑, increase in labor supply through wealth effect ⇒ Welfare goes down (first order loss)

- 1. Calibration
 - Precision of private signal, from SPF data (?)
 - Ergodic distribution: bimodal and skewed (interesting)
 - Impulse response: fits the 08 episode
- 2. Normative results
 - (Constrained) first best planning problem (Angeletos/Pavan)
 - Two (one?) tax instruments + Lump-sum transfer: target the distortion
 - Suggestion: variational/perturbation argument at the CE
 - Government expenditure G_t
 - Standard effect: G ↑, increase in labor supply through wealth effect ⇒ Welfare goes down (first order loss)
 - This paper: it can help you move to the HC steady state (welfare may go up) (first order gain)

- 1. Calibration
 - Precision of private signal, from SPF data (?)
 - Ergodic distribution: bimodal and skewed (interesting)
 - Impulse response: fits the 08 episode
- 2. Normative results
 - (Constrained) first best planning problem (Angeletos/Pavan)
 - Two (one?) tax instruments + Lump-sum transfer: target the distortion
 - Suggestion: variational/perturbation argument at the CE
 - Government expenditure G_t
 - Standard effect: G ↑, increase in labor supply through wealth effect ⇒ Welfare goes down (first order loss)
 - This paper: it can help you move to the HC steady state (welfare may go up) (first order gain)
 - Remark: Throwing G_t is somewhat extreme

- 1. Alternative hypothesis: Financial markets/shocks?
 - Real model: no financial frictions
 - Financial Frictions \Rightarrow Amplification + Persistence

- 1. Alternative hypothesis: Financial markets/shocks?
 - Real model: no financial frictions
 - Financial Frictions \Rightarrow Amplification + Persistence
 - Why not reconcile both views?
 - Conjecture: similar mechanism can apply in financial context

- 1. Alternative hypothesis: Financial markets/shocks?
 - Real model: no financial frictions
 - Financial Frictions \Rightarrow Amplification + Persistence
 - Why not reconcile both views?
 - Conjecture: similar mechanism can apply in financial context
 - Global game refinement in dynamic model with financial frictions? (e.g. Kiyotaki-Moore)

- 1. Alternative hypothesis: Financial markets/shocks?
 - Real model: no financial frictions
 - Financial Frictions \Rightarrow Amplification + Persistence
 - Why not reconcile both views?
 - Conjecture: similar mechanism can apply in financial context
 - Global game refinement in dynamic model with financial frictions? (e.g. Kiyotaki-Moore)
- 2. Comparison with sticky price model
 - Behavior of markups in the model (countercyclical markups?)
 - Secular stagnation? Low demand today \Rightarrow Low growth

- 1. Alternative hypothesis: Financial markets/shocks?
 - Real model: no financial frictions
 - Financial Frictions \Rightarrow Amplification + Persistence
 - Why not reconcile both views?
 - Conjecture: similar mechanism can apply in financial context
 - Global game refinement in dynamic model with financial frictions? (e.g. Kiyotaki-Moore)
- 2. Comparison with sticky price model
 - Behavior of markups in the model (countercyclical markups?)
 - Secular stagnation? Low demand today \Rightarrow Low growth
- 3. Lumpy investment literature with richer cross-section
 - Focus on capital utilization (static choice)
 - Well documented lumpiness in investment decisions (dynamic choices), but decisions aggregate smoothly

- 1. Alternative hypothesis: Financial markets/shocks?
 - Real model: no financial frictions
 - Financial Frictions \Rightarrow Amplification + Persistence
 - Why not reconcile both views?
 - Conjecture: similar mechanism can apply in financial context
 - Global game refinement in dynamic model with financial frictions? (e.g. Kiyotaki-Moore)
- 2. Comparison with sticky price model
 - Behavior of markups in the model (countercyclical markups?)
 - Secular stagnation? Low demand today \Rightarrow Low growth
- 3. Lumpy investment literature with richer cross-section
 - Focus on capital utilization (static choice)
 - Well documented lumpiness in investment decisions (dynamic choices), but decisions aggregate smoothly
 - Will heterogeneity/dynamic behavior amplify or dampen the mechanism in standard sS investment model?
 - Conjecture: slowdown shift, but increase persistence?