Discussion The Political Economy of Prudential Regulation by Magdalena Rola-Janicka

Eduardo Dávila

Yale and NBER

7th FIN-FIRE-Workshop on "Challenges to Financial Stability", August 2021

This paper

Motivation

- Large body of *normative* work on financial regulation
 - ▶ Pecuniary externalities ⇒ constrained inefficiency ⇒ prudential regulation
 - Normative work assumes welfare objective (prescriptive)
- Which regulatory policies will individuals actually support?
 - Political Economy (descriptive)
 - Very understudied in the context of financial regulation

This paper

Motivation

- Large body of *normative* work on financial regulation
 - ▶ Pecuniary externalities ⇒ constrained inefficiency ⇒ prudential regulation
 - Normative work assumes welfare objective (prescriptive)
- Which regulatory policies will individuals actually support?
 - Political Economy (descriptive)
 - Very understudied in the context of financial regulation
- This paper: voting model
 - 1. Canonical pecuniary externalities framework (overborrowing)
 - 2. Regulatory policies (debt limit) chosen by voting

This paper

Motivation

- Large body of *normative* work on financial regulation
 - ▶ Pecuniary externalities ⇒ constrained inefficiency ⇒ prudential regulation
 - Normative work assumes welfare objective (prescriptive)
- Which regulatory policies will individuals actually support?
 - Political Economy (descriptive)
 - Very understudied in the context of financial regulation
- This paper: voting model
 - 1. Canonical pecuniary externalities framework (overborrowing)
 - 2. Regulatory policies (debt limit) chosen by voting

Key insights

- 1. Policy implemented depends on voter responsiveness
- 2. Increase in inequality relaxes regulation iff high-income borrowers are more responsive
- 3. Exempt borrowers favor tighter borrowing limits

Outline of Discussion

- 1. Model with remarks
 - Equilibrium
 - Constrained efficiency
 - ▶ Political process ⇒ Main results
- 2. Comments/Thoughts

Model

• Three dates:
$$t \in \{0, 1, 2\}$$

Borrowers

Utility

$$u^{B}(c) = \log\left(c_{0}^{B}\right) + \log\left(c_{1}^{B}\right) + c_{2}^{B}$$

Budget constraints

$$c_0^B \le d_0^B \\ c_1^B \le d_1^B + \frac{y_1^B}{y_1^B} + p\left(k_1^B - k_2^B\right) - d_0^B \\ c_2^B \le k_2^B - d_1^B$$

Model

• Three dates:
$$t \in \{0, 1, 2\}$$

Borrowers

Utility

$$u^{B}(c) = \log\left(c_{0}^{B}\right) + \log\left(c_{1}^{B}\right) + c_{2}^{B}$$

Budget constraints

$$egin{aligned} c_0^B &\leq d_0^B \ c_1^B &\leq d_1^B + y_1^B + p\left(k_1^B - k_2^B
ight) - d_0^B \ c_2^B &\leq k_2^B - d_1^B \end{aligned}$$

Borrowing/collateral constraint

$$d_1^B \leq \phi p k_2^B$$

▶ Borrowers endowment: capital k_1^B , $y_1^B = \{y^r, y^p\}$ dollars ▶ $y^r > y^p$ (rich/poor)

Model

• Three dates:
$$t \in \{0, 1, 2\}$$

Borrowers

Utility

$$u^{B}(c) = \log\left(c_{0}^{B}\right) + \log\left(c_{1}^{B}\right) + c_{2}^{B}$$

Budget constraints

$$\begin{aligned} c_0^B &\leq d_0^B \\ c_1^B &\leq d_1^B + y_1^B + p\left(k_1^B - k_2^B\right) - d_0^B \\ c_2^B &\leq k_2^B - d_1^B \end{aligned}$$

Borrowing/collateral constraint

$$d_1^B \leq \phi p k_2^B$$

- ▶ Borrowers endowment: capital k_1^B , $y_1^B = \{y^r, y^p\}$ dollars ▶ $y^r > y^p$ (rich/poor)
- Lenders are passive

Large endowments, no default, always indifferent

$$u^{L}(c) = c_{0}^{L} + c_{1}^{L} + c_{2}^{L}$$

Remarks + Equilibrium

- 1. Perfect foresight \Rightarrow no uncertainty
- 2. Borrowers must borrow to consume at date $0 \Rightarrow$ smoothing
- 3. No capital investment \Rightarrow focus on over-borrowing
 - Over-investment often discussed too
- 4. Lenders never hold capital
 - Fire sale from borrowers to other borrowers
 - Somewhat unconventional: natural holders assumption?

Remarks + Equilibrium

- 1. Perfect for esight \Rightarrow no uncertainty
- 2. Borrowers must borrow to consume at date $0 \Rightarrow$ smoothing
- 3. No capital investment \Rightarrow focus on over-borrowing
 - Over-investment often discussed too
- 4. Lenders never hold capital
 - Fire sale from borrowers to other borrowers
 - Somewhat unconventional: natural holders assumption?
- Equilibrium
 - Borrowers borrow at 0 and 1
 - Borrowing constraint binds at 1
 - Poor borrowers sell capital to rich borrowers

▶ $p(\cdot)$ endogenous \Rightarrow "Fire sale"

Constrained Inefficiency

• Constrained inefficiency: planner's FOC $\frac{dW}{d\bar{d}_0} = 0$

$$\lambda_0^B - \lambda_1^B + \underbrace{\frac{\partial p}{\partial D_0}}_{<0} \frac{1}{\sum_{b \in \mathbb{B}} \theta^b \chi^b} \sum_{b \in \mathbb{B}} \theta^b \chi^b \underbrace{\left[\frac{\phi \kappa_1^B K_2^b + \lambda_1^B \left(K_1^b - K_2^b \right)}{\mathsf{Externality}} \right]}_{\mathsf{Externality}} = 0$$

Pecuniary externalities (terminology from Davila/Korinek 18)

- 1. Collateral externalities \Rightarrow over-borrowing
- 2. Distributive externalities \Rightarrow over- or under-borrowing
 - differences in valuations
 - net buying/selling positions
 - pecuniary impact

Constrained Inefficiency

• Constrained inefficiency: planner's FOC $\frac{dW}{d\bar{d}_0} = 0$

$$\lambda_0^B - \lambda_1^B + \underbrace{\frac{\partial p}{\partial D_0}}_{<0} \frac{1}{\sum_{b \in \mathbb{B}} \theta^b \chi^b} \sum_{b \in \mathbb{B}} \theta^b \chi^b \underbrace{\left[\frac{\phi \kappa_1^B K_2^b + \lambda_1^B \left(K_1^b - K_2^b \right)}{\mathsf{Externality}} \right]}_{\mathsf{Externality}} = 0$$

Pecuniary externalities (terminology from Davila/Korinek 18)

- 1. Collateral externalities \Rightarrow over-borrowing
- 2. Distributive externalities \Rightarrow over- or under-borrowing
 - differences in valuations
 - net buying/selling positions
 - pecuniary impact
- ► Under some conditions ⇒ overborrowing at 0
 - Debt cap is optimal
 - Exact cap depends on \(\chi^b\) (welfare weights)

Political process: Description

- Probabilistic voting game
- Two politicians $\{A, Z\} \Rightarrow$ choose debt limits \bar{d}_A and \bar{d}_Z

Political process: Description

- Probabilistic voting game
- Two politicians $\{A, Z\} \Rightarrow$ choose debt limits \overline{d}_A and \overline{d}_Z

Utilities

$$U^{i,v} = \begin{cases} u(\bar{d}_A) + b^{i,v} + b & \text{if A wins} \\ u(\bar{d}_Z) & \text{if Z wins} \end{cases}$$

Political process: Description

- Probabilistic voting game
- Two politicians $\{A, Z\} \Rightarrow$ choose debt limits \overline{d}_A and \overline{d}_Z

Utilities

$$U^{i,v} = \begin{cases} u(\bar{d}_A) + b^{i,v} + b & \text{ if A wins} \\ u(\bar{d}_Z) & \text{ if Z wins} \end{cases}$$

- Biases (idiosyncratic and aggregate)
 - Smoothness
 - ψ^v is responsiveness to policy

$$b^{i,v} \sim U\left[-rac{1}{\psi^v};rac{1}{\psi^v}
ight] \qquad ext{and} \qquad b \sim U\left[-rac{1}{\Psi};rac{1}{\Psi}
ight]$$

Symmetric equilibrium $\Rightarrow \bar{d}$ Optimal choice

$$\sum_{v} \theta^{v} \boldsymbol{\psi}^{v} \underbrace{\frac{dU^{v}(\bar{d}_{A})}{d\bar{d}_{A}}}_{\frac{\partial p}{\partial d_{A}} \left(\boldsymbol{\phi} \kappa_{1}^{B} K_{2}^{b} + \lambda_{1}^{B} \left(K_{1}^{b} - K_{2}^{b}\right)\right) + \dots} = 0$$

Symmetric equilibrium $\Rightarrow \bar{d}$ Optimal choice

$$\sum_{v} \theta^{v} \psi^{v} \underbrace{\frac{dU^{v}\left(\bar{d}_{A}\right)}{d\bar{d}_{A}}}_{\frac{\partial p}{\partial d_{A}}\left(\phi \kappa_{1}^{B} K_{2}^{b} + \lambda_{1}^{B}\left(K_{1}^{b} - K_{2}^{b}\right)\right) + \dots} = 0$$

- Main results
 - 1. Idiosyncratic bias ψ^v becomes endogenous welfare weight χ^v
 - High responsiveness to policy \Rightarrow Higher weight

Symmetric equilibrium $\Rightarrow \bar{d}$ Optimal choice

$$\sum_{v} \theta^{v} \psi^{v} \underbrace{\frac{dU^{v} (\bar{d}_{A})}{d\bar{d}_{A}}}_{\frac{\partial p}{\partial d_{A}} (\phi \kappa_{1}^{B} K_{2}^{b} + \lambda_{1}^{B} (K_{1}^{b} - K_{2}^{b})) + \dots} = 0$$

- Main results
 - 1. Idiosyncratic bias ψ^v becomes endogenous welfare weight χ^v
 - High responsiveness to policy \Rightarrow Higher weight
 - 2. Equilibrium debt limit increasing in $\gamma^r = \frac{\psi^r}{\psi^p}$ (relative

responsiveness of rich borrowers)

- Why? Distributive externality
- ► Rich borrowers are buyers of capital ⇒ they are worse off with high prices ⇒ prefer laxer borrowing limits (large fire sales)

• Symmetric equilibrium $\Rightarrow \bar{d}$ • Optimal choice

$$\sum_{v} \theta^{v} \psi^{v} \underbrace{\frac{dU^{v} (\bar{d}_{A})}{d\bar{d}_{A}}}_{\frac{\partial p}{\partial d_{A}} (\phi \kappa_{1}^{B} K_{2}^{b} + \lambda_{1}^{B} (K_{1}^{b} - K_{2}^{b})) + \dots} = 0$$

- Main results
 - 1. Idiosyncratic bias ψ^v becomes endogenous welfare weight χ^v
 - High responsiveness to policy \Rightarrow Higher weight
 - 2. Equilibrium debt limit increasing in $\gamma^r = \frac{\psi^r}{\psi^p}$ (relative

responsiveness of rich borrowers)

- Why? Distributive externality
- ► Rich borrowers are buyers of capital ⇒ they are worse off with high prices ⇒ prefer laxer borrowing limits (large fire sales)
- 3. Inequality exacerbates effects
 - Increase in inequality relaxes regulation with responsive rich borrowers

Symmetric equilibrium $\Rightarrow \bar{d}$ Optimal choice

$$\sum_{v} \theta^{v} \psi^{v} \underbrace{\frac{dU^{v}(\bar{d}_{A})}{d\bar{d}_{A}}}_{\frac{\partial p}{\partial d_{A}} \left(\phi \kappa_{1}^{B} K_{2}^{b} + \lambda_{1}^{B} (K_{1}^{b} - K_{2}^{b})\right) + \dots} = 0$$

- Main results
 - 1. Idiosyncratic bias ψ^v becomes endogenous welfare weight χ^v
 - High responsiveness to policy \Rightarrow Higher weight
 - 2. Equilibrium debt limit increasing in $\gamma^r = \frac{\psi^r}{\psi^p}$ (relative

responsiveness of rich borrowers)

- Why? Distributive externality
- ► Rich borrowers are buyers of capital ⇒ they are worse off with high prices ⇒ prefer laxer borrowing limits (large fire sales)
- 3. Inequality exacerbates effects
 - Increase in inequality relaxes regulation with responsive rich borrowers
- More results on imperfect enforcement with connected/unregulated borrowers
 - Unregulated borrowers prefer tighter regulation

1. Political economy (PE) + financial regulation \Rightarrow testable predictions

- Very little work on these issues
- Very nice to consider PE in the context of prudential regulation based on pecuniary externalities
- Political Economy is a positive field
 - It delivers testable predictions

1. Political economy (PE) + financial regulation \Rightarrow testable predictions

- Very little work on these issues
- Very nice to consider PE in the context of prudential regulation based on pecuniary externalities
- Political Economy is a positive field
 - It delivers testable predictions
- Can we explain the regulations that we observe as an outcome of a voting/decision-making process?
 - Can we explain deregulation waves in the 90's, early 00's? Connection to Fault Lines, Rajan 2011?
 - Can we explain post 08/09 crisis regulatory push? Dodd-Frank, CFPB, OFR, etc. (with rising inequality)

1. Political economy (PE) + financial regulation \Rightarrow testable predictions

- Very little work on these issues
- Very nice to consider PE in the context of prudential regulation based on pecuniary externalities
- Political Economy is a positive field
 - It delivers testable predictions
- Can we explain the regulations that we observe as an outcome of a voting/decision-making process?
 - Can we explain deregulation waves in the 90's, early 00's? Connection to Fault Lines, Rajan 2011?
 - Can we explain post 08/09 crisis regulatory push? Dodd-Frank, CFPB, OFR, etc. (with rising inequality)
- In this paper, rich borrowers like deregulation because they can buy cheap capital during fire sales

2. General conclusions with more general primitives

- Can we consider general income patters?
- What is the role of persistent versus temporary income shocks
 - Role of wealth?
- Are there general connections between, let's say, inequality and regulation? Or policy connections and regulation?

2. General conclusions with more general primitives

- Can we consider general income patters?
- What is the role of persistent versus temporary income shocks
 - Role of wealth?
- Are there general connections between, let's say, inequality and regulation? Or policy connections and regulation?
- 3. How is responsiveness ψ actually determined?
 - This paper: welfare weights \Rightarrow policy responsiveness
 - Both χ and ψ are exogenous
 - Is there a way to further endogenize the responsiveness to policies?
 - Is the move from welfare weights to responsiveness sufficient?
 - Some of the main results are also true with welfare weights

4. Role of transfers

What if a planner/politician can implement transfers?

5. More broadly: richer models of policy formation

- Voting is a natural first step
 - And there alternative voting models
- But regulatory policies are often not voted
- Alternative setups
 - Regulatory discretion
 - Delegation
- More to be done here