Discussion

(In)efficiency in Information Acquisition and Aggregation through Prices

by Alessandro Pavan, Savitar Sundaresan, and Xavier Vives

Eduardo Dávila

Yale and NBER

Econometric Society Meetings January 8, 2022

This paper

Central (underexplored) questions in normative finance

- 1. Is trading in financial markets efficient? (when investors learn from prices)
- 2. Is information acquisition efficient?
- 3. Which policies can correct inefficiencies?
- Very hard questions
 - Welfare analysis with dispersed information is hard
 - A lot of the literature falls short

This paper

Central (underexplored) questions in normative finance

- 1. Is trading in financial markets efficient? (when investors learn from prices)
- 2. Is information acquisition efficient?
- 3. Which policies can correct inefficiencies?
- Very hard questions
 - Welfare analysis with dispersed information is hard
 - A lot of the literature falls short
- This paper: provides answers to all three questions
 - In a particular linear quadratic environment
 - Building on Xavier's earlier work (Vives 2017, Restud)
 - Correlated noise and information acquisition

This paper

Central (underexplored) questions in normative finance

- 1. Is trading in financial markets efficient? (when investors learn from prices)
- 2. Is information acquisition efficient?
- 3. Which policies can correct inefficiencies?
- Very hard questions
 - Welfare analysis with dispersed information is hard
 - A lot of the literature falls short

This paper: provides answers to all three questions

- In a particular linear quadratic environment
- Building on Xavier's earlier work (Vives 2017, Restud)
 - Correlated noise and information acquisition

Key insights

- 1. Trading is inefficient (pecuniary and information externality)
 - Optimal policy $T(x_i, p)$
- 2. Info. acquisition is inefficient even when financial trading is optimal
 - Optimal policy $T(x_i, p, \tilde{x})$ or $T(x_i, p, y_i)$

Outline of the discussion

- 1. Environment
- 2. Main results

Environment

Traders

Linear-quadratic objective; learn from prices

$$\max_{x_i}(\theta-p)x_i - \lambda \frac{x_i^2}{2}$$

• Private signals over $\theta \sim N(0, \sigma_{\theta}^2)$; cost of y_i is $\mathcal{C}(y_i)$

$$s_i \equiv \theta + \epsilon_i$$
 where $\epsilon_i \equiv \frac{1}{\sqrt{y_i}} \left(\eta + e_i
ight)$

Correlated signals

Linear demand

$$x_i(s_i, p) = \frac{1}{\lambda} \left(\mathbb{E} \left[\theta \mid I_i, p \right] - p \right) = a^* s_i + \hat{b}^* - \hat{c}^* p$$

Environment

Traders

Linear-quadratic objective; learn from prices

$$\max_{x_i}(\theta-p)x_i - \lambda \frac{x_i^2}{2}$$

• Private signals over $\theta \sim N(0, \sigma_{\theta}^2)$; cost of y_i is $\mathcal{C}(y_i)$

$$s_i \equiv \theta + \epsilon_i$$
 where $\epsilon_i \equiv rac{1}{\sqrt{y_i}} \left(\eta + e_i
ight)$

Correlated signals

Linear demand

$$x_i(s_i, p) = \frac{1}{\lambda} \left(\mathbb{E} \left[\theta \mid I_i, p \right] - p \right) = a^* s_i + \hat{b}^* - \hat{c}^* p$$

Liquidity supplier

Linear-quadratic objective, no learning, non-strategic

$$\max_{\tilde{x}}(p+u-\alpha)\tilde{x}-\beta\frac{\tilde{x}^2}{2} \Rightarrow \tilde{x}=\frac{1}{\beta}(p+u-\alpha)$$

• Hedging/noise shock $u \sim N\left(0, \sigma_u^2\right)$

Equilibrium/Welfare

1. Competitive REE with price signal \boldsymbol{z}

$$z = \theta + f(y)\eta - \frac{u}{\beta a^*}$$

Payoff (θ) + 2 sources of noise (η and u)
 Question: can we kill u? And the liquidity providers?

Equilibrium/Welfare

1. Competitive REE with price signal \boldsymbol{z}

$$z = \theta + f(y)\eta - \frac{u}{\beta a^*}$$

2. Welfare

$$W \equiv \int_0^1 \left(\theta x_i - \frac{\lambda}{2} x_i^2 \right) di + \left(u - \alpha - \beta \frac{\tilde{x}}{2} \right) \tilde{x}$$

Team-efficient solution: reasonable benchmark

- Maximizes welfare subject to linear demands
- Liquidity provider choices are taken as given
- Aggregation exploits quasilinearity

Main Results: Trading Stage

Planning solution

$$a^{T} = \frac{\cdots}{\cdots + \Xi\left(a^{T}\right) + \Delta\left(a^{T}\right)}$$

- Pecuniary externality \(\mathbf{E}\) (a^T) > 0: investors respond too much to private info
 - Independent of informativeness of price
- ► Information externality Δ (a^T) < 0: investors response too little to private info</p>

Main Results: Trading Stage

Planning solution

$$a^{T} = \frac{\cdots}{\cdots + \Xi\left(a^{T}\right) + \Delta\left(a^{T}\right)}$$

Pecuniary externality \(\mathbf{E}\) (a^T) > 0: investors respond too much to private info

Independent of informativeness of price

- Information externality ∆ (a^T) < 0: investors response too little to private info</p>
- Optimal policy:

$$T(x_i, p) = \frac{\delta}{2}x_i^2 - t_0x_i + t_ppx_i$$
$$= \left(\frac{\delta}{2}x_i - t_0 + t_pp\right)x_i$$

 Remark: the planner wants to correct each of the three demand coefficients

Main Results: Info. Acquisition Stage

- Info acquisition is inefficient even under optimal financial trading
 - Sign depends on slope of efficient demands
 - Strategic complements/substitutes?

Main Results: Info. Acquisition Stage

- Info acquisition is inefficient even under optimal financial trading
 - Sign depends on slope of efficient demands
 - Strategic complements/substitutes?
- Optimal policy #1: (aggregate volume of trade)

$$T(x_i, \tilde{x}, p) = \frac{\delta^*}{2} x_i^2 - t_0^* x_i + t_p^* p x_i + \underbrace{(t_{\tilde{x}}^* \tilde{x}) x_i}_{i}$$

Optimal policy #2: (info. acquisition choice)

$$T(x_i, p, y_i) = \frac{\delta}{2}x_i^2 - t_0x_i + t_ppx_i - \underbrace{Ay_i}_{i}$$

Remark: #2 is very intuitive

- Pigouvian principle
- An extra instrument is needed

1. Mechanism behind pecuniary externality

- Large literature on constrained inefficiency in incomplete markets (e.g.: GP86, GV02, DK18)
- With complete markets, this externality should disappear
- Which exact form of incompleteness is critical here?
 - With respect to individual signals or aggregates?

1. Mechanism behind pecuniary externality

- Large literature on constrained inefficiency in incomplete markets (e.g.: GP86, GV02, DK18)
- With complete markets, this externality should disappear
- Which exact form of incompleteness is critical here?
 - With respect to individual signals or aggregates?

2. Mechanism behind information externality

Why are exactly investors better off with more informative prices?

No production here; there is only risk sharing

- Linear-quadratic preferences are not expected utility
 - They embed early resolution of uncertainty
 - Is this the explanation?
- Is it possible to derive results with expected utility?
- I very much like the cursed equilibrium result

3. Asymmetry

- Would it possible to derive some results without liquidity providers?
- A setup with ex-ante symmetric investors may be easier to understand
- In this model liquidity providers are unregulated by assumption. Why?

3. Asymmetry

- Would it possible to derive some results without liquidity providers?
- A setup with ex-ante symmetric investors may be easier to understand
- In this model liquidity providers are unregulated by assumption. Why?

4. Generality

- It'd be nice to consider more general environments
- Within linear-quadratic class would be enough
- Can the signs of the externalities switch?

3. Asymmetry

- Would it possible to derive some results without liquidity providers?
- A setup with ex-ante symmetric investors may be easier to understand
- In this model liquidity providers are unregulated by assumption. Why?
- 4. Generality
 - It'd be nice to consider more general environments
 - Within linear-quadratic class would be enough
 - Can the signs of the externalities switch?
- 5. Hard to implement policies
 - Linear trading subsidies
 - Quadratic taxes
 - Constrained but more easily implementable policies?

Conclusion

- Very nice paper in a very important topic
- Natural next step in this literature
- Opens the door to further research in the area