Discussion

The financial crisis bailouts: What they cost taxpayers and who reaped the direct benefits by Deborah Lucas, MIT

Eduardo Dávila

Yale University and NBER

Shadow Open Market Committee Meeting June 28, 2019

Summary

Bailout Policy: central issue in macro-finance regulation
How costly are bailouts? Who benefits and loses?
How to structure implicit and explicit guarantees?

Summary

- Bailout Policy: central issue in macro-finance regulation
- How costly are bailouts? Who benefits and loses?
- How to structure implicit and explicit guarantees?
- This paper
 - Lays out economic framework for measurement
 - Carefully measures direct costs of intervention in 2009
- Headline number for cost of bailouts
 - \$500bn, around 3.5% of 2009 GDP
 - Significant

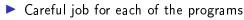
Roadmap

- 1. Main results
- 2. An interpretation via welfare calculations
- 3. Further thoughts

Main Results

What is a bailout? Net government transfer or guarantee

- Guarantees are "future transfers"
- Mispriced insurance included too
- Financial regulation context


	Costs	Benefits
Direct	Taxpayers	Transfers/Guarantees
Indirect	Ex-ante distortions	Panic Avoidance/Macro Impact

Main Results

	Cost (billions USD)
Fannie/Freddie	311
TARP	90
FHA	60
Fed	21
FDIC	10
SBLF	6
Total	498

Main Results

	Cost (billions USD)
Fannie/Freddie	311
TARP	90
FHA	60
Fed	21
FDIC	10
SBLF	6
Total	498

- Assumptions are needed
- Mix of direct injections (TARP/SBLF) with free and mispriced guarantees

Fannie/Freddie + TARP accounts for 80%

- Debtholders benefit, not equityholders
 - We may want to capitalize their ex-ante gain

I'd like to revisit the paper's conceptual framework

- I'd like to revisit the paper's conceptual framework
- Consider investors who maximize standard preferences

$$W^{i}(\alpha) = \max_{c_{t}^{i}, x_{t+1}^{i}} \mathbb{E}_{0}\left[\sum_{t} \beta^{t} u_{i}\left(c_{t}^{i}\right)\right],$$

- I'd like to revisit the paper's conceptual framework
- Consider investors who maximize standard preferences

$$W^{i}\left(\alpha\right) = \max_{c_{t}^{i}, x_{t+1}^{i}} \mathbb{E}_{0}\left[\sum_{t} \beta^{t} u_{i}\left(c_{t}^{i}\right)\right],$$

subject to

$$c_{t}^{i} + p_{t}(\alpha) x_{t+1}^{i} = (v_{t}(\alpha) + p_{t}(\alpha)) x_{t}^{i} + \underbrace{\alpha t^{i}}_{\text{bailout}}$$

- I'd like to revisit the paper's conceptual framework
- Consider investors who maximize standard preferences

$$W^{i}\left(\alpha\right) = \max_{c_{t}^{i}, x_{t+1}^{i}} \mathbb{E}_{0}\left[\sum_{t} \beta^{t} u_{i}\left(c_{t}^{i}\right)\right],$$

subject to

$$c_{t}^{i} + p_{t}(\alpha) x_{t+1}^{i} = (v_{t}(\alpha) + p_{t}(\alpha)) x_{t}^{i} + \underbrace{\alpha t^{i}}_{\text{bailout}}$$

• Think of x_{t+1}^i as a vector (many portfolio decisions)

- I'd like to revisit the paper's conceptual framework
- Consider investors who maximize standard preferences

$$W^{i}\left(\alpha\right) = \max_{c_{t}^{i}, x_{t+1}^{i}} \mathbb{E}_{0}\left[\sum_{t} \beta^{t} u_{i}\left(c_{t}^{i}\right)\right],$$

subject to

$$c_{t}^{i} + p_{t}(\alpha) x_{t+1}^{i} = (v_{t}(\alpha) + p_{t}(\alpha)) x_{t}^{i} + \underbrace{\alpha t^{i}}_{\text{bailout}}$$

Think of xⁱ_{t+1} as a vector (many portfolio decisions)
 The payoff v_t can take many forms in equilibrium
 Example: p_t and v_t may depend on {xⁱ_{t+1}} and α in a very nonlinear form (e.g., bank run, macro impact, etc)

\blacktriangleright Let's vary the size of the bailout α

$$\frac{dW^{i}}{d\alpha} = \mathbb{E}_{0} \left[\sum_{t} \beta^{t} u_{i}^{\prime} \left(c_{t}^{i} \right) \underbrace{\left(\underbrace{\frac{dv_{t}}{d\alpha} x_{t}^{i} + \frac{dp_{t}}{d\alpha} \left(x_{t}^{i} - x_{t+1}^{i} \right)}_{= \frac{dc_{t}^{i}}{d\alpha}} + \tau^{i} \right)}_{= \frac{dc_{t}^{i}}{d\alpha}} \right]$$

\blacktriangleright Let's vary the size of the bailout α

$$\frac{dW^{i}}{d\alpha} = \mathbb{E}_{0} \left[\sum_{t} \beta^{t} u_{i}^{\prime} \left(c_{t}^{i} \right) \underbrace{\left(\underbrace{\frac{dv_{t}}{d\alpha} x_{t}^{i} + \frac{dp_{t}}{d\alpha} \left(x_{t}^{i} - x_{t+1}^{i} \right)}_{= \frac{dc_{t}^{i}}{d\alpha}} \right)}_{= \frac{dc_{t}^{i}}{d\alpha}} \right]$$

Normalize and focus exclusively on direct effects

$$\frac{\frac{dW^{i}}{d\alpha}}{u_{i}^{\prime}\left(c_{s}^{i}\right)} = \mathbb{E}_{0}\left[\sum_{t} \underbrace{\frac{\beta^{t}u_{i}^{\prime}\left(c_{t}^{i}\right)}{u_{i}^{\prime}\left(c_{s}^{i}\right)}}_{=m_{ts}^{i}} \tau^{i}\right]$$

Direct effects

$$\frac{\frac{dW^{i}}{d\alpha}}{u_{i}^{\prime}\left(c_{s}^{i}\right)} = \mathbb{E}_{0}\left[\sum_{t} m_{ts}^{i} \tau^{i}\right]$$

Remarks

- 1. Fair value
 - Measure with individual SDF's (paper uses market values as best estimates, correct under complete markets)

2. Consistent numeraire

- Ex-ante vs interim vs ex-post cost computations
- 3. Wrong ex-post measures
 - Equivalent to looking at realized returns to measure asset management performance

- 1. Role of deadweight losses vs. transfers
 - Appropriate marginal cost of public funds
 - Size of distortion increasing in amount measured

- 1. Role of deadweight losses vs. transfers
 - Appropriate marginal cost of public funds
 - Size of distortion increasing in amount measured
- 2. The paper does not measure broader benefits of policies
 - Much harder task
 - In Davila/Goldstein we show how to compute marginal benefits of varying deposit insurance coverage

- 1. Role of deadweight losses vs. transfers
 - Appropriate marginal cost of public funds
 - Size of distortion increasing in amount measured
- 2. The paper does not measure broader benefits of policies
 - Much harder task
 - In Davila/Goldstein we show how to compute marginal benefits of varying deposit insurance coverage
- 3. Under some conditions, moral hazard only manifests itself through the direct fiscal effects in the paper
 - If there are no other distortions
 - Strengthens the approach in this paper

- 1. Role of deadweight losses vs. transfers
 - Appropriate marginal cost of public funds
 - Size of distortion increasing in amount measured
- 2. The paper does not measure broader benefits of policies
 - Much harder task
 - In Davila/Goldstein we show how to compute marginal benefits of varying deposit insurance coverage
- 3. Under some conditions, moral hazard only manifests itself through the direct fiscal effects in the paper
 - If there are no other distortions
 - Strengthens the approach in this paper
- 4. Comparison to other international experiences
 - e.g., Ireland, debt/GDP from 24% to 120%
 - US in unique position to bail out banks?

- 1. Role of deadweight losses vs. transfers
 - Appropriate marginal cost of public funds
 - Size of distortion increasing in amount measured
- 2. The paper does not measure broader benefits of policies
 - Much harder task
 - In Davila/Goldstein we show how to compute marginal benefits of varying deposit insurance coverage
- 3. Under some conditions, moral hazard only manifests itself through the direct fiscal effects in the paper
 - If there are no other distortions
 - Strengthens the approach in this paper
- 4. Comparison to other international experiences
 - e.g., Ireland, debt/GDP from 24% to 120%
 - US in unique position to bail out banks?
- 5. Political impact?