Discussion

Delayed Crises and Slow Recoveries by Xuewen Liu, Pengfei Wang, and Zhongchao Yang

Eduardo Dávila

Yale and NBER

CICF 2021

This Paper

Broader Motivation

- Expansions and crises are driven by coordination
- ► Not all agents are aware of economic conditions ⇒ Synchronization problems (AB02,03)

This Paper

Broader Motivation

- Expansions and crises are driven by coordination
- ► Not all agents are aware of economic conditions ⇒ Synchronization problems (AB02,03)

This paper

- Model of investment in two sectors (speculative and traditional)
- Banks must decide when to "exit"
- High speculative payoffs only when many investors active
- Crisis eventually happens \Rightarrow Fire sale/downward sloping price

Synchronization Problem + Fire Sales

This Paper

Broader Motivation

- Expansions and crises are driven by coordination
- ► Not all agents are aware of economic conditions ⇒ Synchronization problems (AB02,03)

This paper

- Model of investment in two sectors (speculative and traditional)
- Banks must decide when to "exit"
- High speculative payoffs only when many investors active
- ► Crisis eventually happens ⇒ Fire sale/downward sloping price

Synchronization Problem + Fire Sales

Main result: normative analysis

- Planner would like to "exit" before than banks
- Why? Pecuniary externalities in crises

Outline of the paper

- 1. Model with exit
- 2. Model with entry and exit
- 3. RBC version with entry and exit

Continuous time, measure one of banks

- Two sectors
 - ► Traditional: flow *c*^{*L*}
 - ▶ Speculative: flow c^{H} if $\omega(t) \ge \underbrace{S(t)}_{\bullet}$, 0 (crisis) otherwise

 $=\frac{\alpha-\theta(t)}{\rho}$

Continuous time, measure one of banks

- Two sectors
 - Traditional: flow c^L
 - ▶ Speculative: flow c^{H} if $\omega\left(t\right) \geq \underbrace{S\left(t\right)}_{\bullet}$, 0 (crisis) otherwise

 $=\frac{\alpha-\theta(t)}{\rho}$

- $\omega(t)$ is share of investors in speculative sector, S(t) is fundamental
- Shock hits the economy at t₀, S (t) starts to go up
 It becomes harder and harder to sustain the high payoff

All banks start in traditional sector

- Single choice: exit decision
- They slowly become informed of the shock
- Banks choose waiting period au

- All banks start in traditional sector
 - Single choice: exit decision
 - They slowly become informed of the shock
 - Banks choose waiting period
- If they exit before a crisis, they reinvest at a high rate
- If they exist when the crisis hit, they may not be able to reinvest
 - ▶ Why? Fire Sale: liquidation is $\ell = g(\omega^{C})$, with $g(\cdot)$ decreasing
 - Reinvestment project has minimum scale

- All banks start in traditional sector
 - Single choice: exit decision
 - They slowly become informed of the shock
 - Banks choose waiting period au
- If they exit before a crisis, they reinvest at a high rate
- If they exist when the crisis hit, they may not be able to reinvest
 - ▶ Why? Fire Sale: liquidation is $\ell = g(\omega^{C})$, with $g(\cdot)$ decreasing
 - Reinvestment project has minimum scale
- **Remark**: there is some probability of refinancing p(L)
 - Is it needed?

Equilibrium

• Crises happens at $t_0 + \zeta$, with

$$\zeta\left(\tau\right) = \frac{\tau + \eta}{1 + \frac{\kappa}{\beta}\eta}$$

- \blacktriangleright Obviously, $\zeta'\left(\tau\right)>0$ if agents wait more to exit, the crisis happens later
- \blacktriangleright Paper shows that liquidation is lower when ζ is higher, $\ell'\left(\zeta\right)<0$

Normative Results

Constrained planner's problem

- Chooses waiting length au internalizing effect on prices $\Rightarrow au^{SB}$
- Remark: outside sector's welfare is taken into account
- Remark: incomplete markets in the background

Normative Results

Constrained planner's problem

- Chooses waiting length au internalizing effect on prices $\Rightarrow au^{SB}$
- Remark: outside sector's welfare is taken into account
- Remark: incomplete markets in the background

Competitive equilibrium

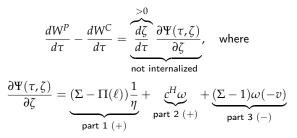
Banks choose waiting length au taking prices as given

Normative Results

Constrained planner's problem

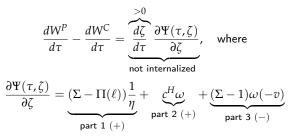
- Chooses waiting length au internalizing effect on prices $\Rightarrow au^{SB}$
- Remark: outside sector's welfare is taken into account
- Remark: incomplete markets in the background

Competitive equilibrium


- Banks choose waiting length au taking prices as given
- Remark: welfare here is far from obvious
 - This is a strategic environment, no welfare theorems to help
 - Cooper/John 88: quite the opposite
 - Equilibria are often Pareto ranked in coordination games

► Main result: compare SB with CE

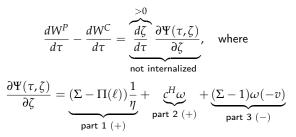
$$\frac{dW^{P}}{d\tau} - \frac{dW^{C}}{d\tau} = \underbrace{\underbrace{\frac{\partial \zeta}{\partial \zeta}}_{\text{not internalized}}^{\geq 0} \underbrace{\frac{\partial \Psi(\tau, \zeta)}{\partial \zeta}}_{\text{not internalized}}, \quad \text{where}$$


$$\frac{\partial \Psi(\tau, \zeta)}{\partial \zeta} = \underbrace{(\Sigma - \Pi(\ell))\frac{1}{\eta}}_{\text{part 1 (+)}} + \underbrace{c^{H}\omega}_{\text{part 2 (+)}} + \underbrace{(\Sigma - 1)\omega(-v)}_{\text{part 3 (-)}}$$

► Main result: compare SB with CE

Parts 1 and 2 are coordination externalities (non-pecuniary)
 Part 1 captures banks that escape failure
 Part 2 captures banks that earn c^H for a bit longer

► Main result: compare SB with CE



Parts 1 and 2 are coordination externalities (non-pecuniary)

- Part 1 captures banks that escape failure
- Part 2 captures banks that earn c^H for a bit longer
- Why the first two terms?

• The speculative sector is good! $c^H > c^L$

► Main result: compare SB with CE

Parts 1 and 2 are coordination externalities (non-pecuniary)

- Part 1 captures banks that escape failure
- Part 2 captures banks that earn c^H for a bit longer
- Why the first two terms?
 - The speculative sector is good! $c^H > c^L$
- Part 3: distributive pecuniary externality (GP86, L08, HK16, DK18, ...)
 - 1. Differences in valuation $(\Sigma 1)$
 - 2. Total sale ω

3. Price sensitivity
$$v \equiv \frac{dq}{d\zeta}$$

- 1. Allowing for fire-sales/pecuniary externalities is an interesting way to reverse the coordination externalities
 - In standard coordination environments, the planner would want longer waiting times
 - What is the right prior here? The paper could emphasize this more

- 1. Allowing for fire-sales/pecuniary externalities is an interesting way to reverse the coordination externalities
 - In standard coordination environments, the planner would want longer waiting times
 - What is the right prior here? The paper could emphasize this more
 - With ambiguous effects, some quantification may help
 - Or a sharp theorem on parameters
 - This may be hard

- 1. Allowing for fire-sales/pecuniary externalities is an interesting way to reverse the coordination externalities
 - In standard coordination environments, the planner would want longer waiting times
 - What is the right prior here? The paper could emphasize this more
 - With ambiguous effects, some quantification may help
 - Or a sharp theorem on parameters
 - This may be hard
- 2. Constrained planning solution: choosing au
 - Small tension: how to implement the second-best waiting times
 - Should the planner reveal that the shock hit?

- 1. Allowing for fire-sales/pecuniary externalities is an interesting way to reverse the coordination externalities
 - In standard coordination environments, the planner would want longer waiting times
 - What is the right prior here? The paper could emphasize this more
 - With ambiguous effects, some quantification may help
 - Or a sharp theorem on parameters
 - This may be hard
- 2. Constrained planning solution: choosing au
 - Small tension: how to implement the second-best waiting times
 - Should the planner reveal that the shock hit?
- 3. It may helpful to provide a characterization of the first-best
 - I think the first-best solution is to set:

$$\omega\left(t\right)=S\left(t\right)$$

- Keep as many banks in as you can so that the music doesn't stop (at some point ω (t) = 1)
- Connect more first-best and second-best?

- 4. I'd like to understand better if the form of the threshold equilibria is without loss of generality
 - In the model without entry
 - In the model with entry, also entry strategy

- 4. I'd like to understand better if the form of the threshold equilibria is without loss of generality
 - In the model without entry
 - In the model with entry, also entry strategy
- 5. Common concern with these models: no information is revealed
 - Via endogenous variables
 - Authors are aware of this

- 4. I'd like to understand better if the form of the threshold equilibria is without loss of generality
 - In the model without entry
 - In the model with entry, also entry strategy
- 5. Common concern with these models: no information is revealed
 - Via endogenous variables
 - Authors are aware of this
- 6. The RBC extension is interesting by itself
 - It may be worth developing in a different paper
 - Connection to macro literature on coordination and business cycles
 - Small modern literature
 - Slow recoveries is in the title, but it only comes at the very end!