Discussion

Dissecting Mechanisms of Financial Crises: Intermediation and Sentiment by Wenhao Li and Arvind Krishnamurthy

Eduardo Dávila

Yale and NBER

AFA Meetings 1/3/2021

This Paper

Model of crises featuring

- 1. Frictional intermediation
- 2. Sentiment (time-varying beliefs)
 - Bayesian learning (rational)
 - Diagnostic learning (over-weights recent observations)
- Quantitative emphasis
- Results
 - 1. Financial frictions + (rational) sentiment fit data well
 - 2. Both are needed
 - 3. Diagnostic learning similar to Bayesian (both match data well)
 - 4. Similar impulse responses to policy experiments

This Paper

Important effort connecting both literatures
Very successful in many dimensions

 Transparent connection to empirical work

Scope to push this agenda further

Roadmap

- 1. Environment \Rightarrow Comments
- 2. Main results \Rightarrow Comments

Environment (1)

Households and bankers (log utility)

- ► Linear capital technologies ⇒ Homogeneity
- Households more productive \Rightarrow Intermediation
- Adjustment costs to invest \Rightarrow Investment sensitive to prices
- Financial friction: only short term (instantaneous) debt
 - w (bankers' wealth share) as state variable
 - Low w makes the economy fragile

Environment (2)

- Two shocks
 - 1. Brownian shock to capital accumulation (real shock)
 - 2. Poisson "illiquidity" shock (financial shock)
 - Transfer from bankers to households (run/fire-sale)
 - ▶ $\lambda_t \in \{\lambda_L, \lambda_H\}$ is the rate at which Poisson shock hits
 - Two-state Markov process $(\lambda_{L \to H}, \lambda_{H \to L})$
 - Agents (only) learn about λ_t from the realization of crises
- Learning (λ as state variable)
 - Bayesian/rational
 - No crisis: beliefs drift down towards λ_L
 - Crisis: beliefs spike up towards λ_H
 - Diagnostic/non-rational
 - Agents overweight recent events (θ)
 - Faster belief dynamics (over- and under-shooting)
- Comment: very appropriate learning environment
 - Challenging to model beliefs (infinite dimensional)
 - Latent state λ_t never settles

Comments on the Environment

- 1. Agents know $\{\lambda_H, \lambda_L\}$, as well as $\{\lambda_{L \to H}, \lambda_{H \to L}\}$
 - Latter less compelling
 - Agents could potentially learn about those too
- 2. There is no default
 - Credit spreads are "shadow" (payoffs disciplined by data)
 - Not wlog
- 3. Parameter θ gauges diagnostic learning
 - How should we interpret θ ? ($\theta = 0$ is rational)
 - Can θ be disciplined from beliefs directly?
 - What does the calibration imply for θ ? I think $\theta = 1.38$
 - Suggestion: instead of choosing a θ to fit spreads show sensitivity to θ
- 4. No heterogeneity in beliefs (everybody is optimistic/pessimistic)
 - It'd be nice to distinguish between bankers' and households' beliefs
 - Maybe there is a way to do it preserving tractability?

Results

- Challenging solution with two state variables
- Careful calibration (16 parameters, calibration+matching)
- Main results
 - 1. Financial frictions + sentiment \Rightarrow Fit data well
 - Stylized model
 - Low spreads and high credit predict crises
 - 2. Both are needed
 - Financial frictions yield amplification, match post-crises facts
 - Sentiment needed to match pre-crises facts (exuberance/frothiness \leftarrow compressed credit spreads)
 - 3. Rational Bayesian learning is enough to fit the data
 - Diagnostic learning somewhat more powerful
 - Data doesn't distinguish between rational/behavioral learning
 - 4. Impulse responses with Bayesian and Diagnostic learning are similar, given state variables
 - Policy should be invariant to learning process
- First two results are unquestionable
- The last two results are more open to discussion

Broader Comments

- 1. The diagnostic version of the model still uses the policy functions of the rational model
 - Diagnostic learning only matters through law of motion for λ
 - Policy functions are independent of θ
 - This pushes the results towards making rational vs. non-rational versions similar
 - Common issue in these models: do non-rational learners have "rational expectations" over their non-rational beliefs?
 - Comparing both approaches would be helpful
- 2. Is there a more flexible way to model non-Bayesian learning?
 - At least within a class
 - Maybe in terms of drift and the dN_t-coefficient for dλ_t?
 - Constant vs. decreasing gain in adaptive learning
 - More "targets" may be needed
 - The rational learning model already fits well!
 - Data on beliefs?

Broader Comments

- 3. Policy experiments in the paper based on unanticipated policies
 - Lucas critique?
 - Rational vs. non-rational response to anticipated/systematic policies could be different
 - If both models fit similarly, impulse responses should be similar (back to points 1 and 2)
- 4. Normative analysis: next step?

"our model is not suited for welfare analysis"

- Challenging in this class of models (even without beliefs)
 - Reduced form assumptions?
 - Beliefs?
- Sentiment/beliefs should not preclude welfare analysis
 - Advertisement: Davila/Walther, Prudential Policy with Distorted Beliefs (tomorrow)

Conclusion

- Very interesting paper
- Clear quantitative framework combining financial frictions and sentiment
- Lots more to explore