Discussion Is There Too Much Benchmarking in Asset Management?

by Anil Kashyap, Natalia Kovrijnykh, Jane Li, and Anna Pavlova

Eduardo Dávila

Yale and NBER

JHU Carey Finance Conference, June 2021

Motivation

- Portfolio managers are compensated on relative terms
- Performance relative to some "benchmark" portfolio

Motivation

- Portfolio managers are compensated on relative terms
- Performance relative to some "benchmark" portfolio

This paper

- Model of delegated asset management
 - Optimal contracting + General equilibrium
 - Benchmarking arises endogenously (via optimal contract)
 - Normative implications

Motivation

- Portfolio managers are compensated on relative terms
- Performance relative to some "benchmark" portfolio

This paper

- Model of delegated asset management
 - Optimal contracting + General equilibrium
 - Benchmarking arises endogenously (via optimal contract)
 - Normative implications

Main result

- There is "too much benchmarking"
- Why? Investors who design the benchmark do not internalize the impact of the contract on the price of benchmarked assets

Motivation

- Portfolio managers are compensated on relative terms
- Performance relative to some "benchmark" portfolio

This paper

- Model of delegated asset management
 - Optimal contracting + General equilibrium
 - Benchmarking arises endogenously (via optimal contract)
 - Normative implications

Main result

- There is "too much benchmarking"
- Why? Investors who design the benchmark do not internalize the impact of the contract on the price of benchmarked assets
- Important topic in normative finance
- Carefully crafted paper \Rightarrow Significant contribution

► N risky assets (price S)

 $\tilde{D} \sim N(\mu, \Sigma)$

► N risky assets (price S)

$$\tilde{D} \sim N(\mu, \Sigma)$$

▶ N risky assets (price S)

$$\tilde{D} \sim N(\mu, \Sigma)$$

 \triangleright Direct investors, measure λ_D ▶ Payoff: $x^{\top}(\tilde{D} - S)$. Fund investors Fund managers, measure λ_F \Rightarrow optimal contract Payoff: $r_x = x^{\top}(\tilde{D} - S) + \underline{x^{\top}\Delta + \varepsilon}$ difference $\equiv \alpha$ • Management cost: $x^{\top}\psi$ Three differences 1. $x^{\top}\Delta$: systematic over-/under-performance 2. ε : extra risk 3. $x^{\top}\psi$: management cost **Remark**: critical that ψ is private

Manager's (linear) compensation

$$w = \hat{a}r_x + b\left(r_x - r_b\right) + c = ar_x - br_b + c,$$

where $r_{\mathbf{b}}$ is the compensation of a benchmark portfolio:

$$r_{\mathbf{b}} = \theta^{\top} (\tilde{D} - S)$$

Manager's (linear) compensation

$$w = \hat{a}r_x + b\left(r_x - r_{\mathbf{b}}\right) + c = ar_x - br_{\mathbf{b}} + c,$$

where $r_{\mathbf{b}}$ is the compensation of a benchmark portfolio:

$$r_{\mathbf{b}} = \theta^{\top} (\tilde{D} - S)$$

Optimal contract chooses

- 1. *a*: sensitivity to absolute performance
- 2. b: sensitivity to relative performance
- 3. c: transfer
- 4. θ : weights in the benchmark portfolio

to maximize

 $U^F + U^M$

subject to IC

Equilibrium

Fund investors choose fund managers compensation optimally

a, b, c, θ

Equilibrium

Fund investors choose fund managers compensation optimally
 a, *b*, *c*, θ

Fund managers and direct investors trade competitively

$$\begin{aligned} x^{D} &= \Sigma^{-1} \frac{\mu - S}{\gamma} \\ x^{M} &= \Sigma^{-1} \frac{\mu - S + \mathbf{\Delta} - \psi/a}{a\gamma} + \frac{b\theta}{a} \end{aligned}$$

Equilibrium

Fund investors choose fund managers compensation optimally
 a, *b*, *c*, θ

Fund managers and direct investors trade competitively

$$\begin{split} x^{D} &= \Sigma^{-1} \frac{\mu - S}{\gamma} \\ x^{M} &= \Sigma^{-1} \frac{\mu - S + \mathbf{\Delta} - \psi/a}{a\gamma} + \frac{b\theta}{a} \end{split}$$

Markets clear

$$S = \mu - \gamma \Sigma \Lambda \bar{x} + \underbrace{\gamma \Sigma \Lambda \lambda_M \frac{b\theta}{a} + \Lambda \frac{\lambda_M}{a} \left(\Delta - \frac{\psi}{a}\right)}_{\text{contracting}}$$

Remark: note that c is just a transfer (transferable utility)

Equilibrium

Fund investors choose fund managers compensation optimally
 a, *b*, *c*, θ

Fund managers and direct investors trade competitively

$$\begin{split} x^{D} &= \Sigma^{-1} \frac{\mu - S}{\gamma} \\ x^{M} &= \Sigma^{-1} \frac{\mu - S + \mathbf{\Delta} - \psi/a}{a\gamma} + \frac{b\theta}{a} \end{split}$$

Markets clear

$$S = \mu - \gamma \Sigma \Lambda \bar{x} + \underbrace{\gamma \Sigma \Lambda \lambda_M \frac{b\theta}{a} + \Lambda \frac{\lambda_M}{a} \left(\Delta - \frac{\psi}{a}\right)}_{\text{contracting}}$$

Remark: note that c is just a transfer (transferable utility)
 Positive results

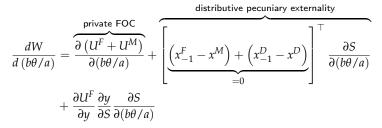
• Benchmarking is optimal: b > 0

Holmstrom 79: use any signal to provide incentives

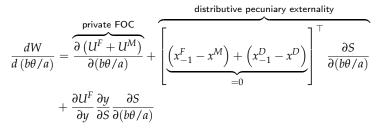
• Weight θ_i is higher when $\Delta_i - \psi_i$ is high

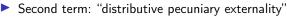
Planner's problem: internalizes how S depends on a, b, θ

- **Planner's problem**: internalizes how S depends on a, b, θ
- Planner's optimality condition
 - Setting welfare weights to 1, wlog with transfers or even without valuing dollars equally
 - Paper is too apologetic here



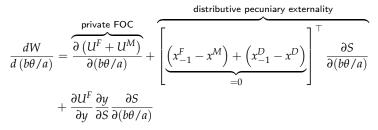
- **Planner's problem**: internalizes how S depends on a, b, θ
- Planner's optimality condition
 - Setting welfare weights to 1, wlog with transfers or even without valuing dollars equally
 - Paper is too apologetic here





- Language from Davila/Korinek 18
- Zero-sum, since there is a single trading period

- **Planner's problem**: internalizes how S depends on a, b, θ
- Planner's optimality condition
 - Setting welfare weights to 1, wlog with transfers or even without valuing dollars equally
 - Paper is too apologetic here



- Second term: "distributive pecuniary externality"
 - Language from Davila/Korinek 18
 - Zero-sum, since there is a single trading period
- Last term: "frictional/contracting pecuniary externality"
 - Interaction between contracting and equilibrium pricing
 - Similar to collateral pecuniary externalities

Main Results

Socially optimal contract features Less skin in the game: a^{social} < a^{private} Less benchmarking: b^{social} < b^{private} Lower prices, S^{social} < S^{private} Lower management costs, ψ^Tx^M_{social} < ψ^Tx^M_{private} Benchmark puts less weight on attractive assets "Private agents are too aggressive"

- 1. The form of externality identified in this paper is clear
 - Ultimately, contracting features "decreasing returns", so planner wants to do less
 - However, my prior was that the direction of the externality could be *ambiguous*
 - In particular on prices
 - What if the benchmark portfolio has negative θ? Is this allowed?
 - Wouldn't the planner want to short less, increasing prices?
 - Is there a way to formalize this "decreasing returns" idea?

- 1. The form of externality identified in this paper is clear
 - Ultimately, contracting features "decreasing returns", so planner wants to do less
 - However, my prior was that the direction of the externality could be *ambiguous*
 - In particular on prices
 - What if the benchmark portfolio has negative θ? Is this allowed?
 - Wouldn't the planner want to short less, increasing prices?
 - Is there a way to formalize this "decreasing returns" idea?
- 2. I would have loved to see a worked out example; maybe with two assets
 - ► I didn't get that much intuition out of the (private and social) solutions for a, b, and θ
 - Additional comparative statics, analytical and/or numerical would help

- 3. Does it matter whether a, b, and θ are all endogenous?
 - What if θ is given?
 - e.g., fund mandate (SP500, Russell 2000, etc.)
 - Is there a role for the market portfolio?

- 3. Does it matter whether a, b, and θ are all endogenous?
 - What if θ is given?
 - e.g., fund mandate (SP500, Russell 2000, etc.)
 - Is there a role for the market portfolio?
- 4. Determinants of the optimal corrective regulation?
 - Sufficient statistics? How to measure relevant determinants?
 - Do we have any outstanding estimates?
 - Effects must be proportional to share of benchmarked funds
 - More important in less liquid/high price impact markets

- 5. CARA preferences are tractable...
 - ...but demand effects may be too strong
 - Benchmarking risky assets should not change the price of all risky assets/ aggregate risk premium
 - $\blacktriangleright\,$ It'd be great to work out a CRRA style problem $\Rightarrow\,$ not easy

- 5. CARA preferences are tractable...
 - ...but demand effects may be too strong
 - Benchmarking risky assets should not change the price of all risky assets/ aggregate risk premium
 - It'd be great to work out a CRRA style problem \Rightarrow not easy
- 6. Introduce further asymmetries
 - Maybe risk aversion
 - Fund investors perhaps more (less) risk tolerant than direct investors
 - Potentially richer implications