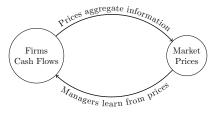
Discussion

Market Feedback: Who Learns What? by Itay Goldstein, Jan Schneemeier, and Liyan Yang

Eduardo Dávila

Yale and NBER

Virtual SFS Cavalcade 5/27/2020


This Paper

This paper studies

endogenous information acquisition by firms and traders

- in an environment with feedback effects
- and multiple sources of uncertainty

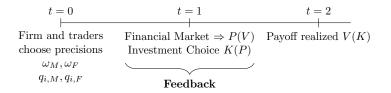
Feedback effects illustrated

- Complex strategic interactions
- Non-trivial implications for real efficiency and price efficiency
- Information overlap: agents learn about the same source of uncertainty
 - Interesting notion (the classic complement/substitutes notions are not that useful with multiple sources of uncertainty)

Main Results

- 1. Traders may want to acquire the same information as the firm
 - Information overlap when profitability is low (surprising)
 - The opposite occurs when profitability is high (intuitive)
 - 1.1 High profitability \Rightarrow Little information overlap
 - 1.2 Low profitability \Rightarrow Large information overlap
 - 1.3 Large comparative advantage of learning about one source exacerbates these effects
- 2. Real vs. price/market efficiency
 - Real efficiency moves opposite from information overlap (intuitive)
 - So large comparative advantage can lead to high or low real efficiency (surprising)
 - Price/market efficiency is highest when there is no comparative advantage (surprising)
- Extension: commitment and biased managers

Roadmap of my discussion


- 1. Review of the environment
- 2. Review of the main results
- 3. Comments and thoughts

Environment

- A firm and traders, all risk neutral
- Three stages
 - t = 2: Payoff stage
 - t = 1: Trading and investment stage
 - Binary decisions: invest/not invest $\{0,1\}$ and buy/sell [-1,1]
 - Feedback effect (investment choice is a function of the price)
 - Noise traders and a competitive market maker

$$P = \mathbb{E}\left[V | \text{order flow} \right]$$

t = 0: Information acquisition stage

Environment

Final payoff: two dimensions of uncertainty

Used in Goldstein/Yang 2015, 2019

$$V = K\left(x^{\theta_M} + x^{\theta_F}\right)$$

$$\begin{array}{l} \blacktriangleright \ x^{\theta_M} \in \left\{ x^H, x^L \right\}, \ p = 1/2 \\ \hline \ x^L < 0 < x^H \ (\text{information is valuable}) \\ \hline \ x^H + x^L < 0 \ (\text{NPV is negative without information}) \end{array}$$

• $\kappa_x = \frac{x^H}{-x^L} \in (0, 1)$ is a measure of profitability (key variable)

- The F and M index the dimension easier to learn for the firm (F) and traders (M) respectively
- The firm and each trader i receive private signals about each component

The firm also observes the price

Info Acquisition Problems

 The precision of each signal is endogenously chosen
Precision: probability of learning true state
Firm problem
 max max μ[V^{*}] s.t. δω_M + ω_F ≤ 1 and ω_M, ω_F ≥ 0
 ω_M, ω_F∈[0,1]

Trader's problem

 $\max_{q_{i,M},q_{i,F} \in [0,1]} \mathbb{E} \left[\Pi_i^\star \right] \quad \text{s.t.} \quad q_{i,M} + \delta q_{i,F} \leq 1 \quad \text{and} \quad q_{i,M}, q_{i,F} \geq 0$

 $\blacktriangleright \ \Pi_i = y_i \left(V - P \right)$

• δ measures <u>comparative advantage</u> (key variable)

Information capacity equal for both (normalized to 1)

Equilibrium

Perfect Bayesian Equilibrium

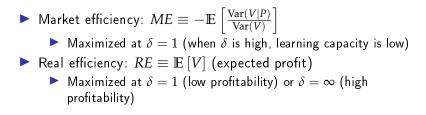
Trading and investment equilibrium at date 1 $(y_i, P \text{ and } K)$

▶ Information acquisition equilibrium at date 0 ($\tilde{\omega}^{F}$ and q_{i}^{F})

The paper focuses on equilibrium in which

- A fraction χ of traders specialize in $heta_M$
- A fraction 1χ specializes in θ_F
- \blacktriangleright The firm receives perfect signals with probabilities ω_M and ω_F

Natural choice: other equilibria?


Main Results

- 1. Trading stage: P(Y) is increasing (price increases with order flow)
- 2. Investment stage: K(P) is increasing in P (investment increases with price)
- 3. Info. acquisition stage
 - $\frac{\partial \omega_F^{\star}}{\partial \chi} \ge 0$: firm incentive to learn about F is higher when traders learn about M

•
$$\frac{\partial \chi^{\star}}{\partial \omega_F} \ge 0$$
 when κ_x is high

- ▶ $\frac{\partial \chi^{\star}}{\partial \omega_F} \leq 0$ when κ_{χ} is low: "very valuable for the traders to learn about firm's investment policy" (information overlap)
- 4. Comparative statics on δ
 - $\blacktriangleright \uparrow \delta, \uparrow \omega_F$
 - \blacktriangleright \uparrow δ , χ increases when profitability is high, decreases when low
 - \blacktriangleright when δ is high and profitability is low, firm is very unlikely to invest, so it is very valuable for traders to learn about F

Main Results

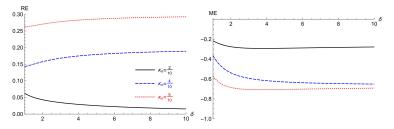


Figure 6: Efficiency measures. The left panel depicts real efficiency RE; the right panel depicts market efficiency ME. We set $x^{L} = -1$ for the right panel.

Comments/Thoughts

- 1. It may be useful to consider separately the "substitution" and income "effects" of δ
 - \blacktriangleright In the paper, increasing δ changes comparative advantage and expands information capacity
 - Alternative: $\delta \omega_M + \omega_F \leq \Gamma(\delta)$ adjusting $\Gamma(\delta)$ (same for traders)
 - Either through a variational argument or duality
 - This seems critical for the market efficiency result
 - It may matter for the other results
- 2. It may be helpful to think about alternative efficiency notions, in addition to real and price efficiency
 - The right version of constrained Pareto efficiency
 - This is particularly important from the perspective of traders
 - What if traders could coordinate their information choice?
 - Or what if there is a single trader?
 - This would highlight the role of the market structure in the trading stage

Comments/Thoughts

- 3. It may helpful to unpack the efficiency implications more
 - Decomposition of the effects when δ varies
 - Direct effects, equilibrium effects
- 4. Also, relaxing payoff structure may be useful
 - Varying κ_x varies total risk
 - Because investment is an option, this matters, even though agents are risk neutral
 - Important for real efficiency

Comments/Thoughts

- 5. Market maker knows the precision of both signals
 - This is a standard assumption in the literature
 - This assumption becomes more restrictive with multiple sources of uncertainty
- 6. Maybe instead of learning θ_j perfectly, we can think of more general signals
 - More generally: strong functional form assumptions
 - Broader issue with work on feedback effects
 - Intrinsic non-linearities (hard problems)