Discussion Divergent Risk-Attitudes and Endogenous Collateral Constraints by Giuliano Curatola and Ester Faia

Eduardo Dávila

NYU Stern

CEPR ESSIM May 2017

 This paper: A model of leverage and asset price determination

Summary

- This paper: A model of leverage and asset price determination
- Two key ingredients
 - 1. Reference dependent preferences in consumption
 - 2. Collateral constraint

Outline

- 1. Model
- 2. Preferences
- 3. Comments on framework
- 4. Comments on quantitative analysis
- 5. Thoughts

Environment: Lenders

► Lenders

$$\max_{C_t^l, B_t^l} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U^l \left(C_t^l, X_t \right)$$

$$C_t^l = w_t^l + R_t^f B_{t-1}^l - B_t^l$$

Environment: Lenders

► Lenders

$$\max_{C_t^l, B_t^l} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U^l \left(C_t^l, X_t \right)$$

$$C_t^l = w_t^l + R_t^f B_{t-1}^l - B_t^l$$

Environment: Lenders

► Lenders

$$\max_{C_t^l, B_t^l} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U^l \left(C_t^l, X_t \right)$$

$$C_t^l = w_t^l + R_t^f B_{t-1}^l - B_t^l$$

- One choice variable: B_t^l
- When calibrated: $U^l(\dot{C}^l_t, X_t) = U^l(C^l_t)$
 - Lenders are standard

Borrowers

$$\max_{C_t^b, B_t^b} \mathbb{E}_0 \sum_{t=0}^{\infty} \rho^t U^b \left(C_t^b, X_t \right)$$

$$C_t^b = \tilde{w}_t^b - R_t^f B_{t-1}^b + B_t^b$$

Borrowers

$$\max_{C_t^b, B_t^b} \mathbb{E}_0 \sum_{t=0}^{\infty} \rho^t U^b \left(C_t^b, X_t \right)$$

$$C_t^b = \tilde{w}_t^b - R_t^f B_{t-1}^b + B_t^b$$

$$R_{t+1}^f B_t^b \le \phi S_t^b \mathbb{E}_t \left[p_{t+1} \right]$$

► Collateral constraint

Borrowers

$$\max_{C_t^b, B_t^b} \mathbb{E}_0 \sum_{t=0}^{\infty} \rho^t U^b \left(C_t^b, X_t \right)$$

$$C_t^b = \tilde{w}_t^b - R_t^f B_{t-1}^b + B_t^b$$

$$R_{t+1}^f B_t^b \le \phi S_t^b \mathbb{E}_t \left[p_{t+1} \right]$$

- ► Collateral constraint
- ► One choice variable: B_t^b

Borrowers

$$\max_{C_t^b, B_t^b} \mathbb{E}_0 \sum_{t=0}^{\infty} \rho^t U^b \left(C_t^b, X_t \right)$$

$$C_t^b = \tilde{w}_t^b - R_t^f B_{t-1}^b + B_t^b$$

$$R_{t+1}^f B_t^b \le \phi S_t^b \mathbb{E}_t \left[p_{t+1} \right]$$

- Collateral constraint
- One choice variable: B_t^b
- Since stock is in fixed supply and not traded

•
$$\tilde{w}_t^b = w_t^b + d_t S_t$$

Any asset can be priced using borrowers SDF

Borrowers

$$\max_{C_t^b, B_t^b} \mathbb{E}_0 \sum_{t=0}^{\infty} \rho^t U^b \left(C_t^b, X_t \right)$$

$$C_t^b = \tilde{w}_t^b - R_t^f B_{t-1}^b + B_t^b$$

$$R_{t+1}^f B_t^b \le \phi S_t^b \mathbb{E}_t \left[p_{t+1} \right]$$

- Collateral constraint
- One choice variable: B_t^b
- Since stock is in fixed supply and not traded
 - $\tilde{w}_t^b = w_t^b + d_t S_t$
 - Any asset can be priced using borrowers SDF
- Assumption: borrowers are impatient, ho <
 ho

$$U = \alpha \underbrace{W(C_t)}_{\text{Consumption}} + (1 - \alpha) \underbrace{\mathcal{W}(C_t, X_t)}_{\text{Gain/Loss}}$$

$$U = \alpha \underbrace{W(C_t)}_{\text{Consumption}} + (1 - \alpha) \underbrace{\mathcal{W}(C_t, X_t)}_{\text{Gain/Loss}}$$

$$\mathcal{W}(C_t, X_t) = \begin{cases} -\Lambda \cdot \psi \left(W \left(C_t \right) - W \left(X_t \right) \right) & C_t < X_t \\ \psi \left(W \left(C_t \right) - W \left(X_t \right) \right) & C_t \ge X_t \end{cases}$$

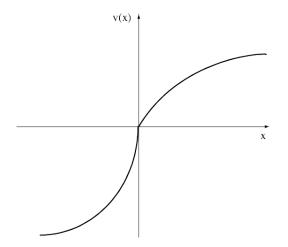
$$U = \alpha \underbrace{W(C_t)}_{\text{Consumption}} + (1 - \alpha) \underbrace{\mathcal{W}(C_t, X_t)}_{\text{Gain/Loss}}$$

$$\mathcal{W}(C_t, X_t) = \begin{cases} -\Lambda \cdot \psi \left(W\left(C_t\right) - W\left(X_t\right) \right) & C_t < X_t \\ \psi \left(W\left(C_t\right) - W\left(X_t\right) \right) & C_t \ge X_t \end{cases}$$

$$W(C_t) = \frac{C_t^{1-\gamma}}{1-\gamma} \quad \text{and} \quad \psi(z) = \frac{|z|^{1-\nu}}{1-\theta}$$

$$U = \alpha \underbrace{W(C_t)}_{\text{Consumption}} + (1 - \alpha) \underbrace{\mathcal{W}(C_t, X_t)}_{\text{Gain/Loss}}$$

$$\mathcal{W}(C_t, X_t) = \begin{cases} -\Lambda \cdot \psi \left(W(C_t) - W(X_t) \right) & C_t < X_t \\ \psi \left(W(C_t) - W(X_t) \right) & C_t \ge X_t \end{cases}$$


$$W\left(C_{t}
ight)=rac{C_{t}^{1-\gamma}}{1-\gamma} \quad ext{and} \quad \psi\left(z
ight)=rac{\left|z
ight|^{1- heta}}{1- heta}$$

- $\Lambda > 1$ generates a kink at $C_t = X_t$
- Three parameters:

1.
$$\gamma \ge 0$$
 is risk aversion ($\gamma = 3$)
2. $\lambda \ge 1$ is loss aversion ($\lambda = 2$)
3. $\theta \in [0, 1]$ is diminished sensitivity to gains/losses

Gain/Loss function

► Gain/loss function

- If $\alpha = 1$: conventional CRRA utility
- ▶ Important: choice of reference point X_t
 - In the paper:

$$X_{t+1}^i = bC_t$$

- If $\alpha = 1$: conventional CRRA utility
- ▶ Important: choice of reference point X_t
 - In the paper:

$$X_{t+1}^i = bC_t$$

Often assumed (should increase persistence)

$$X_{t+1} = b X_t^{\phi} C_t^{1-\phi}$$

- If $\alpha = 1$: conventional CRRA utility
- Important: choice of reference point X_t
 - In the paper:

$$X_{t+1}^i = bC_t$$

Often assumed (should increase persistence)

$$X_{t+1} = b X_t^{\phi} C_t^{1-\phi}$$

Important: the paper uses aggregate consumption as reference point

$$C_t = \nu C_t^l + (1 - \nu) C_t^b$$

- Some motivation for this choice is needed
 - Using Xⁱ_{t+1} = bCⁱ_t is perhaps more reasonable (same dimensionality in baseline calibration, more amplification?)

Equilibrium

 \blacktriangleright Euler equations \rightarrow analytical results

Risk premium and collateral premium

Equilibrium

- \blacktriangleright Euler equations \rightarrow analytical results
 - Risk premium and collateral premium
- Non-linear solution (Coleman)
- State variables
 - Endogenous: B_t^b (or B_t^l) and C_{t-1}
 - Exogenous: w_t^l , w_t^b , and d_t

Equilibrium

- \blacktriangleright Euler equations \rightarrow analytical results
 - Risk premium and collateral premium
- Non-linear solution (Coleman)
- State variables
 - Endogenous: B_t^b (or B_t^l) and C_{t-1}
 - Exogenous: w_t^l , w_t^b , and d_t
- Two agent risk-sharing problem with
 - a single non-contingent bond
 - subject to a collateral constraint
 - non-standard preferences

Comments on framework

- 1. Why (agent-specific) reference dependent utility?
 - Loss aversion addresses the inability of standard preferences to deal with risk premia for *small* and *large* gambles simultaneously
 - For macro modeling, it seems natural to work with risk aversion
 - Could (agent-specific) risk aversion deliver the same quantitative results?
 - Could a standard habit model do the same? Is the kink needed?

Comments on framework

- 1. Why (agent-specific) reference dependent utility?
 - Loss aversion addresses the inability of standard preferences to deal with risk premia for *small* and *large* gambles simultaneously
 - ► For macro modeling, it seems natural to work with risk aversion
 - Could (agent-specific) risk aversion deliver the same quantitative results?
 - Could a standard habit model do the same? Is the kink needed?
- 2. Endowment economy: The model is an endowment economy, so it can only speak to the behavior of credit, and asset prices
 - Endogenous variables: interest rates and credit, (shadow) asset prices from borrowers SDF
 - Endogenous production to think about macroeconomic crises
 - Total output and consumption are unaffected

Impulse Response

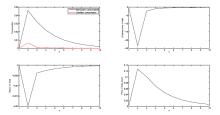


Figure 2: Impulse responses of selected variables to one time shock to the borrowers' income.

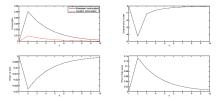


Figure 3: Impulse responses of selected variables to one time shock to the lenders' income.

Comments on quantitative results

- 1. Impulse responses could be more informative
 - In a nonlinear model like this one, impulse responses vary with the initial state
 - Surprising that impulse responses for w_t^b and w_t^l are almost identical?
 - They change the wealth distribution in opposite directions

Comments on quantitative results

- 1. Impulse responses could be more informative
 - In a nonlinear model like this one, impulse responses vary with the initial state
 - Surprising that impulse responses for w^b_t and w^l_t are almost identical?
 - They change the wealth distribution in opposite directions
- 2. "For the model to provide a good and realistic laboratory, episodes of de-leveraging, hence crises, shall materialize"
 - Why is deleveraging important in the model?
 - Are borrowers at any point net savers?
 - How often does the collateral constraint bind?

Comments on quantitative results

- 1. Impulse responses could be more informative
 - In a nonlinear model like this one, impulse responses vary with the initial state
 - Surprising that impulse responses for w_t^b and w_t^l are almost identical?
 - They change the wealth distribution in opposite directions
- 2. "For the model to provide a good and realistic laboratory, episodes of de-leveraging, hence crises, shall materialize"
 - Why is deleveraging important in the model?
 - Are borrowers at any point net savers?
 - How often does the collateral constraint bind?

3. CRRA benchmark

- The ideal comparison would to recalibrate the model with different CRRA coefficients, and then compare with loss-aversion
- The paper uses equal risk-aversion CRRA as benchmark

Thoughts

1. Normative analysis

- "We examine the impact of divergent risk-attitude on the economy inclination toward excessive leverage and risk-taking"
- As it is written, normative claims are unclear
- Both distributive (through the interest rate) and collateral externalities (through the constraint), using the terminology in Davila Korinek 17
- Decouple normative and positive implications

Thoughts

1. Normative analysis

- "We examine the impact of divergent risk-attitude on the economy inclination toward excessive leverage and risk-taking"
- As it is written, normative claims are unclear
- Both distributive (through the interest rate) and collateral externalities (through the constraint), using the terminology in Davila Korinek 17
- Decouple normative and positive implications
- 2. Language
 - Leverage cycles
 - Deleveraging
 - Endogenous risk
 - Boom-bust cycles

Conclusion

- Interesting idea
 - Study implications of non-standard preferences in a setup with collateral constraints
 - The model can match facts on pricing and leverage for US and UK
- Scope to push the approach further