Discussion

Cournot Fire Sales

by Thomas Eisenbach and Gregory Phelan

Eduardo Dávila

Yale and NBER

Second Financial Stability Conference Bank of Spain June 4, 2019

Summary

- Starting point for this paper
 - ► Pecuniary/Fire-Sale externalities as rationale for regulation
 - Root of externalities: price-taking behavior
 - ▶ In addition to incomplete markets and/or binding constraints

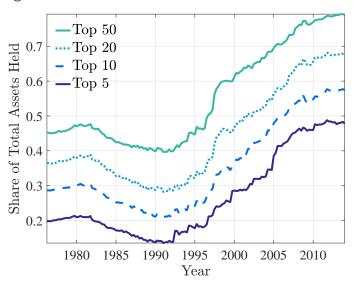
Summary

- Starting point for this paper
 - Pecuniary/Fire-Sale externalities as rationale for regulation
 - Root of externalities: price-taking behavior
 - ▶ In addition to incomplete markets and/or binding constraints
- This paper
 - Explores the role of non-price taking behavior (oligopoly)
- Interesting question
 - Conceptually: previously unexplored
 - Practically: increased concentration in banking/intermediation

Summary

- Starting point for this paper
 - Pecuniary/Fire-Sale externalities as rationale for regulation
 - Root of externalities: price-taking behavior
 - ▶ In addition to incomplete markets and/or binding constraints
- This paper
 - Explores the role of non-price taking behavior (oligopoly)
- Interesting question
 - Conceptually: previously unexplored
 - Practically: increased concentration in banking/intermediation
- ► Main takeaways
 - Cournot solution is different from planning solution
 - Different price impact
 - ► Cournot solution can reverse normative prescriptions
 - Move further away from planning solution (worsens lack of liquidity provision)
 - Under-investment (Cournot) instead of over-investment (CE) relative to planning solution

Increasing Concentration



► See Corbae-Levine 19

Roadmap

- 1. Abstract framework
- 2. Liquidity model
- 3. Final comments

- General framework (incomplete markets)
 - $lacktriangleright i \in I$ agents, single asset, many states, single good economy

$$\max_{x_t^i} \mathbb{E}_0 \left[\sum_t \beta^t u_i \left(c_t^i \right) \right]$$
$$c_t^i = e_t^i + d_t x_{t-1}^i - p_t \Delta x_t^i$$

- General framework (incomplete markets)
 - $lackbox{ }i\in I$ agents, single asset, many states, single good economy

$$\max_{x_t^i} \mathbb{E}_0 \left[\sum_t \beta^t u_i \left(c_t^i \right) \right]$$
$$c_t^i = e_t^i + d_t x_{t-1}^i - p_t \Delta x_t^i$$

- Competitive Equilibrium
 - Agents maximize
 - Market clearing: $\int_i \Delta x_t^i(p) = 0$, $\forall t$

- ► General framework (incomplete markets)
 - $lackbox{ }i\in I$ agents, single asset, many states, single good economy

$$\max_{x_t^i} \mathbb{E}_0 \left[\sum_t \beta^t u_i \left(c_t^i \right) \right]$$
$$c_t^i = e_t^i + d_t x_{t-1}^i - p_t \Delta x_t^i$$

- Competitive Equilibrium
 - ► Agents maximize
 - Market clearing: $\int_i \Delta x_t^i(p) = 0$, $\forall t$
- ► Benchmark 1: Competitive Equilibrium

$$p_{t} = \mathbb{E}_{t} \left[\frac{\beta u'_{i} \left(c_{t+1}^{i} \right)}{u'_{i} \left(c_{t}^{i} \right)} \left(d_{t+1} + p_{t+1} \right) \right], \forall i, t$$

- ► General framework (incomplete markets)
 - $lacktriangleright i \in I$ agents, single asset, many states, single good economy

$$\max_{x_t^i} \mathbb{E}_0 \left[\sum_t \beta^t u_i \left(c_t^i \right) \right]$$
$$c_t^i = e_t^i + d_t x_{t-1}^i - p_t \Delta x_t^i$$

- Competitive Equilibrium
 - Agents maximize
 - Market clearing: $\int_i \Delta x_t^i(p) = 0$, $\forall t$
- ► Benchmark 1: Competitive Equilibrium

$$p_{t} = \mathbb{E}_{t} \left[\frac{\beta u_{i}' \left(c_{t+1}^{i} \right)}{u_{i}' \left(c_{t}^{i} \right)} \left(d_{t+1} + p_{t+1} \right) \right], \forall i, t$$

Remark: MRS generically not equalized, $\frac{\beta u_i'(c_{t+1}^i)}{u_i'(c_t^i)}$ vary across i

- Benchmark 2: Planning Problem
 - lacktriangle Consider perturbation: $ilde{x}_t^i = x_t^i + \varepsilon h_t^i$ (e.g., $h_t^i = 1$, $\forall i$)

$$\frac{dW^{i}}{d\varepsilon} = \mathbb{E}_{0} \left[\sum_{t} \beta^{t} u_{i}^{i} \left(c_{t}^{i} \right) \left(\left[-p_{t} + \mathbb{E}_{t} \left[\frac{\beta u_{i}^{i} \left(c_{t+1}^{i} \right)}{u_{i}^{i} \left(c_{t}^{i} \right)} \left(d_{t+1} + p_{t+1} \right) \right] \right] \frac{d\tilde{x}_{t}^{i}}{d\varepsilon} - \Delta \tilde{x}_{t}^{i} \frac{dp_{t}}{d\varepsilon} \right) \right]$$

- Benchmark 2: Planning Problem
 - Consider perturbation: $\tilde{x}_t^i = x_t^i + \varepsilon h_t^i$ (e.g., $h_t^i = 1$, $\forall i$)

$$\frac{dW^{i}}{d\varepsilon} = \mathbb{E}_{0}\left[\sum_{t}\beta^{t}u_{i}'\left(c_{t}^{i}\right)\left(\left[-p_{t} + \mathbb{E}_{t}\left[\frac{\beta u_{i}'\left(c_{t+1}^{i}\right)}{u_{i}'\left(c_{t}^{i}\right)}\left(d_{t+1} + p_{t+1}\right)\right]\right]\frac{d\tilde{x}_{t}^{i}}{d\varepsilon} - \Delta\tilde{x}_{t}^{i}\frac{dp_{t}}{d\varepsilon}\right)\right]$$

$$\lim_{\varepsilon \to 0} \frac{\frac{dW^{i}}{d\varepsilon}}{u'_{i}\left(c_{0}^{i}\right)} = -\mathbb{E}_{0}\left[\sum_{t} \frac{\beta^{t}u'_{i}\left(c_{t}^{i}\right)}{u'_{i}\left(c_{0}^{i}\right)} \Delta \tilde{x}_{t}^{i} \frac{dp_{t}}{d\varepsilon}\right]$$

- ▶ Benchmark 2: Planning Problem
 - Consider perturbation: $\tilde{x}_t^i = x_t^i + \varepsilon h_t^i$ (e.g., $h_t^i = 1$, $\forall i$)

$$\frac{dW^{i}}{d\varepsilon} = \mathbb{E}_{0}\left[\sum_{t}\beta^{t}u_{i}'\left(c_{t}^{i}\right)\left(\left[-p_{t} + \mathbb{E}_{t}\left[\frac{\beta u_{i}'\left(c_{t+1}^{i}\right)}{u_{i}'\left(c_{t}^{i}\right)}\left(d_{t+1} + p_{t+1}\right)\right]\right]\frac{d\tilde{x}_{t}^{i}}{d\varepsilon} - \Delta\tilde{x}_{t}^{i}\frac{dp_{t}}{d\varepsilon}\right)\right]$$

ightharpoonup Limit $\varepsilon \to 0$ and normalize

$$\lim_{\varepsilon \to 0} \frac{\frac{dW^{i}}{d\varepsilon}}{u_{i}^{\prime}\left(c_{0}^{i}\right)} = -\mathbb{E}_{0}\left[\sum_{t} \frac{\beta^{t}u_{i}^{\prime}\left(c_{t}^{i}\right)}{u_{i}^{\prime}\left(c_{0}^{i}\right)} \Delta \tilde{x}_{t}^{i} \frac{dp_{t}}{d\varepsilon}\right]$$

If $\frac{\beta^t u_i'(c_t^i)}{u_i'(c_0^i)} = f$, $\forall i$, (complete markets), then $\int_i \Delta \tilde{x}_t^i \frac{dp_t}{d\varepsilon} = 0$

- Benchmark 2: Planning Problem
 - Consider perturbation: $\tilde{x}_t^i = x_t^i + \varepsilon h_t^i$ (e.g., $h_t^i = 1$, $\forall i$)

$$\frac{dW^{i}}{d\varepsilon} = \mathbb{E}_{0}\left[\sum_{t}\beta^{t}u_{i}'\left(c_{t}^{i}\right)\left(\left[-p_{t} + \mathbb{E}_{t}\left[\frac{\beta u_{i}'\left(c_{t+1}^{i}\right)}{u_{i}'\left(c_{t}^{i}\right)}\left(d_{t+1} + p_{t+1}\right)\right]\right]\frac{d\tilde{x}_{t}^{i}}{d\varepsilon} - \Delta\tilde{x}_{t}^{i}\frac{dp_{t}}{d\varepsilon}\right)\right]$$

$$\lim_{\varepsilon \to 0} \frac{\frac{dW^{i}}{d\varepsilon}}{u_{i}^{\prime}\left(c_{0}^{i}\right)} = -\mathbb{E}_{0}\left[\sum_{t} \frac{\beta^{t}u_{i}^{\prime}\left(c_{t}^{i}\right)}{u_{i}^{\prime}\left(c_{0}^{i}\right)} \Delta \tilde{x}_{t}^{i} \frac{dp_{t}}{d\varepsilon}\right]$$

- If $\frac{\beta^t u_i^t(c_i^t)}{u_i^t(c_0^i)} = f$, $\forall i$, (complete markets), then $\int_i \Delta \tilde{x}_t^i \frac{dp_t}{d\varepsilon} = 0$
- Incomplete markets: scope for Pareto Improvements (distributive externalities, see Davila/Korinek 18)
 - 1. Differences in MRS
 - 2. Net trading positions
 - 3. Price impact

- Benchmark 2: Planning Problem
 - Consider perturbation: $\tilde{x}_t^i = x_t^i + \varepsilon h_t^i$ (e.g., $h_t^i = 1$, $\forall i$)

$$\frac{dW^{i}}{d\varepsilon} = \mathbb{E}_{0}\left[\sum_{t}\beta^{t}u_{i}'\left(c_{t}^{i}\right)\left(\left[-p_{t} + \mathbb{E}_{t}\left[\frac{\beta u_{i}'\left(c_{t+1}^{i}\right)}{u_{i}'\left(c_{t}^{i}\right)}\left(d_{t+1} + p_{t+1}\right)\right]\right]\frac{d\tilde{x}_{t}^{i}}{d\varepsilon} - \Delta\tilde{x}_{t}^{i}\frac{dp_{t}}{d\varepsilon}\right)\right]$$

$$\lim_{\varepsilon \to 0} \frac{\frac{dW^{i}}{d\varepsilon}}{u_{i}^{\prime}\left(c_{0}^{i}\right)} = -\mathbb{E}_{0}\left[\sum_{t} \frac{\beta^{t}u_{i}^{\prime}\left(c_{t}^{i}\right)}{u_{i}^{\prime}\left(c_{0}^{i}\right)} \Delta \tilde{x}_{t}^{i} \frac{dp_{t}}{d\varepsilon}\right]$$

- If $\frac{\beta^t u_i^t(c_i^t)}{u_i^t(c_0^i)} = f$, $\forall i$, (complete markets), then $\int_i \Delta \tilde{x}_t^i \frac{dp_t}{d\varepsilon} = 0$
- ▶ Incomplete markets: scope for Pareto Improvements (distributive externalities, see Davila/Korinek 18)
 - 1. Differences in MRS
 - 2. Net trading positions
 - 3. Price impact
- lacksquare Computing $rac{dp_t}{darepsilon}$? Implicit Function Thm on $\int_i \Delta ilde{x}_t^i \left(p,arepsilon
 ight) = 0, \ orall t$

- ► Benchmark 2: Planning Problem
 - Consider perturbation: $\tilde{x}_t^i = x_t^i + \varepsilon h_t^i$ (e.g., $h_t^i = 1$, $\forall i$)

$$\frac{dW^{i}}{d\varepsilon} = \mathbb{E}_{0}\left[\sum_{t} \beta^{t} u_{i}^{i}\left(c_{t}^{i}\right) \left(\left[-p_{t} + \mathbb{E}_{t}\left[\frac{\beta u_{i}^{i}\left(c_{t+1}^{i}\right)}{u_{i}^{i}\left(c_{t}^{i}\right)}\left(d_{t+1} + p_{t+1}\right)\right]\right] \frac{d\tilde{x}_{t}^{i}}{d\varepsilon} - \Delta \tilde{x}_{t}^{i} \frac{dp_{t}}{d\varepsilon}\right)\right]$$

$$\lim_{\varepsilon \to 0} \frac{\frac{dW^{i}}{d\varepsilon}}{u_{i}'\left(c_{0}^{i}\right)} = -\mathbb{E}_{0}\left[\sum_{t} \frac{\beta^{t}u_{i}'\left(c_{t}^{i}\right)}{u_{i}'\left(c_{0}^{i}\right)} \Delta \tilde{x}_{t}^{i} \frac{dp_{t}}{d\varepsilon}\right]$$

- If $\frac{\beta^t u_i'(c_t^i)}{u_i'(c_b^i)} = f$, $\forall i$, (complete markets), then $\int_i \Delta \tilde{x}_t^i \frac{dp_t}{d\epsilon} = 0$
- Incomplete markets: scope for Pareto Improvements (distributive externalities, see Davila/Korinek 18)
 - 1. Differences in MRS
 - 2. Net trading positions
 - 3. Price impact
- ► Computing $\frac{dp_t}{d\varepsilon}$? Implicit Function Thm on $\int_i \Delta \tilde{x}_t^i(p,\varepsilon) = 0$, $\forall t$

$$\int_{i} \frac{\partial \tilde{x}_{t}^{i}(p,\varepsilon)}{\partial \varepsilon} + \int_{i} \frac{\partial \tilde{x}_{t}^{i}(p,\varepsilon)}{\partial \varepsilon} \frac{dp}{d\varepsilon} = 0 \Rightarrow \frac{dp}{d\varepsilon} = -\left(\int_{i} \frac{\partial \tilde{x}_{t}^{i}(p,\varepsilon)}{\partial p}\right)^{-1} \int_{i} \underbrace{\frac{\partial \tilde{x}_{t}^{i}(p,\varepsilon)}{\partial \varepsilon}}_{-t_{i}}$$

Abstract Framework: "Cournot"

- **>** Benchmark 3: "Cournot" perturbation $(\tilde{x}_t^i = x_t^i + \varepsilon h_t^i)$
 - $h_t^i = 1$, for some i, $h_t^{-i} = 0$ otherwise

$$\lim_{\varepsilon \to 0} \frac{\frac{dW^{i}}{d\varepsilon}}{u_{i}^{\prime}\left(c_{0}^{i}\right)} = -\mathbb{E}_{0}\left[\sum_{t} \frac{\beta^{t}u_{i}^{\prime}\left(c_{t}^{i}\right)}{u_{i}^{\prime}\left(c_{0}^{i}\right)} \Delta \tilde{x}_{t}^{i} \frac{dp_{t}^{i}}{d\varepsilon}\right]$$

Abstract Framework: "Cournot"

- **>** Benchmark 3: "Cournot" perturbation $(\tilde{x}_t^i = x_t^i + \varepsilon h_t^i)$
 - $\blacktriangleright h_t^i = 1$, for some i, $h_t^{-i} = 0$ otherwise

$$\lim_{\varepsilon \to 0} \frac{\frac{dW^{i}}{d\varepsilon}}{u_{i}'\left(c_{0}^{i}\right)} = -\mathbb{E}_{0}\left[\sum_{t} \frac{\beta^{t}u_{i}'\left(c_{t}^{i}\right)}{u_{i}'\left(c_{0}^{i}\right)} \Delta \tilde{x}_{t}^{i} \frac{dp_{t}^{i}}{d\varepsilon}\right]$$

- ► Key difference: *Price impacts* are perceived differently
 - ► Formally, $\frac{dp_t^i}{d\varepsilon}$ instead of $\frac{dp_t}{d\varepsilon}$
 - ► Computing $\frac{dp_t^t}{d\varepsilon}$? Residual demands are agent specific

$$\Delta \tilde{x}_{t}^{i}\left(\varepsilon\right) + \int_{-i} \Delta \tilde{x}_{t}^{-i}\left(p\right) = 0 \Rightarrow \frac{dp_{t}^{i}}{d\varepsilon} = -\left(\int_{-i} \frac{\partial \tilde{x}_{t}^{i}\left(p,\varepsilon\right)}{\partial p}\right)^{-1} \underbrace{\frac{\partial \tilde{x}_{t}^{i}\left(p,\varepsilon\right)}{\partial \varepsilon}}_{=h_{t}^{i}}$$

Abstract Framework: "Cournot"

- **>** Benchmark 3: "Cournot" perturbation $(\tilde{\chi}^i_t = \chi^i_t + \varepsilon h^i_t)$
 - $\blacktriangleright h_t^i = 1$, for some i, $h_t^{-i} = 0$ otherwise

$$\lim_{\varepsilon \to 0} \frac{\frac{dW^{i}}{d\varepsilon}}{u'_{i}\left(c_{0}^{i}\right)} = -\mathbb{E}_{0}\left[\sum_{t} \frac{\beta^{t}u'_{i}\left(c_{t}^{i}\right)}{u'_{i}\left(c_{0}^{i}\right)} \Delta \tilde{x}_{t}^{i} \frac{dp_{t}^{i}}{d\varepsilon}\right]$$

- ► Key difference: *Price impacts* are perceived differently
 - ► Formally, $\frac{dp_t^i}{d\varepsilon}$ instead of $\frac{dp_t}{d\varepsilon}$
 - ► Computing $\frac{dp_t^t}{d\varepsilon}$? Residual demands are agent specific

$$\Delta \tilde{x}_{t}^{i}\left(\varepsilon\right) + \int_{-i} \Delta \tilde{x}_{t}^{-i}\left(p\right) = 0 \Rightarrow \frac{dp_{t}^{i}}{d\varepsilon} = -\left(\int_{-i} \frac{\partial \tilde{x}_{t}^{i}\left(p,\varepsilon\right)}{\partial p}\right)^{-1} \underbrace{\frac{\partial \tilde{x}_{t}^{i}\left(p,\varepsilon\right)}{\partial \varepsilon}}_{=h_{t}^{i}}$$

Cournot solution must be bad under complete markets

$$\int_{i} \Delta \tilde{x}_{t}^{i} \frac{dp_{t}^{i}}{d\varepsilon} \neq 0$$

Liquidity Provision Model

- Elegant model
 - Ex-ante identical agents simplifies welfare comparisons
- Too much or too little liquidity depends on

$$\underbrace{\frac{dp_{L}}{d\ell}u'\left(c_{L}\right) - \frac{dp_{H}}{d\ell}\frac{1}{p}\beta Ru'\left(c_{H}\right)}_{\text{cournot}} \gtrless \underbrace{\left(u'\left(c_{L}\right) - \frac{1}{p}\beta Ru'\left(c_{H}\right)\right)\frac{dp}{d\ell}}_{\text{constrained planner}}$$

Liquidity Provision Model

- Elegant model
 - Ex-ante identical agents simplifies welfare comparisons
- Too much or too little liquidity depends on

$$\underbrace{\frac{dp_{L}}{d\ell}u'\left(c_{L}\right) - \frac{dp_{H}}{d\ell}\frac{1}{p}\beta Ru'\left(c_{H}\right)}_{\text{cournot}} \gtrless \underbrace{\left(u'\left(c_{L}\right) - \frac{1}{p}\beta Ru'\left(c_{H}\right)\right)\frac{dp}{d\ell}}_{\text{constrained planner}}$$

- Key intuition:
 - ightharpoonup If bad state unlikely $(\alpha \to 1)$
 - Agents hold little liquidity $(\ell \to 0)$
 - ▶ And $\frac{dp_L}{d\ell} \rightarrow 0$ (but $\frac{dp_L}{d\ell} \rightarrow \frac{1}{N}$): small amount of liquidity, minimal price impact
- **Comment**: How robust are $\frac{dp_L}{d\ell}$ and $\frac{dp_H}{d\ell}$ results? Ideally empirically disciplined

Comments/Thoughts

- 1. Include welfare rankings
 - ▶ It is not obvious whether Cournot > Competitive or vice versa
 - ightharpoonup Paper focuses on ℓ (allocations)
- 2. Explore joint antitrust and insurance policies
 - Benchmark with imperfect competition and complete markets
- 3. Single agent case (full monopolist with RoW/fringe pricing)
 - Converges to constrained efficient benchmark
 - Worth discussing
- Both models would benefit from sensible numerical illustrations
 - Sense of magnitudes
 - Calibration?