Discussion Can the cure kill the patient? Corporate credit interventions and debt overhang by Nicolas Crouzet and Fabrice Tourre

Eduardo Dávila

Yale and NBER

Adam Smith Workshop, April 2021

Motivation: Business Credit Programs implemented in 2020

- Corporate Credit Facilities (CCF)
- Main Street Lending Program (MSLP)
- Paycheck Protection Program (PPP)
- More broadly: government-backed funding programs

Motivation: Business Credit Programs implemented in 2020

- Corporate Credit Facilities (CCF)
- Main Street Lending Program (MSLP)
- Paycheck Protection Program (PPP)
- More broadly: government-backed funding programs
- This paper: impact of these interventions on
 - i) leverage
 - ii) investment
 - iii) default

Motivation: Business Credit Programs implemented in 2020

- Corporate Credit Facilities (CCF)
- Main Street Lending Program (MSLP)
- Paycheck Protection Program (PPP)
- More broadly: government-backed funding programs
- This paper: impact of these interventions on
 - i) leverage
 - ii) investment
 - iii) default
- Key modeling feature: debt overhang
 - Long-term debt without commitment
 - Within canonical corporate finance model

Motivation: Business Credit Programs implemented in 2020

- Corporate Credit Facilities (CCF)
- Main Street Lending Program (MSLP)
- Paycheck Protection Program (PPP)
- More broadly: government-backed funding programs
- This paper: impact of these interventions on
 - i) leverage
 - ii) investment
 - iii) default
- Key modeling feature: debt overhang
 - Long-term debt without commitment
 - Within canonical corporate finance model
- Key insight: subsidizing credit may exacerbate debt overhang, lowering investment in the recovery
 - Tradeoff with direct gains when financial markets malfunction
 - Quantification

Main results

- 1. If funding markets function well, credit interventions are
 - Irrelevant if not-subsidized (Ricardian Equivalence)
 - Distortionary if subsidized (higher leverage, low investment; quantitatively small effect)
- 2. If funding markets do not function well, credit interventions
 - Alleviate funding problems in the short term (quantitatively larger)
 - Lower investment in the long-term

Main results

- 1. If funding markets function well, credit interventions are
 - Irrelevant if not-subsidized (Ricardian Equivalence)
 - Distortionary if subsidized (higher leverage, low investment; quantitatively small effect)
- 2. If funding markets do not function well, credit interventions
 - Alleviate funding problems in the short term (quantitatively larger)
 - Lower investment in the long-term
- 3. Other policies seem to yield similar results
- Paper: facts, model, calibration/estimation, policy experiments
- Careful quantitative exercise

Outline of Discussion

- 1. A Simplified Model
- 2. Comments/Thoughts

A simplified model

• Two dates: $t \in \{0, 1\}$

Equityholders objective:

$$V\left(\overline{b}\right) = \max \underbrace{c_0}_{d_0-e_0} + \beta^E \int \underbrace{c_1(s)}_{d_1(s)-e_1(s)} dF(s)$$

A simplified model

• Two dates:
$$t \in \{0, 1\}$$

Equityholders objective:

$$V\left(\overline{b}\right) = \max \underbrace{c_0}_{d_0-e_0} + \beta^E \int \underbrace{c_1(s)}_{d_1(s)-e_1(s)} dF(s)$$

Firms' budget constraints:

$$d_{0} - e_{0} = w_{0} + \overbrace{Q\left(b_{0}, \overline{b}\right)k_{0}}^{\text{debt issued}} - k_{0} - \overbrace{\Phi\left(k_{0}\right)}^{\text{adj.cost}}$$
$$d_{1}\left(s\right) - e_{1}\left(s\right) = \max\left\{sk_{0} - b_{0}k_{0} - \overline{b}k_{0} + \underbrace{\Theta\left(b_{0}\right)k_{0}}_{\text{tax advantage}}\right\}$$

 \blacktriangleright \overline{b} is outstanding debt (state variable), b_0 is newly issued debt

A simplified model

Two dates: $t \in \{0, 1\}$

Equityholders objective:

$$V\left(\overline{b}\right) = \max \underbrace{c_0}_{d_0-e_0} + \beta^E \int \underbrace{c_1(s)}_{d_1(s)-e_1(s)} dF(s)$$

Firms' budget constraints:

$$d_{0} - e_{0} = w_{0} + \overbrace{Q\left(b_{0}, \overline{b}\right)k_{0}}^{\text{debt issued}} - k_{0} - \overbrace{\Phi\left(k_{0}\right)}^{\text{adj.cost}}$$
$$d_{1}\left(s\right) - e_{1}\left(s\right) = \max\left\{sk_{0} - b_{0}k_{0} - \overline{b}k_{0} + \underbrace{\Theta\left(b_{0}\right)k_{0}}_{\text{tax advantage}}\right\}$$

 \blacktriangleright \overline{b} is outstanding debt (state variable), b_0 is newly issued debt $Q\left(b_{0},\overline{b}\right) \text{ comes from lenders/debtholders:}$ $Q\left(b_{0},\overline{b}\right)k_{0} = \beta^{D}\left(\int_{b_{0}+\overline{b}}^{\overline{s}}b_{0}k_{0}dF\left(s\right) + \frac{b_{0}}{b_{0}+\overline{b}}\alpha\int_{\underline{s}}^{b_{0}+\overline{b}}sk_{0}dF\left(s\right)\right)$ _{5/}

Firm's problem: Leverage

Firm's objective:

$$\max_{b_0,k_0} \left[\beta^E \int_{b_0+\bar{b}}^{\bar{s}} \left(s - b_0 - \bar{b} + \Theta(b_0) \right) dF(s) + Q\left(b_0, \bar{b}\right) - 1 \right] k_0 - \Phi(k_0)$$
FOC for leverage b_0 : (tradeoff-theory)

$$\underbrace{\left(\beta^E - \beta^D \right) \int_{b_0+\bar{b}}^{\bar{s}} dF(s)}_{\text{difference in valuation}>0} + \underbrace{\beta^E \Theta'(b_0) \int_{b_0+\bar{b}}^{\bar{s}} dF(s)}_{\text{tax advantage}>0} + \underbrace{\beta^D \frac{d\left(\frac{b_0}{b_0+\bar{b}}\right)}{db_0} \alpha \int_{\underline{s}}^{b_0+\bar{b}} sdF(s)}_{\text{dilution}>0}}_{\text{dilution}>0}$$

$$= \underbrace{\beta^D (1 - \alpha) b_0 f\left(b_0 + \bar{b}\right)}_{\text{DWL}>0}$$

First element maps to "arbitrage motive" in the paper

Firm's problem: Leverage

Firm's objective:

$$\max_{b_0,k_0} \left[\beta^E \int_{b_0+\bar{b}}^{\bar{s}} \left(s - b_0 - \bar{b} + \Theta(b_0) \right) dF(s) + Q\left(b_0, \bar{b}\right) - 1 \right] k_0 - \Phi(k_0)$$
FOC for leverage b_0 : (tradeoff-theory)

$$\underbrace{\left(\beta^E - \beta^D \right) \int_{b_0+\bar{b}}^{\bar{s}} dF(s)}_{\text{difference in valuation}>0} + \underbrace{\beta^E \Theta'(b_0) \int_{b_0+\bar{b}}^{\bar{s}} dF(s)}_{\text{tax advantage}>0} + \underbrace{\beta^D \frac{d\left(\frac{b_0}{b_0+\bar{b}}\right)}{db_0} \alpha \int_{\underline{s}}^{b_0+\bar{b}} sdF(s)}_{\text{dilution}>0} \\ = \underbrace{\beta^D (1 - \alpha) b_0 f\left(b_0 + \bar{b}\right)}_{\text{DWL}>0}$$

First element maps to "arbitrage motive" in the paper

- **Remark**: note that b_0 is a function of \overline{b}
 - "Debt overhang refers to a debt burden so large that an entity cannot take on additional debt to finance future projects."

• Broader point:
$$\frac{db_0}{d\overline{b}}$$
 vs. $\frac{dk}{d\overline{b}}$

Firm's problem: Investment

- Debt overhang
 - \blacktriangleright LHS (hence, investment) is decreasing in existing leverage \overline{b}
 - Equityholders receive less
 - New debt is more expensive $\frac{\partial Q}{\partial b} < 0$

Default more frequent, lower recovery

Envelope theorem helpful

Back to the paper

► Two HJB/ODE for equity and debt:

- $e_t(\bar{x}_t)$ and $d_t(\bar{x}_t)$
- Scale invariance: single state x_t (leverage)
- Equity HJB incorporates a choice of investment and leverage
- Default decision: boundary

Back to the paper

Two HJB/ODE for equity and debt:

- $e_t(\bar{x}_t)$ and $d_t(\bar{x}_t)$
- Scale invariance: single state x_t (leverage)
- Equity HJB incorporates a choice of investment and leverage
- Default decision: boundary
- Shock: low output (25% drop) + more expensive debt
- Policy experiments
 - Subsidizing debt is the same as increasing β^D
 - Market shutdown imposes constraints directly

- 1. Maturity: debt-overhang problem is linked to the maturity of the existing debt
 - In the paper, all debt is long-term
 - Sensitivity to choice of m
 - What is the optimal maturity of the intervention?
 - Should it be lined up with the duration of the shock/disturbance?
 - Adding an additional maturity is challenging, but maybe more sensitivity on *m* (calibrated to 10 years)
 - Related idea: calibrate the model to a cross section of maturities
 - Seniority?

2. Welfare is measured in the paper as

$$W_0 = \int_0^\infty e^{-rt} \left(a_t - \hat{\Phi}_t \right) K_t dt$$

- It would be useful to provide a decomposition of the effects of policies
- For instance, size of DWL's (embedded in that formula)
- Perhaps alternative decompositions
 - static vs dynamic effects
 - fixed leverage/investment
- Comparative statics on the size of the subsidy?
- Is there an optimal/interior size of intervention?

- 3. Adding liquidity could be important
 - The paper acknowledges this
 - Firms' leverage was growing before 2020, but also cash reserves
- 4. Firms in the model issue debt to pay dividends
 - These are low leverage firms
 - Counterfactual?

- 5. Modeling the corporate tax seems to be a nuisance
 - Corporate tax calibrated to statutory rate $\Theta = 0.35$, but effective rates are much smaller
 - Little discussion of this issue
 - In newer version, there is no need to have taxes
 - Alternative calibration