Discussion

Variation margins, fire sales, and information-constrained optimality by Bruno Biais, Florian Heider, Marie Hoerova

Eduardo Dávila

Yale and NBER

FIRS Savannah 2019

Summary

► Question

How are margins set between parties when trading derivatives?

Are asset liquidations induced by margin calls inefficient?

Summary

Question

- How are margins set between parties when trading derivatives?
- Are asset liquidations induced by margin calls inefficient?
- This paper develops a microfounded model to answer these questions
 - Key: effort problem
 - Rich but tractable setup
 - Main contributions
 - 1. Margin choice model (positive results)
 - 2. Normative results with moral hazard and general equilibrium

Summary

Question

- How are margins set between parties when trading derivatives?
- Are asset liquidations induced by margin calls inefficient?
- This paper develops a microfounded model to answer these questions
 - Key: effort problem
 - Rich but tractable setup
 - Main contributions
 - 1. Margin choice model (positive results)
 - 2. Normative results with moral hazard and general equilibrium

Main results

- Incentive problems may call for margins
- Margin calls may induce liquidations/fire sales
- ► Complete markets ⇒ Second-best efficiency
- ► Incomplete markets ⇒ Second-best inefficiency

- 1. Protection Buyers (banks)
 - Risk averse
 - Preexisting position to hedge (binomial distribution, $\overline{\theta}$, $\underline{\theta}$)
 - Public signals \overline{s} , \underline{s} informative over $\overline{\theta}$ and $\underline{\theta}$

- 1. Protection Buyers (banks)
 - Risk averse
 - Preexisting position to hedge (binomial distribution, $\overline{\theta}$, $\underline{\theta}$)
 - Public signals \overline{s} , \underline{s} informative over $\overline{\theta}$ and $\underline{\theta}$
- 2. Protection Sellers (AIG)
 - Risk neutral
 - Moral hazard problem
 - Unit cost of effort ψ (interpretation)
 - Effort is efficient (R payoff)
 - If no effort, R with probability μ , 0 otherwise

$$\blacktriangleright \mathcal{P} = R - \frac{\psi}{1-\mu} > 0$$

- 1. Protection Buyers (banks)
 - Risk averse
 - Preexisting position to hedge (binomial distribution, $\overline{\theta}$, $\underline{\theta}$)
 - Public signals \overline{s} , \underline{s} informative over $\overline{\theta}$ and $\underline{\theta}$
- 2. Protection Sellers (AIG)
 - Risk neutral
 - Moral hazard problem
 - Unit cost of effort ψ (interpretation)
 - Effort is efficient (R payoff)
 - If no effort, R with probability μ , 0 otherwise

$$\blacktriangleright \mathcal{P} = R - \frac{\psi}{1-\mu} > 0$$

- 3. Investors (second-best user)
 - Risk averse
 - No moral hazard problem
 - Higher and convex cost of holding assets (downward-sloping demand)

- 1. Protection Buyers (banks)
 - Risk averse
 - Preexisting position to hedge (binomial distribution, $\overline{\theta}$, $\underline{\theta}$)
 - Public signals \overline{s} , \underline{s} informative over $\overline{\theta}$ and $\underline{\theta}$
- 2. Protection Sellers (AIG)
 - Risk neutral
 - Moral hazard problem
 - Unit cost of effort ψ (interpretation)
 - Effort is efficient (R payoff)
 - If no effort, R with probability μ , 0 otherwise

$$\blacktriangleright \mathcal{P} = R - \frac{\psi}{1-\mu} > 0$$

- 3. Investors (second-best user)
 - Risk averse
 - No moral hazard problem
 - Higher and convex cost of holding assets (downward-sloping demand)
- Timing
 - Signal, transfer/sale, effort

Planning Problems

Four benchmarks

- 1. First Best (planning problem)
 - ▶ Full insurance between Protection Buyers and Sellers
 - Investors do not participate (assets held by more efficient Protection Sellers)

Planning Problems

Four benchmarks

- 1. First Best (planning problem)
 - Full insurance between Protection Buyers and Sellers
 - Investors do not participate (assets held by more efficient Protection Sellers)
- 2. Second Best (planning problem)
 - Full insurance between Protection Buyers and Investors
 - Imperfect insurance between them and Protection Sellers
 - Conditional on signal, full insurance
 - Signals and Protection Buyers/Investors consumption are correlated
 - IC binds after bad signal: less benefit to exert effort when sellers have to pay out
 - Asset transfer α_S set to trade off incentive constraint with investor inefficiency

Market Equilibrium w/Complete Markets

- 3. Market Equilibrium w/Complete Markets for publicly observed variables
 - Protection Buyer as principal with full bargaining power
 - New IC:

$$\alpha_{S}p + (1 - \alpha_{S}) \mathcal{P} \geq \mathbb{E}\left[\tau\left(\tilde{\theta}, \tilde{s}|\underline{s}\right)\right]$$

- \blacktriangleright Price p of assets
- Signal contingent market, price q
- Main result: Market Equilibrium is information-constrained efficient (Prop 5)
 - "Information-constrained Second Welfare Theorem"
 - Why? Low prices tighten IC of Sellers after bad signals, but gives more resources to investors
 - Investors have zero welfare weight (competitive interpretation?), so complete markets takes care of the rest

Market Equilibrium w/Complete Markets

- 3. Market Equilibrium w/Complete Markets for publicly observed variables
 - Protection Buyer as principal with full bargaining power
 - ► New IC:

$$\alpha_{S}p + (1 - \alpha_{S}) \mathcal{P} \geq \mathbb{E}\left[\tau\left(\tilde{\theta}, \tilde{s}|\underline{s}\right)\right]$$

- \blacktriangleright Price p of assets
- Signal contingent market, price q
- Main result: Market Equilibrium is information-constrained efficient (Prop 5)
 - "Information-constrained Second Welfare Theorem"
 - Why? Low prices tighten IC of Sellers after bad signals, but gives more resources to investors
 - Investors have zero welfare weight (competitive interpretation?), so complete markets takes care of the rest
- Comment: I would love to see a variational argument for this result

Market Equilibrium w/Incomplete Markets

- 4. Market Equilibrium w/Incomplete Markets for signals
 - Equilibrium is information-constrained inefficient (Prop 6)
 - Margins are too large (too much selling)
 - Sale price is too low after bad signal
 - "Distributive externality" (using DK18 terminology) between Protection Buyers and Investors
 - MRS differences, net buying/selling, price impact

Market Equilibrium w/Incomplete Markets

- 4. Market Equilibrium w/Incomplete Markets for signals
 - Equilibrium is information-constrained inefficient (Prop 6)
 - Margins are too large (too much selling)
 - Sale price is too low after bad signal
 - "Distributive externality" (using DK18 terminology) between Protection Buyers and Investors
 - MRS differences, net buying/selling, price impact
- Comment: I would like to see a "doubly-constrained-inefficient benchmark"
 - I think it is too evident that the incomplete markets outcome will be worse than the complete markets outcome
 - I'm sure the paper is also constrained inefficient in the incomplete markets (Hart75, GP86) sense

Other Comments/Thoughts

- 1. Making the model more symmetric
 - Two-sided moral hazard
 - Protection Buyers may also need to post collateral in practice

Other Comments/Thoughts

- 1. Making the model more symmetric
 - Two-sided moral hazard
 - Protection Buyers may also need to post collateral in practice
- 2. Relation to literature
 - Different message from Gromb-Vayanos
 - Somewhat different framework (limits to arbitrage)
 - Different friction: limited commitment vs. moral hazard (broader point, literature needs to work more here)
 - Incentives to shirk high when payouts are large relation to default incentives in Kehoe-Levine/Rampini-Vishwanathan and incomplete market default models
 - Incomplete markets results can be expanded
 - Closer in spirit to Prescott-Townsend/Kilenthong-Townsend
 - "Let them trade"
 - In PT84, moral hazard yields constrained efficiency (individual markets)

Other Comments/Thoughts

- 1. Making the model more symmetric
 - Two-sided moral hazard
 - Protection Buyers may also need to post collateral in practice
- 2. Relation to literature
 - Different message from Gromb-Vayanos
 - Somewhat different framework (limits to arbitrage)
 - Different friction: limited commitment vs. moral hazard (broader point, literature needs to work more here)
 - Incentives to shirk high when payouts are large relation to default incentives in Kehoe-Levine/Rampini-Vishwanathan and incomplete market default models
 - Incomplete markets results can be expanded
 - Closer in spirit to Prescott-Townsend/Kilenthong-Townsend
 - "Let them trade"
 - In PT84, moral hazard yields constrained efficiency (individual markets)
- 3. Why do agents have to sell, couldn't they just post other collateral/cash?
 - More broadly, what if there are multiple assets? Which one should be posted?