Discussion Bank Runs, Fragility, and Credit Easing by Manuel Amador and Javier Bianchi

Eduardo Dávila

Yale and NBER

2nd Bank of Canada Workshop on Monetary Policy Research September 21, 2022

This paper

- Dynamic general equilibrium model of bank runs
- Paper has three parts
 - 1. Environment without self-fulfilling runs/crises
 - 2. Environment with self-fulfilling runs/crises
 - 3. Insights for **policy** contrasting both cases
 - Policies considered: Default decision + Credit easing
 - Central insight: optimal policy depends on 1) vs. 2)
 - e.g., credit easing may be undesirable in the absence of a run

Really detailed and careful analytical work!

Outline

Final comments/remarks

Big picture

- Bank runs/coordination failures are an important phenomenon
- Benchmark framework: Diamond/Dybvig 83
 - (Typically) Demandable non-contingent deposits
 - Runs/failures are triggered by depositors
 - Mostly static models \Rightarrow Hard to make dynamic

Big picture

- Bank runs/coordination failures are an important phenomenon
- Benchmark framework: Diamond/Dybvig 83
 - (Typically) Demandable non-contingent deposits
 - Runs/failures are triggered by depositors
 - Mostly static models \Rightarrow Hard to make dynamic
- This paper: closer to Kiyotaki/Moore 97
 - With default option shaping borrowing constraint
 - Runs triggered by lenders (similar to Cole/Kehoe 00)

Environment

Kiyotaki/Moore 97

- Risk neutral banks and creditors
- Linear technology for banks/DRS technology for creditors
- Capital moves from banks to creditors / short-term debt
- Amador/Bianchi 22
 - Risk <u>averse</u> (log) banks + Risk neutral creditors
 - Linear technology for banks (worse after default)
 - Capital moves within banks / short-term debt
 - Option to default (with perfect foresight) generates endogenous borrowing constraint

$$b_{t+1} \leq \underbrace{\gamma_t}_{\text{endogenous}} p_{t+1}k_{t+1}$$

Counterpart of "issuance Laffer curve"

• At t = 0, indifferent banks may decide to default

Environment without runs

- 1. Partial equilibrium: prices as given, default/borrowing constraint endogenous
 - Scope for multiple stationary solutions
 - This economy features a dynamic complementarity via the borrowing constraint
 - ► Loose constraint today ⇒ Lever up more today ⇒ Higher returns tomorrow, fewer defaults ⇒ justifies loose constraint
 - This channel is shut down
- 2. General equilibrium

Figure 2: Types of equilibrium depending on B_0

Important that thresholds do not cross

Environment with runs

- Before: a bank with cash flows that guarantee repayment obtains funding
- Now: Cole/Kehoe-style runs
 - If lenders decide not to lend \Rightarrow Failure (if vulnerable region)
 - If lenders decide to lend \Rightarrow No Failure
- Larger region for stationary default equilibrium
 - Tighter borrowing limits

• Bank's welfare: (ϕ is share of defaulting banks)

$$W = \underbrace{(1-\phi) V^{R}(p)}_{\text{repay}} + \underbrace{\phi V^{D}(p)}_{\text{default}}$$

$$\blacktriangleright \text{ Welfare assessments of arbitrary policy } (\theta):$$

$$\frac{dW}{d\theta} = \left(V^{D}(p) - V^{R}(p)\right) \frac{d\phi}{d\theta} + (1-\phi) \underbrace{\frac{dV^{R}(p)}{dp}}_{u'(c^{R})\Delta k^{R}} \frac{dp}{d\theta} + \phi \underbrace{\frac{dV^{D}(p)}{dp}}_{u'(c^{D})\Delta k^{D}} \frac{dp}{d\theta}$$

• Bank's welfare: (ϕ is share of defaulting banks)

$$W = \underbrace{(1-\phi) V^{R}(p)}_{\text{repay}} + \underbrace{\phi V^{D}(p)}_{\text{default}}$$

$$\blacktriangleright \text{ Welfare assessments of arbitrary policy } (\theta):$$

$$\frac{dW}{d\theta} = \underbrace{\left(V^{D}(p) - V^{R}(p)\right)}_{\text{Coordination Failure} \le 0} \underbrace{\frac{d\phi}{d\theta}}_{\text{Distributive Pecuniary Effects}}$$

• Bank's welfare: (ϕ is share of defaulting banks)

$$W = \underbrace{(1-\phi) V^{R}(p)}_{\text{repay}} + \underbrace{\phi V^{D}(p)}_{\text{default}}$$

$$\blacktriangleright \text{ Welfare assessments of arbitrary policy } (\theta):$$

$$\frac{dW}{d\theta} = \underbrace{\left(V^{D}(p) - V^{R}(p)\right)}_{\text{Coordination Failure} \le 0} \underbrace{\frac{d\phi}{d\theta}}_{\text{Distributive Pecuniary Effects}}$$

- Two distinct rationales for intervention (which may be costly)
- 1. Coordination Failure
 - Economy without runs: $V^{D}(p) V^{R}(p) = 0$ (envelope thm.)
 - Economy with runs: $V^{D}(p) V^{R}(p) < 0$
- 2. Distributive Pecuniary Effects
 - DK18: i) differences in MRS + ii) net trade positions + iii) pecuniary effect of policy
 - ▶ ↑ $φ \Rightarrow$ More capital sold $\Rightarrow p \downarrow \Rightarrow$ Hurts sellers/defaulters + benefits repaying banks with high $u'(c^R)$ ↑
 - Fire sale flavor (Lorenzoni 08)

Paper considers two specific policies

- 1. Change in ϕ (share of defaulters)
- 2. Credit easing: government purchases of capital with improductive technology
 - Question: Is credit easing the best term to capture purchases of capital?
- Key practical insights
 - Increasing ϕ will be typically beneficial in economy without runs
 - Reducing ϕ will be typically beneficial in economy with runs
 - Similarly ambiguous conclusions with credit easing

Final Comments/Thoughts

1. What determines the desirability of an intervention?

- Optimal intervention depends on run vs. no-run environment ⇒ True!
- ▶ But intervention is identical conditional on $V^{D}(p) V^{R}(p)$ and $MRS \cdot \Delta k \cdot dp$
 - "Sufficient statistics"
- 2. Natural next steps
 - Allow for defaults in equilibrium outside of t = 0
 - Introduce risk
 - Quantification

Conclusion

- Very interesting and carefully executed paper
- Main message
 - Run vs. no-run may have different implications for which policies are desirable
 - Subtle answers
 - Coordination Failure + Distributive Effects + Cost of Intervention

▶ I look forward to seeing the dynamics pushed even further!