Discussion of: Can a Financial Transaction Tax Prevent Stock Price Booms? Adam, Beutel, Marcet and Merkel

> Eduardo Dávila NYU Stern

Barcelona GSE Summer Forum June 15 2015

> This paper: Quantitative stock market model

> This paper: Quantitative stock market model with

1. Extrapolative beliefs

> This paper: Quantitative stock market model with

- 1. Extrapolative beliefs
- 2. Transaction taxes

> This paper: Quantitative stock market model with

- 1. Extrapolative beliefs
- 2. Transaction taxes
- Question: Can a FTT Prevent Stock Price Booms?
 - ► Their answer: no

> This paper: Quantitative stock market model with

- 1. Extrapolative beliefs
- 2. Transaction taxes
- Question: Can a FTT Prevent Stock Price Booms?
 - Their answer: no, but why? (I'll get back to this)
- Very important topic
 - Very little work (for many reasons) on FTT's
 - Effect of FTT on learning dynamics
 - Quantitative modeling with FTT

This paper: Quantitative stock market model with

- 1. Extrapolative beliefs
- 2. Transaction taxes
- Question: Can a FTT Prevent Stock Price Booms?
 - Their answer: no, but why? (I'll get back to this)
- Very important topic
 - Very little work (for many reasons) on FTT's
 - Effect of FTT on learning dynamics
 - Quantitative modeling with FTT
- Promising paper

- 1. Evidence (disciplines calibration)
 - Prices
 - Volume
 - (Survey) Expectations

- 1. Evidence (disciplines calibration)
 - Prices
 - Volume
 - (Survey) Expectations
- 2. Behavioral Stock Market Model

- 1. Evidence (disciplines calibration)
 - Prices
 - Volume
 - (Survey) Expectations
- 2. Behavioral Stock Market Model
- 3. Effect of FTT

- 1. Evidence (disciplines calibration)
 - Prices
 - Volume
 - (Survey) Expectations
- 2. Behavioral Stock Market Model
- 3. Effect of FTT
- I will focus on parts 2 and 3 (main contributions)

- 1. Evidence (disciplines calibration)
 - Prices
 - Volume
 - (Survey) Expectations
- 2. Behavioral Stock Market Model
- 3. Effect of FTT
- I will focus on parts 2 and 3 (main contributions)
- One comment on the evidence: aren't $\frac{P}{D}$ ratios too high?

- 1. Evidence (disciplines calibration)
 - Prices
 - Volume
 - (Survey) Expectations
- 2. Behavioral Stock Market Model
- 3. Effect of FTT
- I will focus on parts 2 and 3 (main contributions)
- One comment on the evidence: aren't $\frac{P}{D}$ ratios too high?
 - Paper: Average is 139.7
 - Model: > 250 (!)

• Finite number of investors i = 1, ..., I. Solve:

$$\max_{S_t^i} \mathbb{E}_0^{P^i} \sum_{t=0}^\infty \delta^t \frac{(C_t^i)^{1-\gamma}}{1-\gamma}$$

• Finite number of investors i = 1, ..., I. Solve:

$$\max_{S_t^i} \mathbb{E}_0^{P^i} \sum_{t=0}^{\infty} \delta^t \frac{(C_t^i)^{1-\gamma}}{1-\gamma}$$

Finite number of investors i = 1, ..., I. Solve:

$$\max_{S_t^i} \mathbb{E}_0^{P^i} \sum_{t=0}^{\infty} \delta^t \frac{(C_t^i)^{1-\gamma}}{1-\gamma}$$

$$S_t^i P_t + C_t^i = S_{t-1}^i (P_t + D_t) + W_t - \tau |(S_t^i - S_{t-1}^i)P_t| + T_t^i$$

- W_t and D_t known and random (rational behavior)
- ▶ *Pⁱ*: price growth is extrapolative (as in Adam-Beutel-Marcet)
 - Different gains gⁱ

Finite number of investors i = 1, ..., I. Solve:

$$\max_{S_t^i} \mathbb{E}_0^{P^i} \sum_{t=0}^{\infty} \delta^t \frac{(C_t^i)^{1-\gamma}}{1-\gamma}$$

- ▶ *W_t* and *D_t* known and random (rational behavior)
- ► *Pⁱ*: price growth is extrapolative (as in Adam-Beutel-Marcet)
 - Different gains gⁱ
- Market clearing: $\sum_{i} \mu_i S_t^i = 1 + u_t$

Finite number of investors i = 1, ..., I. Solve:

$$\max_{S_t^i} \mathbb{E}_0^{P^i} \sum_{t=0}^{\infty} \delta^t \frac{(C_t^i)^{1-\gamma}}{1-\gamma}$$

- ▶ W_t and D_t known and random (rational behavior)
- ▶ *Pⁱ*: price growth is extrapolative (as in Adam-Beutel-Marcet)
 - Different gains gⁱ
- Market clearing: $\sum_{i} \mu_i S_t^i = 1 + u_t$
- Random supply shocks u_t

Finite number of investors i = 1, ..., I. Solve:

$$\max_{S_t^i} \mathbb{E}_0^{P^i} \sum_{t=0}^{\infty} \delta^t \frac{(C_t^i)^{1-\gamma}}{1-\gamma}$$

- ▶ *W_t* and *D_t* known and random (rational behavior)
- *Pⁱ*: price growth is extrapolative (as in Adam-Beutel-Marcet)
 Different gains gⁱ
- Market clearing: $\sum_{i} \mu_i S_t^i = 1 + u_t$
- Random supply shocks u_t
- Remarks
 - 1. One choice: stock holdings (no bond market)

Finite number of investors i = 1, ..., I. Solve:

$$\max_{S_t^i} \mathbb{E}_0^{P^i} \sum_{t=0}^{\infty} \delta^t \frac{(C_t^i)^{1-\gamma}}{1-\gamma}$$

- ▶ *W_t* and *D_t* known and random (rational behavior)
- ► *Pⁱ*: price growth is extrapolative (as in Adam-Beutel-Marcet)
 - Different gains gⁱ
- Market clearing: $\sum_{i} \mu_i S_t^i = 1 + u_t$
- Random supply shocks u_t
- Remarks
 - 1. One choice: stock holdings (no bond market)
 - 2. Linear tax: realistic

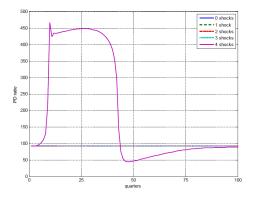
Finite number of investors i = 1, ..., I. Solve:

$$\max_{S_t^i} \mathbb{E}_0^{P^i} \sum_{t=0}^{\infty} \delta^t \frac{(C_t^i)^{1-\gamma}}{1-\gamma}$$

- ▶ *W_t* and *D_t* known and random (rational behavior)
- ▶ *Pⁱ*: price growth is extrapolative (as in Adam-Beutel-Marcet)
 - Different gains gⁱ
- Market clearing: $\sum_{i} \mu_i S_t^i = 1 + u_t$
- Random supply shocks u_t
- Remarks
 - 1. One choice: stock holdings (no bond market)
 - 2. Linear tax: realistic
 - 3. No need to keep track of cross-sectional distribution of stock holdings. Why?
 - Belief formation process

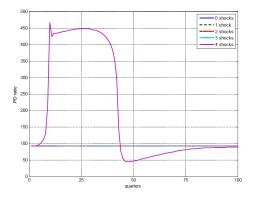
Finite number of investors i = 1, ..., I. Solve:

$$\max_{S_t^i} \mathbb{E}_0^{P^i} \sum_{t=0}^{\infty} \delta^t \frac{(C_t^i)^{1-\gamma}}{1-\gamma}$$


- ▶ *W_t* and *D_t* known and random (rational behavior)
- ▶ *Pⁱ*: price growth is extrapolative (as in Adam-Beutel-Marcet)
 - Different gains gⁱ
- Market clearing: $\sum_{i} \mu_i S_t^i = 1 + u_t$
- Random supply shocks u_t
- Remarks
 - 1. One choice: stock holdings (no bond market)
 - 2. Linear tax: realistic
 - 3. No need to keep track of cross-sectional distribution of stock holdings. Why?
 - Belief formation process
 - 4. Computationally hard problem (important contribution)

Quantitative Results (No FTT)

- 1. Model without FTT
 - Can easily match average prices, volume and expectations
 - It actually overshoots


Quantitative Results (No FTT)

- 1. Model without FTT
 - Can easily match average prices, volume and expectations
 - It actually overshoots
- 2. Generates boom-bust cycles
 - Four 2-sigma shocks to dividends needed

Quantitative Results (No FTT)

- 1. Model without FTT
 - Can easily match average prices, volume and expectations
 - It actually overshoots
- 2. Generates boom-bust cycles
 - Four 2-sigma shocks to dividends needed

Comment: very strong nonlinearities

Uniqueness? Stationary wealth distribution?

	No Tax	1% Tax	2% Tax	4% Tax	10% Tax
E[PD]	136.79	138.55	141.15	144.55	147.87
std(PD)	124.44	126.06	128.65	131.38	129.14
$corr(PD_t, PD_{t-1})$	0.98	0.98	0.98	0.98	0.98
$std(r^s)$	11.77%	12.01%	12.34%	12.87%	14.28%
$E[r^s]$	2.12%	2.15%	2.19%	2.27%	2.51%
$corr(PD_t, \overline{E}_t R_{t+1})$	0.84	0.85	0.86	0.87	0.89
$corr(TV_t, TV_{t-1})$	0.97	0.97	0.97	0.97	0.94
$corr(TV_t, PD_t)$	0.37	0.35	0.33	0.29	0.17
$corr(TV_t, P_t/P_{t-1} - 1)$	0.25	0.24	0.24	0.21	0.05
$corr(TV_t, std(\widetilde{E}_t^i R_{t+1}))$	0.95	0.94	0.94	0.92	0.88
# of booms per 100 yrs	1.81	1.94	2.11	2.39	3.02
E[TV] relative to no tax	100.00%	100.28%	102.37%	105.02%	120.03%

Table 8: Effects of introducing financial transaction taxes

	No Tax	1% Tax	2% Tax	4% Tax	10% Tax
E[PD]	136.79	138.55	141.15	144.55	147.87
std(PD)	124.44	126.06	128.65	131.38	129.14
$corr(PD_t, PD_{t-1})$	0.98	0.98	0.98	0.98	0.98
$std(r^s)$	11.77%	12.01%	12.34%	12.87%	14.28%
$E[r^s]$	2.12%	2.15%	2.19%	2.27%	2.51%
$corr(PD_t, \overline{E}_t R_{t+1})$	0.84	0.85	0.86	0.87	0.89
$corr(TV_t, TV_{t-1})$	0.97	0.97	0.97	0.97	0.94
$corr(TV_t, PD_t)$	0.37	0.35	0.33	0.29	0.17
$corr(TV_t, P_t/P_{t-1} - 1)$	0.25	0.24	0.24	0.21	0.05
$corr(TV_t, std(\widetilde{E}_t^i R_{t+1}))$	0.95	0.94	0.94	0.92	0.88
# of booms per 100 yrs	1.81	1.94	2.11	2.39	3.02
E[TV] relative to no tax	100.00%	100.28%	102.37%	105.02%	120.03%

Table 8: Effects of introducing financial transaction taxes

Results

- High tax $\uparrow \tau \Rightarrow$ More boom-bust cycles (why?)
 - Increases price level (asymmetry of boom-bust cycle)
 - Increases price volatility
 - Increases trading volume

	No Tax	1% Tax	2% Tax	4% Tax	10% Tax
E[PD]	136.79	138.55	141.15	144.55	147.87
std(PD)	124.44	126.06	128.65	131.38	129.14
$corr(PD_t, PD_{t-1})$	0.98	0.98	0.98	0.98	0.98
$std(r^s)$	11.77%	12.01%	12.34%	12.87%	14.28%
$E[r^s]$	2.12%	2.15%	2.19%	2.27%	2.51%
$corr(PD_t, \overline{E}_t R_{t+1})$	0.84	0.85	0.86	0.87	0.89
$corr(TV_t, TV_{t-1})$	0.97	0.97	0.97	0.97	0.94
$corr(TV_t, PD_t)$	0.37	0.35	0.33	0.29	0.17
$corr(TV_t, P_t/P_{t-1} - 1)$	0.25	0.24	0.24	0.21	0.05
$corr(TV_t, std(\widetilde{E}_t^i R_{t+1}))$	0.95	0.94	0.94	0.92	0.88
# of booms per 100 yrs	1.81	1.94	2.11	2.39	3.02
E[TV] relative to no tax	100.00%	100.28%	102.37%	105.02%	120.03%

Table 8: Effects of introducing financial transaction taxes

Comments

- 1. Is 1% to 10% (!) the correct range for τ ?
 - ▶ Discussed values are around 0.1% or 0.2% for stocks

	No Tax	1% Tax	2% Tax	4% Tax	10% Tax
E[PD]	136.79	138.55	141.15	144.55	147.87
std(PD)	124.44	126.06	128.65	131.38	129.14
$corr(PD_t, PD_{t-1})$	0.98	0.98	0.98	0.98	0.98
$std(r^s)$	11.77%	12.01%	12.34%	12.87%	14.28%
$E[r^s]$	2.12%	2.15%	2.19%	2.27%	2.51%
$corr(PD_t, \overline{E}_t R_{t+1})$	0.84	0.85	0.86	0.87	0.89
$corr(TV_t, TV_{t-1})$	0.97	0.97	0.97	0.97	0.94
$corr(TV_t, PD_t)$	0.37	0.35	0.33	0.29	0.17
$corr(TV_t, P_t/P_{t-1} - 1)$	0.25	0.24	0.24	0.21	0.05
$corr(TV_t, std(\widetilde{E}_t^i R_{t+1}))$	0.95	0.94	0.94	0.92	0.88
# of booms per 100 yrs	1.81	1.94	2.11	2.39	3.02
E[TV] relative to no tax	100.00%	100.28%	102.37%	105.02%	120.03%

Table 8: Effects of introducing financial transaction taxes

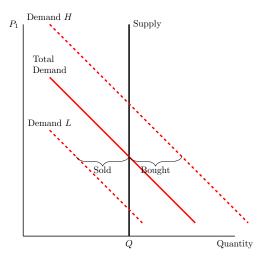
Comments

- 1. Is 1% to 10% (!) the correct range for τ ?
 - Discussed values are around 0.1% or 0.2% for stocks
- 2. Volume has never gone up due to an FTT
 - 20% increase in volume with 10% tax? Frequency?

Why do high taxes cause more boom-bust cycles?

▶ Demand curves become price insensitive ⇒ Amplifies effects of supply shocks on prices ⇒ Triggers learning

- ▶ Demand curves become price insensitive ⇒ Amplifies effects of supply shocks on prices ⇒ Triggers learning
- Two concerns


- ▶ Demand curves become price insensitive ⇒ Amplifies effects of supply shocks on prices ⇒ Triggers learning
- Two concerns
 - 1. Varying τ keeping u constant increases the noise in the learning process. More noise mechanically increases booms

- ▶ Demand curves become price insensitive ⇒ Amplifies effects of supply shocks on prices ⇒ Triggers learning
- Two concerns
 - 1. Varying τ keeping u constant increases the noise in the learning process. More noise mechanically increases booms
 - Shouldn't supply shocks be (endogenously) a function of τ?
 - Why do we need supply shocks/noise traders at all in this model? Preference shocks as alternative? Idiosyncratic shocks?

- ▶ Demand curves become price insensitive ⇒ Amplifies effects of supply shocks on prices ⇒ Triggers learning
- Two concerns
 - 1. Varying τ keeping u constant increases the noise in the learning process. More noise mechanically increases booms
 - Shouldn't supply shocks be (endogenously) a function of τ?
 - Why do we need supply shocks/noise traders at all in this model? Preference shocks as alternative? Idiosyncratic shocks?
 - 2. Less sensitive individual demand curves do not imply less sensitive excess demand curves (subtle point)

- ▶ Demand curves become price insensitive ⇒ Amplifies effects of supply shocks on prices ⇒ Triggers learning
- Two concerns
 - 1. Varying τ keeping u constant increases the noise in the learning process. More noise mechanically increases booms
 - Shouldn't supply shocks be (endogenously) a function of τ?
 - Why do we need supply shocks/noise traders at all in this model? Preference shocks as alternative? Idiosyncratic shocks?
 - 2. Less sensitive individual demand curves do not imply less sensitive excess demand curves (subtle point)
 - ► I've shown in a model without learning (Davila 2014) that $\frac{dP}{d\tau}$ depends on difference between buyers and sellers elasticity
 - Buyers buy less, sellers sell less, indeterminate effect on price
 - Asymmetric shocks to effective excess demand needed to generate price changes

Example

- Fixed supply (different from classic diagram!)
- All effects go through excess demand

1. The paper is missing the rational expectations benchmark

- I believe it is even harder to solve (with some idiosyncratic reasons for trading)
- Which results come from the assumed belief formation process?
- > Decomposition of Income vs. Substitution vs. Learning effects

1. The paper is missing the rational expectations benchmark

- I believe it is even harder to solve (with some idiosyncratic reasons for trading)
- Which results come from the assumed belief formation process?
- ► Decomposition of Income vs. Substitution vs. Learning effects

2. Welfare statements are problematic

- Two frictions
 - Incomplete markets: a FTT can improve or worsen insurance
 - Extrapolative expectations: which measure should be used for welfare

1. The paper is missing the rational expectations benchmark

- I believe it is even harder to solve (with some idiosyncratic reasons for trading)
- Which results come from the assumed belief formation process?
- ► Decomposition of Income vs. Substitution vs. Learning effects

2. Welfare statements are problematic

- Two frictions
 - Incomplete markets: a FTT can improve or worsen insurance
 - Extrapolative expectations: which measure should be used for welfare
- Single role of financial markets in this paper: risk sharing/betting
- Why not focus on positive statements? Or understand frictions separately?

Conclusion

Very interesting framework

- Right ingredients
- Very excited about quantification with learning
- Impressive work solving a very complicated model

Conclusion

Very interesting framework

- Right ingredients
- Very excited about quantification with learning
- Impressive work solving a very complicated model
- Still work to be done
 - Clarifying mechanisms
 - Making calibration more realistic

Conclusion

Very interesting framework

- Right ingredients
- Very excited about quantification with learning
- Impressive work solving a very complicated model
- Still work to be done
 - Clarifying mechanisms
 - Making calibration more realistic
- Look forward to next version