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Abstract

This paper introduces a welfare accounting decomposition that identifies and quantifies
the origins of welfare gains in economies with heterogeneous individuals and disaggregated
production. The decomposition — exclusively based on preferences, technologies, and resource
constraints — quantifies the contribution to Kaldor-Hicks efficiency of changes in allocations
and primitive changes in technologies and endowments, both through exchange and production.
Leveraging the decomposition, we provide a new characterization of efficiency conditions that
accounts for non-interior solutions. In competitive economies, the decomposition allows us to
characterize a new converse Hulten’s theorem and a generalized Hulten’s theorem. We present

four applications to workhorse models in macroeconomics.
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1 Introduction

Understanding why welfare gains and losses arise is critical to assess the impact of shocks and the
desirability of policy interventions. This paper tackles this question by introducing a decomposition
of welfare assessments that applies to economies with heterogeneous individuals and disaggregated
production. This approach — which we refer to as welfare accounting — is useful to i) identify and
quantify the origins of welfare gains and losses induced by changes in allocations, technologies, or
endowments and ii) characterize efficiency conditions.

The distinguishing feature of the welfare accounting decomposition is the fact that it is solely
based on preferences, technologies, and resource constraints. It does not rely on assumptions about
individual optimizing behavior, firm objectives, budget constraints, prices, or equilibrium notions.
This characteristic is important since it allows us to systematically quantify and compare the
sources of welfare gains across very different economic environments, e.g., competitive, strategic,

search, bargaining, contracting, etc., as we highlight in our applications.

Welfare Accounting Decomposition. We consider a static economy with heterogeneous
individuals who consume goods and supply factors. Goods are produced using other goods
and factors. The first main contribution of this paper is to introduce a welfare accounting
decomposition of welfare assessments under general social welfare functions. We initially separate
welfare assessments into i) (Kaldor-Hicks) efficiency, which we study in the body of the paper since
it is invariant to the choice of social welfare function, and ii) redistribution, which we study in the
Appendix.!

We then decompose efficiency gains into exchange and production efficiency. Theorem 1
decomposes exchange efficiency into i) cross-sectional consumption efficiency, which measures
welfare gains associated with reallocating consumption across individuals, for given aggregate
consumption, and ii) cross-sectional factor supply efficiency, which measures welfare gains from
reallocating factor supply across individuals, for given aggregate factor supply.

Theorem 2 decomposes production efficiency, which comprises allocative efficiency gains due to
adjusting intermediate inputs and factors as well as technical efficiency gains from primitive changes
in technologies and endowments. Regarding intermediate inputs, cross-sectional intermediate input
efficiency measures the welfare gains from reallocating intermediate inputs across uses, for given
aggregate intermediate use, while aggregate intermediate input efficiency measures the welfare
gains from adjusting the share of good supply that is consumed instead of used in production,
for given aggregate good supply. Regarding factors, cross-sectional factor use efficiency measures

the welfare gains from reallocating factors across uses, for given aggregate factor use, while aggregate

!The efficiency /redistribution decomposition leverages the results of Déavila and Schaab (2024). That paper takes
the mapping between allocations and policies or shocks as given. Here, we exploit production technologies and
resource constraints to identify the primitive origins of welfare gains and losses.



factor efficiency measures the welfare gains from adjusting factor supply. Finally, the technology,
good endowment, and factor endowment change components measure the direct welfare gains from
primitive changes in technologies or endowments.

The welfare accounting decomposition identifies the variables that translate changes in
allocations, technologies, and endowments into welfare changes. First, we have MRS (marginal
rate of substitution) and AM RS (aggregate M RS), which measure the social value of increasing
individual or aggregate consumption or factor supply, respectively. Second, we have MW P
(marginal welfare products) and AMW P (aggregate MW P), which measure the social value of
increasing the particular or aggregate use of an input or factor in production. At last, we have M SV
(marginal social value of goods), which measure the social value of having an additional unit of a
particular good. M SV’s are central objects for welfare accounting, because they solely determine
welfare gains from pure technological change and govern marginal welfare products, which in turn

determine each component of production efficiency.

Efficiency Conditions. The second main contribution is to provide a complete characterization
of efficiency conditions for disaggregated production economies with heterogeneous individuals,
generalizing the classical efficiency conditions in Lange (1942) and Mas-Colell et al. (1995).
Leveraging the welfare accounting decomposition, Theorems 3 and 4 characterize the necessary
conditions for exchange and production efficiency. Exchange efficiency requires the equalization
of MRS across those individuals who consume a good or supply a factor. Production efficiency
requires the equalization of MW P across the uses of an input or a factor and the equalization of
AMW P with AMRS for mixed goods and factors with positive elastic supply, with inequalities
for pure intermediate and pure final goods.

A central takeaway from this new characterization is that properly accounting for non-negativity
constraints in allocations is critical, even for interior decisions. In particular, the fact that some
non-negativity constraints are binding somewhere in the economy impacts the characterization of
efficiency conditions for decisions in which non-negativity constraints are not binding. Formally, we
show that the classical efficiency conditions (MRS = M RT) fail to hold when pure intermediate
goods are involved, while the conditions that we identify in terms of MW P and MRS remain
valid. Our new characterization also illustrates how computing efficiency conditions in production
economies is significantly harder than efficiently allocating goods across individuals, especially in
economies that feature pure intermediates since they require the computation of an inverse matrix.
This result allows us to speak to the socialist calculation debate (Lange, 1936; Lerner, 1944; Hayek,
1945) in Section 4.4.

Competitive Economies. Until Section 5, our results make no assumptions about individual

behavior, budget constraints, prices, or equilibrium notions. In Section 5, we specialize the welfare



accounting decomposition to competitive economies with wedges, in which prices reveal relevant
information for welfare accounting.

The third main contribution of this paper is a characterization of the marginal social value
(M SV) of goods in competitive economies with wedges. The M SV of a good equals its competitive
price augmented by an aggregate wedge term that captures average distortions in consumption and
intermediate input use. Intuitively, the M SV of a good that ultimately increases the supply of
goods that are under-produced (over-produced) due to the presence of wedges is higher (lower)
than its price. This characterization allows to i) present a new converse result to Hulten’s theorem
that has been missing from the existing literature, ii) qualify the conditions under which Hulten’s
theorem holds, and iii) characterize the relation between marginal revenue product and marginal
welfare product equalization.

The converse Hulten’s theorem identifies a condition on wedges that ensures that prices equal
the M SV of a good, regardless of whether an economy is frictionless or not. We show that Hulten’s
theorem fails to hold only in non-interior efficient economies, applying to interior efficient economies
and to all frictionless competitive economies. This result further underscores the importance of
carefully analyzing non-negativity constraints in disaggregated economies. We also show that
Hulten’s theorem is at its core a result about efficiency (via production efficiency), only becoming
a result about output or welfare under specific circumstances. This result expands on Bigio and
La’O (2020), who have already shown that Hulten’s theorem is valid for efficiency, rather than
output, in an environment with a single individual and elastic factor supply. At last, we also show
that efficiency requires the equalization of marginal welfare products across uses of an intermediate

input or a factor, while competition only enforces the equalization of marginal revenue products.

Applications. Finally, we illustrate how the welfare accounting decomposition introduced in this
paper can be put to use to identify the origins of welfare gains and losses in four workhorse models
in macroeconomics.

Our first application shows how an increase in tariffs contributes negatively to exchange
efficiency via cross-sectional consumption efficiency in the simplest endowment economy
(Armington, 1969). Our second application shows how the efficiency gain induced by an
improvement in a matching technology in a Diamond-Mortensen-Pissarides (DMP) model is due
to cross-sectional factor use efficiency gains large enough to compensate for aggregate intermediate
input efficiency losses due to increased vacancy postings. This application illustrates how to use
the welfare accounting decomposition in a random search economy, which differs substantially from
competitive economies. Our third application illustrates how an increase in markup dispersion
generates cross-sectional factor use efficiency losses in Hsieh and Klenow (2009) economy.

Our final application shows how to use the welfare accounting decomposition to identify the

welfare gains from optimal monetary stabilization policy in a macroeconomic model with household



and sectoral heterogeneity. We compute the optimal monetary policy response to a technology
shock in a static, multi-sector heterogeneous-agent New Keynesian model with a rich input-output
production structure. We contrast the efficiency welfare gains from stabilization policy with its
impact on redistribution and decompose the former into its production efficiency components.
Quantitatively, we show that “cross-sectional” production efficiency terms are more important

than “aggregate” terms in a standard calibration of the New Keynesian model.

Related Literature. Our characterization of efficiency conditions is closely related to classical
studies of efficiency — see Lange (1942) or, for a modern treatment, Section 16.F of Mas-Colell et al.
(1995). While existing work has assumed that all goods are final or mixed, we show that allowing
for pure intermediate goods substantially changes the nature of efficiency conditions. Even though
it is understood that particular efficiency conditions ensure exchange and production efficiency, this
literature has not explored welfare decompositions that allow to quantitatively separate the sources
of efficiency gains for a given perturbation.

The welfare accounting decomposition relates to the vast literature on growth accounting and
productivity measurement that follows Solow (1957) and includes Hall (1990), Basu (1995), Basu
and Fernald (1997, 2002), Basu et al. (2006), Basu et al. (2022), and Baqgaee and Farhi (2020),
among many others. The unique feature of our decomposition is the fact that it is exclusively based
on preferences, technologies, and resource constraints, making no assumptions about individual
behavior, budget constraints, prices, or equilibrium notions. This contrasts our results with Baqaee
and Farhi (2020), who present a decomposition based on markups, prices, and cost minimization.

Our results build on the production networks literature.”? A central result of this literature
is Hulten’s theorem (Hulten, 1978), which characterizes the aggregate impact of technological
change in terms of prices (Domar weights). Instead of imposing a competitive structure, we
provide a characterization of the impact of technological change exclusively based on preferences
and technologies, identifying the MSV of goods as the relevant object. By specializing the
MSV of goods to competitive environments, we are able to i) present a new converse Hulten’s
theorem, characterizing the conditions under which Hulten’s theorem applies even for economies
with frictions, and ii) qualify the conditions under which Hulten’s theorem applies. Liu (2019)
presents a statistic that summarizes the social value of subsidizing inputs and factors. While
related, our characterization of M SV differs because it i) makes no assumptions about optimizing
behavior, budget constraints, or prices, and ii) considers a perturbation in the level of output rather

than price subsidies.

2This literature includes, among many others, Gabaix (2011), Jones (2011), Acemoglu et al. (2012), Liu (2019),
Bigio and La’O (2020), Acemoglu and Azar (2020), La’O and Tahbaz-Salehi (2022), and Kopytov et al. (2022). By
emphasizing the critical role played by pure intermediate goods, our results connect to the recent work on global
value chains — see Antras and Chor (2022) for a recent survey.



2 Environment and Social Welfare

We first introduce preferences, technologies, and resource constraints, and then define feasible
allocations and perturbations. We conclude this section by describing how to separate efficiency

from redistribution considerations when making welfare assessments.

2.1 Preferences, Technologies, and Resource Constraints

We consider a static economy populated by a finite number I > 1 of individuals, indexed by
i€Z=1{1,...,I}. There are J > 1 goods, indexed by j,¢ € J = {1,...,J} and F > 0 factors,
indexed by f € F = {1,...,F}. Goods are produced using goods and factors as inputs, while
factors are directly supplied by individuals. Goods and factors may also appear as (predetermined)
endowments.

An individual i derives utility from consuming goods and (dis)utility from supplying factors,

according to the utility function

(Preferences) Vi=a' ({Cij }jej ; {nif’s}f€f> ) (1)

where ¢ denotes individual i’s final consumption of good j and n*/>* denotes individual i’s supply
of factor f (the superscript s stands for supply).
Goods are produced using technologies that take goods and factors as inputs. The production

technology for good j, denoted by G’ (-) > 0, is given by
i Jis — (W gt Jfd .
(Technologies) Y G ({x }ZEJ , {n }fef’ 9) , (2)

where »7* denotes the amount produced (output) of good j, 27¢ denotes the amount of good £ used
in the production of good j, and n?f?¢ denotes the amount of factor f used in the production of
good j (the superscript d stands for demand). We use the index ¢ € J to refer to goods used as
intermediates. We parametrize G7 (-;6) by 6 to consider perturbations to technology, as described
below.

The resource constraint for good j is
(Resource Constraints: Goods) Yyl (0) =+ ol (3)

where ¢/ = Y, ¢ represents the total amount of good j consumed (aggregate consumption),
=3, 2% represents the amount of good j used as an intermediate input in production (aggregate
intermediate use), and 7 (8) = Y, 4* () represents the aggregate endowment of good j, where

17,8

Y
consider perturbations to goods’ endowments. When needed, we denote the aggregate supply of

(6) denotes individual i’s endowment of good j. We parametrize 37 () and 4 (§) by @ to



good j by ¢/ = yo* + 7 (0).

The resource constraint for factor f is
(Resource Constraints: Factors) n'* +nl® (0) = n', (4)

where n/* = 3. n*/* and nfd = > nif? respectively represent the aggregate elastic supply and
the aggregate factor use of factor f, and 2/ () = 3=, n'/>* () represents the aggregate endowment
of factor f, where n*/* (f) denotes individual i’s endowment of factor f. We parametrize n/** (6)
and 7%+ () by 6 to consider perturbations to factor endowments. When needed, we denote the

aggregate supply of factor f by nf = nl + nf= ().

2.2 Feasible Allocations and Perturbations

Here we define a feasible allocation. Non-negativity constraints are critical for our results.

Definition. (Feasible allocation). An allocation {cij,nif’s,a:je,njf’d,yj’s} is feasible if equations
(2) through (4) hold and the non-negativity constraints ¢ > 0, n*f* >0, 27 > 0, n?f4 > 0, and
y?* > 0 are satisfied.

We assume that preferences and technologies are differentiable and that all variables are smooth

functions of a perturbation parameter 6 € [0, 1], so derivatives such as ddc—;j or d"jg’d are well-defined.

We describe (standard) regularity conditions on preferences and technologies in the Appendix.
Feasible perturbations df have a dual interpretation. First, a perturbation may capture
exogenous changes in technologies or endowments, but also changes in policies (e.g., taxes, subsidies,
transfers, etc.) or any other primitive of a fully specified model (e.g., trade costs, markups,
bargaining power, etc.). Under this interpretation, the mapping between allocations and 6 emerges
endogenously and accounts for equilibrium effects. Second, a perturbation may alternatively
capture changes in feasible allocations directly chosen by a planner. This second interpretation

is useful to characterize the set of efficient allocations, as in Section 4.

2.3 Social Welfare: Efficiency vs. Redistribution

We consider welfare assessments for welfarist planners, that is, planners with a social welfare

function W (+) given by

(Social Welfare Function) w=w (V.. V.. V), (5)
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be expressed as

where > 0, Vi, and where individual utilities V* are defined in (1).> A welfare assessment can

AW _ s~ OWAVT SO0y ©
dg — S oVid) S ovit N

where M\’ is an individual normalizing factor that allows us to express individual welfare gains

or losses in units of a common welfare numeraire. In particular, since the units of \* are

dim (/\'L) __utils of individual i

. .. . dvi i . .
a4, individual welfare gains or losses ‘5 /A" are measured in units of

the common welfare numeraire. The only restriction when choosing the welfare numeraire is that
! must be strictly positive for all individuals.*

Lemma 1 derives Davila and Schaab (2024)’s efficiency /redistribution decomposition in our
environment. This is the unique decomposition in which a normalized welfare assessment can be

expressed as Kaldor-Hicks efficiency, Z¥, and its complement, Z#P,

Lemma 1. (Efficiency/Redistribution Decomposition) A normalized welfare assessment for a

welfarist planner can be decomposed into efficiency and redistribution components, ZF and =8P,

as _ _ ,
dWA ay ave avi N
— do _ i_df do > i _df
df _lZﬂW»‘_Z” N SR R @
N—— 1 1 9V % 7
Wel
Asseeséc%:nt EE (Efficiency) ETP (Redistribution)
) OW i
where W' = 1<% 5w and where Cov?” [-,-] = I -Cov; [-,+] denotes a cross-sectional covariance-sum

. I . i« 8V,L
among all individuals.
The efficiency component =¥ corresponds to Kaldor-Hicks efficiency, that is, it is the sum of
individual willingness-to-pay for the perturbation in units of the welfare numeraire. Hence,
perturbations in which Z¥ > 0 can be turned into Pareto improvements if transfers are feasible and

costless. The redistribution component ZP captures the equity concerns embedded in a particular

social welfare function: ZfP is positive when individuals relatively favored in a perturbation are
relatively preferred by the planner, that is, have a higher w’.

Two properties of this decomposition are worth highlighting. First, the efficiency component
is invariant to i) the choice of social welfare function and ii) preference-preserving utility
transformations, hence our focus on efficiency, relegating the study of the redistribution component
to the Appendix. Second, efficient allocations feature a weakly negative efficiency component
(EF < 0) for any feasible perturbation given endowments and technologies. This property allows

us to use =¥ to characterize the set of efficient allocations in Section 4.

3The welfarist approach is widely used because it is Paretian, that is, it concludes that Pareto-improving
perturbations are desirable, and because nonwelfarist approaches violate the Pareto principle (Kaplow and Shavell,
2001).

4For instance, if good 1 is chosen as welfare numeraire, then \' =
exists, it can alternatively be used as welfare numeraire.

ou’

57> Vi. Alternatively, if a nominal unit (dollars)
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3 Welfare Accounting: Efficiency

This section introduces the welfare accounting decomposition that identifies and quantifies the

origins of efficiency gains and losses. The efficiency component of a welfare assessment, =¥, can be

decomposed into exchange and production efficiency, 26X and =F-F, as follows:
=F - =EX 4 ZEP (8)
=~ — -’

Efficiency Exchange  Production
Efficiency Efficiency
where both 2% and ZF can be further decomposed, as illustrated in Figure 1 and explained in

detail in the remainder of this section.

3.1 Exchange Efficiency

Working with shares, rather than levels, is useful to distinguish gains due to reallocation from those
due to changes in aggregates. Formally, changes in individual consumption, ¢/, and factor supply,
n*f%, can be expressed as

i dc? dnits  dxils dn'*

dci . dXZCJ ; _ fys if,s
G0~ ap C X gy ad g = G (9)

where individual i’s consumption share of good j is given by x%¥ = ¢¥ /¢’ and individual i’s factor
supply share of factor f is given by x4* = nifs /nfs.5
Exchange efficiency captures efficiency gains associated with the reallocation of consumption

and factor supply among individuals.

X

Theorem 1. (Exchange Efficiency) Exchange efficiency, Z¥X, can be decomposed into i) cross-

sectional consumption efficiency and ii) cross-sectional factor supply efficiency, as

E.X pX ij dxd | ; X if dezf’s f.s
=5 :Z(CO% MRS, 70 d—Z(Covi MRSn,W n’
J f
Cross-Sectional Cross-Sectional
Consumption Efficiency Factor Supply Efficiency

where individual i’s marginal rates of substitution between good j and the numeraire, MRSY , and

between factor f and the numeraire, M RS

W, are given by

o . du_
MRSY = f;c; and ~ MRSY = —anT (10)

Cross-sectional consumption efficiency measures the contribution to efficiency due to reallocating

5All definitions of shares in the body of the paper assume that denominators are positive. See Section B of the
Appendix for formal definitions when denominators are zero.



consumption of good j from individuals with low to high M RS%, for given aggregate consumption
¢J. Analogously, cross-sectional factor supply efficiency measures the contribution to efficiency due
to reallocating the supply of factor f from individuals with high to low M RS, for given aggregate
(elastic) supply of factor, nf>.

Corollary 1 presents several properties of practical relevance that exchange efficiency satisfies.
Corollary 1. (Properties of Fxchange Efficiency)

(a) (Single Individual) In economies with a single individual (I = 1), exchange efficiency is zero.

(b) (No Elastic Factor Supply) In economies in which factors are not elastically supplied, so

n?® =0 for all factors, cross-sectional factor supply efficiency is zero.

(c) (Equalized MRSY or MRSY ) If marginal rates of substitution for good j (factor f) are
identical across individuals for all goods (factors) with ¢/ >0 (nf** > 0), then cross-sectional

consumption (factor supply) efficiency is zero.

Note that exchange efficiency and redistribution are completely different notions, even though both
require individual heterogeneity. In particular, the choice of social welfare function does not affect

exchange efficiency but it directly impacts redistribution.

3.2 Production Efficiency

To distinguish gains due to reallocation from those due to changes in aggregates, we define good
0’s i) intermediate share, ¢ = x*/y’, which represents the share of good ¢’s aggregate supply y*
devoted to production; ii) intermediate-use share used to produce good j, i = x7*/2*, which
represents the share of good ¢’s aggregate intermediate use devoted to the production of good j;
and i) intermediate-supply share used to produce j by &¢ = yif¢t = 2% /4| as the product of the
two.

Hence, changes in intermediate use are given by

da7* dfﬂ
a0~ e !

dgﬂ dxﬂf
o

dgt
Ny 11
» Xz g (11)

53 ed , where

We also define the factor use share of factor f used to produce good j, %4 = nif4/nf4 so changes

in factor use shares are given by

dnifd _ dx%f’ dnb

fd jfd=>te
0 o X (12)

3.2.1 Network Propagation: Goods Inverse Matrix

To study production efficiency it is necessary to understand how perturbations propagate through

the production network of goods. Lemma 2 introduces the goods inverse matrix ¥,, which

10



characterizes the ultimate change in the aggregate supply of goods induced by unit impulses in

the supply of goods.”

Lemma 2. (Goods Inverse Matriz). Changes in good j’s aggregate supply dgj can be expressed in

j£
terms of changes n mtermedzate supply shares dﬁ; , changes in factor use d”d9 , changes in the

good endowment ¢ da , and changes in technology %—G@j, as

0GI dgﬂf 0GI dnItd  dyis  9GI
ey : . 13
Za 365 Za it qp Y Z@anvd do + do * 00 (13)

Propagation Impulse
Equivalently, in matriz form,
d d dn? d y° -

CTZ NG (G dgy Gn g ;/.9 +G9> where W, = (I; - G.£)~',  (14)

Propagation Goods Inverse

Impulse

where 4 % and d; respectively denote the J x 1 wvectors of dej and & de ,and ¥, = (I;— Gxﬁ)fl

defines the J x J goods inverse matriz. The remaining matrices are defined in Appendiz A.

Lemma 2 characterizes how the aggregate supply of goods ultimately changes in response to the four
“impulse” terms of equation (13), which represent the first-round impact of the perturbation on the
supply of goods. A perturbation that changes intermediate-supply shares by % raises at impact
the amount of good ¢ used as input for good j in proportion to y¢, which in turn increases output

at impact by Similarly, a perturbation that Changes the use of factor f in the production of

8 ﬂ
increases output at impact by -2 B f 7. Changes in the endowment or the technology

good j by 4
used to produce good j simply increase aggregate supply at impact by d9 or 88%, respectively.
Such first-round changes in the level of aggregate supply in turn induce further changes in the
level of intermediate inputs, which in turn induce further changes in aggregate supply. These knock-
on effects through the production network are captured by the goods inverse matrix ¥,. Under

minimal regularity conditions — described in the Appendix — ¥, admits the series representation

U, = (I;— Go8) ' = I+ G + (G’ + (Go)* + ... . (15)

The first term in the expansion, Ij, represents the first round of aggregate supply changes just
described. As aggregate supply adjusts, the level of intermediate inputs z7¢ changes in proportion to

the intermediate-supply share £€7¢, or € in matrix form. In turn, changes in the level of intermediate

SWe introduce two related propagation matrices in the Appendix: the intermediate inverse matrix W, which
characterizes network propagation for changes in the level of intermediates; and the proportional goods inverse
matrix \ily = @71\1@@, where ¢ = diag(y), which characterizes network propagation for proportional impulses in the
supply of goods.

11



inputs translate into a second round of changes in aggregate supply in proportion to the marginal

products of each input gTG;;, or G, in matrix form. This explains the second term G, £ in (15),
which generates knock-on effects in proportion to (G,£€)* and so on.
The following remark highlights how the goods inverse matrix differs from propagation matrices

identified in the literature.

Remark 1. (Goods Inverse Matriz is Purely Technological) While propagation matrices abound in
the study of models with rich production structures — see e.g. Carvalho and Tahbaz-Salehi (2019)
— the goods inverse matrix introduced in Lemma 2 is distinct in the sense that it is purely a
technological object. That is, ¥, is exclusively based on production technologies. This is important
because ¥, will be a key input when characterizing efficiency conditions in Section 4. In competitive
economies, the goods inverse matrix ¥, will be related to well-known Leontief-style inverses that

depend on prices (and wedges), as explained in Section 5.

3.2.2 Defining AMRS, MSV, MW P, and AMW P

Decomposing production efficiency requires defining the sets of variables that translate changes
in allocations, technologies, and endowments into welfare changes: AM RS, MSV, MW P, and
AMWP.

Definition. (Aggregate Marginal Rate of Substitution). The aggregate marginal rate of substitution

(AMRS) between good j and the numeraire and between factor f and the numeraire is given by
AMRS] => XJMRS? and AMRS] = xi*MRS}]*. (16)

The aggregate marginal rate of substitution for good j corresponds to the efficiency gain associated
with increasing aggregate consumption of good j by a unit, making individuals consume in
proportion to their consumption shares. The aggregate marginal rate of substitution for factor
f corresponds to the welfare cost associated with increasing the aggregate supply of factor f by a

unit, making individuals supply the factor in proportion to their factor supply shares.

Definition. (Marginal Social Value of Goods). The marginal social value of good j, MSVyj, 18
defined as the j’th element of the 1 x J vector M SV, given by

MSV, = AMRS.$.9,, (17)

where AMRS,. is a 1 x J vector of AMRS!; ¢, is the J x J diagonal matriz of aggregate

< and W, is the J x J goods inverse matriz defined in (14).

consumption shares, with ¢l = i

The marginal social value of good j captures the efficiency gain associated with having an additional

unit of that good. While a unit impulse in the supply of goods generates an ultimate increase in the

12



aggregate supply of goods given by the goods inverse matrix ¥,, only the aggregate consumption
share ¢, is consumed by individuals. And AM RS, captures the gain associated with increasing
aggregate consumption, so the marginal social value of an impulse in the supply of goods is the
product of these three objects. The definition of M SV highlights that the social value of a good

emanates from the final consumption — potentially of other goods — it ultimately generates.

Definition. (Marginal Welfare Product). The marginal welfare products (MW P) of input ¢ and
factor f for technology j are given by

) - 0GY ) . 0GY

gl _ Rl Jf — el

MWP]" = MSV} 907t and MWP) = MSVZ/]anjﬁd' (18)

Marginal welfare products capture the efficiency gain associated with using an input or factor in
the production of a good. Marginal increases in z7¢ or n//? increase output at impact by their
, ggi and %. As just described, the social value of a unit impulse

in the supply of goods is summarized by the marginal social value of goods, M S Vyj. Hence, marginal

technological marginal products

welfare products of inputs and factors are given by the product of physical marginal products and

the marginal social value of the goods produced.

Definition. (Aggregate Marginal Welfare Product). The aggregate marginal welfare product
(AMWP) of good j and factor f, respectively, are given by

AMWPL =Y "IIMWPI*  and AMWP] =Y xil‘Mwpil, (19)
J J

The aggregate marginal welfare product for good ¢ corresponds to the efficiency gain associated with
increasing the aggregate intermediate use of good ¢ in proportion to the intermediate use shares.
The aggregate marginal welfare product for factor f corresponds to the welfare gain associated

with increasing the use of factor f in proportion to the factor use shares.

3.2.3 Production Efficiency Decomposition

Production efficiency gains ultimately correspond to higher aggregate consumption and lower

aggregate factor supply, since 27 is given by
- dc? dnfs
=E.P _ f
=290 = AMRS)— —» AMRS, .

Part of the contribution of Theorem 2 is to express changes in aggregate consumption net of factor
supply costs in terms of changes in the allocation of intermediates and factors (allocative efficiency),

and primitive changes in technologies and endowments (technical efficiency).
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Theorem 2. (Production Efficiency). Production efficiency Z¥F can be decomposed into i)
cross-sectional intermediate input efficiency, ii) aggregate intermediate input efficiency, iii) cross-
sectional factor use efficiency, iv) aggregate factor efficiency, v) technology change, vi) good

endowment change, and vii) factor endowment change, as

Intermediate Input Efficiency

+Z(AMWP€ AMRS!) = Ay ¢

3’
=EP _ Zcov [MWPJK, C’l(g

Cross-Sectional Aggregate
Intermediate Input Efficiency Intermediate Input Efficiency

Factor Efficiency

dyIfd dnt+s
! I f /
Z Covy’ lMWPJ | Zf: (AMWPn - AMR5n> 70

Cross-Sectional Aggregate

Factor Use Efficiency Factor Efficiency
0G7 dy’ dn'*
f2
+2 MSV]— +ZMSVyJ 7 +ZAMWPn 7
J f
Technology Good Endowment Factor Endowment
Change Change Change

Each component of the production efficiency decomposition quantifies the contribution to Kaldor-
Hicks efficiency of changes in allocations or primitives. Cross-sectional components correspond to
covariances across uses, measuring gains from reallocating intermediate inputs or factors from low
to high marginal welfare product uses, for given levels of aggregate intermediate use or factor use.

The aggregate intermediate input efficiency component measures the gains from adjusting the
share of aggregate goods supply devoted to final consumption relative to production, for a given
level of aggregate goods supply. Hence, for good ¢ it is shaped by the product of the difference
AMW P! — AMRSY and the change in the intermediate use share, (%zy The aggregate factor
efficiency component measures the gains from adjusting the elastic supply of factors. Hence, for

factor f it is shaped by the product of the difference between AMW P/ — AM RS/ and the change
dnf

in the factor supply,

The final three Components measure welfare gains due to primitive changes in technology and
endowments, for given allocations. The gain from changes in the technology or endowment of good
j is given by its marginal social value, M SVyj. The gain from changes in the endowment of factor
f is simply given by the marginal gain associated with increasing factor use, AM WP,J: .

Corollary 2 presents several properties that production efficiency satisfies.
Corollary 2. (Properties of Production Efficiency)

(a) (Single Good Economies) In economies with a single good (J = 1), cross-sectional

intermediate input efficiency and cross-sectional factor use efficiency are zero.
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(b) (No Intermediate Input Economies) In economies with no intermediate goods (v7* = ¢3¢ = 0),

cross-sectional and aggregate intermediate input efficiency are zero.

(c) (Fized Factor Supply Economies) In economies in which all factors are in fized supply

(% = 0), aggregate factor efficiency is zero.

(d) (Specialized Intermediate/Factor Economies) In economies in which all intermediate inputs
(factors) are specialized with X?f =1 (X%f = 1) for some j, cross-sectional intermediate input

(factor use) efficiency is zero.

(e) (Equalized MW P* or MW PI1) If marginal welfare products for good { (factor f) are
identical across uses for all goods (factors) with z* > 0 (nf¢ > 0), then cross-sectional

intermediate (factor use) efficiency is zero.

3.3 Insights from Welfare Accounting Decomposition

We highlight three insights that emerge from the welfare accounting decomposition.

Remark 2. (Technological and Preference Origins of Gains and Losses). Theorems 1 and 2 trace the
origins of efficiency gains and losses under any perturbation to changes in the allocation of resources
and to primitive changes in technology and endowments. Since this decomposition is purely based
on preferences, technologies, and resource constraints, it is useful to quantify, compare, and contrast

different economic environments, e.g. competitive, strategic, search, bargaining, contracting, etc.

Remark 3. (Social Value of Technology). Theorem 2 identifies the efficiency gains from pure
technological change with M SVyj , without making assumptions about the individual behavior,
budget constraints, prices, or equilibrium notions. The technology change component of the welfare
accounting decomposition is always positive if technology improves since M S Vyj > 0. However, a
technological improvement can feature a negative efficiency component if its impact on allocative

efficiency is sufficiently negative, which can only happen at inefficient allocations.

Remark 4. (Shares). By design, the allocative efficiency components of the welfare accounting
decomposition are written in terms of changes in allocation shares, with the exception of aggregate
factor efficiency. Working with shares allows us to separate changes due to reallocation (holding
consumption, factor supply, goods supply, intermediate input use, or factor use fixed) from changes
in aggregates (aggregate factor supply, technology, or endowments). But this separation is not
possible working with levels. Our results can be seen as an application of the non-envelope theorem

result in Déavila and Schaab (2023) that exploits the linearity of resource constraints.
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4 Pareto Efficient Allocations

In this section, we leverage the welfare accounting decomposition to characterize the set of Pareto

efficient allocations.

4.1 Efficiency Conditions

An allocation is Pareto efficient if there is no feasible perturbation in which any of the allocative
efficiency components in Theorems 1 and 2 is positive. While a version of the exchange efficiency
conditions in Theorem 3 already appears in Mas-Colell et al. (1995), the production efficiency

conditions in Theorem 4 are novel, yielding a new set of insights.

Theorem 3. (Efficiency Conditions: Exchange Efficiency). An efficient allocation satisfies the

following exchange efficiency conditions:

(a) (Cross-sectional consumption efficiency) For goods with ¢/ > 0, it must be that M RSY =
AMRSJ, Vi s.t. X9 > 0; and MRSY < AMRS, Vi s.t. X = 0.

(b) (Cross-sectional factor supply efficiency) For factors with n/>* > 0, it must be that MRS =
AMRS], Vi s.t. xi* > 0; and MRSY > AMRS], Vi s.t. xi/* =0.

Pareto efficiency requires the equalization of M RSY across all consumers of good j, with M RSY
potentially lower for individuals for whom ¢ = 0. Otherwise, it is feasible and welfare-improving
to reallocate consumption from low to high M RS¥ individuals, for given aggregate consumption
¢/. At the corner where individual i does not consume good j, it is not feasible to reallocate
consumption away from individual ¢, even though marginal rates of substitution are not equalized.

The same logic applies to factor supply.

Theorem 4. (Efficiency Conditions: Production Efficiency). An efficient allocation satisfies the

following production efficiency conditions:

(a) (Cross-sectional intermediate input efficiency) For goods with x* > 0, it must be that
MW P} = AMW PE, V5§ s.t. x> 0; and MW Pi* < AMW P:, Vi s.t. xJf = 0.

(b) (Aggregate intermediate input efficiency) For goods with y* > 0, it must be that
max; { MW P} < AMRS!, V0 st. ¢ = 0; AMWPE = AMRSL, WU s.t. 6% € (0,1);
and AMW P{ > max; { MRS}, 0 s.t. ¢f = 1.

(c) (Cross-sectional factor use efficiency) For factors with n>% > 0, it must be that MW P31 =
AMWPS ¥j s.t. x3 > 0; and MW PIF < MW P/, Vj s.t. xi/ = 0.

(d) (Aggregate factor efficiency) For factors with nf¢ > 0, it must be that AMW P] = AM RS/,
Vf s.t. nf* >0; and AMW PJ < min; {MRSfo}, Vf s.t. nfs =0.
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Pareto efficiency requires the equalization of MW PJ¢ across all uses of good ¢ in production.
Otherwise, it is feasible and welfare-improving to reallocate intermediate inputs from low to high
MW Pj*¢ uses, for given aggregate intermediate input use 2. When good £ is not used to produce
good j, MW PJ* must be weakly lower. The same logic applies to the allocation of a factor across
uses in 4c).

Pareto efficiency also requires the equalization of the marginal rate of substitution from
consuming good ¢ with its marginal welfare product as an input for mixed goods with gbf; € (0,1),
with inequalities for pure final (¢, = 0) and pure intermediate goods (¢% = 1). Similarly, efficiency
requires the equalization of the marginal welfare product of elastic factor f with its marginal rate of
substitution, which captures the utility cost of supplying the factor, whenever a factor is elastically
supplied.

Theorems 3 and 4 highlight that carefully incorporating non-negativity constraints is critical to
characterize efficiency conditions in disaggregated economies. These issues become more relevant at
finer levels of disaggregation, since heterogeneous individuals typically do not consume most goods
and production networks with heterogeneous producers become increasingly sparse. We elaborate

on these issues in the remainder of this section.

4.2 Classical Efficiency Conditions: Interior Economies

Section 16.F of Mas-Colell et al. (1995) summarizes the classical efficiency conditions — typically
traced back to Lange (1942). Theorems 3 and 4 generalize these classical conditions to general

environments with disaggregated production.

Definition. (Classical Efficiency Conditions). The classical (production) efficiency conditions for
an intermediate link j¢ and a factor link jf hold if
. OGY i . 0GY £

Critically, the classical approach exclusively studies interior production economies, in which every
good is mixed and used in the production of every other good, i.e., xf € (0,1) and ¢% € (0,1). In
that case, the classical efficiency conditions in (20) imply i) equalized marginal rates of substitution
across individuals, ii) equalized marginal rates of transformation (M RT') across goods, and iii) the
equalization of M RS with M RT. Corollary 3 shows that classical efficiency conditions are a special

case of Theorems 3 and 4 in interior economies.

Corollary 3. (Interior economies). In interior economies, the efficiency conditions of Theorems
3 and 4 collapse to those in Section 16.F of Mas-Colell et al. (1995).

Next, we show that the classical efficiency conditions are typically invalid in disaggregated

production economies that are not interior.
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4.3 Failure of Classical Efficiency Conditions: Non-Interior Economies

What then distinguishes the conditions for production efficiency in non-interior economies, and
why do the classical conditions not apply to these environments?

Consider increasing z7¢, the use of good ¢ in the production of good j. Assuming this is a
feasible perturbation, efficiency requires that its social cost — the marginal social value of good

¢ — is equalized with its social benefit — the marginal social value of good j multiplied by the

dGI
Oxit”

to measure the social benefit (20 LHS) and cost (20 RHS). This is appropriate for interior efficient

marginal product The classical efficiency conditions (20) use marginal rates of substitution
economies where all goods are mixed, since M SV = MRS for final goods as we showed above.
When j or ¢ is a pure intermediate, however, marginal rates of substitution no longer represent
the good’s marginal social value, even at an efficient allocation. Since pure intermediates are not
consumed, efficiency requires their M RS to be lower than their M SV . The marginal social value of
a pure intermediate instead derives from the consumption value it eventually generates downstream
as it is used in the production of other goods throughout the network.

There is a second, more mechanical reason why the classical efficiency conditions do not extend
to non-interior economies. If good £ is not used in the production of good j, efficiency at the j¢
link then requires that MW PJ¢ be lower than the marginal social value of good .

We summarize the implications of Theorems 3 and 4 for non-interior economies in two
corollaries. Corollary 4 concludes that the classical efficiency conditions hold at the level of an

intermediate input link whenever that link itself is interior.

Corollary 4. (Classical Efficiency Conditions Hold for Interior Links). The classical efficiency
conditions hold for the j¢ and jf links when

(a) a mized good { is used to produce a mized (or a pure final) good j,

(b) an elastically supplied factor f is used to produce a mized (or a pure final) good j.

Intuitively, the classical efficiency conditions (20) extend to all interior links j¢ and j f because the
M SV of mixed goods coincides with their M RS, even when there are non-interior links elsewhere

in the network. Corollary 5 characterizes the scenarios in which the classical conditions fail to hold.

Corollary 5. (Scenarios in which Classical Efficiency Conditions Do Not Hold). The classical
efficiency conditions generically fail to hold for links j¢ and jf that feature pure intermediate

goods, i.e.,

(a) a mized good ¢ is used to produce a pure intermediate good j,
(b) a pure intermediate good £ is used to produce any good j,

(c) a factor f is used to produce a pure intermediate good j.
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(a) Example 1 (b) Example 2

Figure 2: Scenarios in which Classical Efficiency Conditions Do Not Hold

Note: This figure illustrates Corollary 5 in two simple scenarios. The left panel shows a mixed good (good 3) used to
produce a pure intermediate (good 2), as well as a a pure intermediate (good 2) used to produce a final good (good
1). The right panel shows a factor used to produce both a pure intermediate (good 3) and a final good (good 1).

Trivially, the classical conditions also fail to hold for links j¢ and jf when good ¢ and factor f are

not used in the production of good j.

The first and third items of Corollary 5 highlight that the classical efficiency conditions may fail
at links in which the efficiency conditions take the form of an equality, as long as an intermediate
good is produced. This observation implies that properly characterizing production efficiency is
more subtle than simply considering a set of inequalities, as in the case of exchange efficiency.

We illustrate Corollary 5 in two simple examples — see also Figure 2.

Example 1. (Pure Intermediates). Example 1 features a single individual (I = 1), three
goods (J = 3), and a single factor in fixed supply (F' = 1). The individual’s preferences are
Vi = ! (011,013), which implies that M RS'? = 0. Technologies for each of the goods are
yt = G (2'?), 4?2 = G* (2*3), and ¢* = G3 (n31’d>, which already imposes that many marginal

1
products are zero, e.g., % =0.

The welfare accounting decomposition for this economy only features aggregate intermediate
input efficiency: exchange efficiency is zero since I = 1, cross-sectional intermediate input and factor
use efficiency are zero since all inputs and factors are specialized, and aggregate factor efficiency is

zero since the single factor is in fixed supply.” Plugging into Theorem 2,

dg’ oGt 9G? g3
—E _ —EP _ ¢ ¢ x 0 11 B 13 z 3
=F == _%:<AMWPI AMRSY) iy = | MRS! o — MRSE | =y,
AMRS3
AMW P3 e

"Formally, we assume here that the efficient production structure is as in Figure 2a. The full set of efficiency
conditions also features inequalities to ensure that, for example, it is not efficient to consume good 2 or use it in the
production of good 3.
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For the mixed good 3 with ¢3 € (0,1), aggregate intermediate input efficiency requires that
AMW P23 = AM RS2, or equivalently M RS} 0G. 0G> _ pf RS!3. The classical efficiency condition

¢ Oxl2 923

would instead require M RS!? gi’;i = MRS!3, which is invalid since good 2 is a pure intermediate
and M nglggi > MRS = 0. At the efficient allocation, the classical condition would lead one

to conclude good 3’s intermediate use is inefficiently high. This illustrates Corollary 5a.

This example also illustrates Corollary 5b since it features a pure intermediate (good 2) that
is used in the production of another good. Since ¢2 = 1, aggregate intermediate input efficiency
requires that MRSCHST% > MRS =0, i.e., the consumption value of good 2 must be lower than

its production value. The classical efficiency condition M RS gﬁ; = MRS!? would lead one to

conclude that, at the efficient allocation, M SV,;? = AMW P? = AM RS?, which would be incorrect.

Example 2. (Factor Used to Produce Pure Intermediate). Example 2 features one individual
(I = 1), three goods (J = 3), and one factor in fixed supply (F = 1). Preferences are
VE = wul (¢! ¢!?) and technologies for each of the goods are y' = G! (nuvd), y? = G% (2?3,
and y3 =GB (n?’l’d).

The welfare accounting decomposition for this economy only features cross-sectional factor use
efficiency: exchange efficiency is zero since I = 1, cross-sectional intermediate input efficiency is
zero since all inputs are specialized, aggregate factor efficiency is zero since the single factor is
in fixed supply, and aggregate intermediate input efficiency is zero since ¢! = ¢2 = ¢3 = 1 by

construction. Therefore,

) del,d let Xml,d oG3 dX31’d
=L _ gE.P _ ) W pit n 1,d _ 1 n 3 n 1,d
o =40 —(CO’Uj [M PT{ s a0 ] n = (1%5‘/;1 8n11,d a0 +MSVZIWW no,

where M S’Vy1 = MRS! and M SV;’ = MRS}? 0G*  Since labor is in fixed supply but used in

Ox23

11,d 31,d
the production of two goods, a feasible perturbation is dxcfe = —dXCZg . Cross-sectional factor
. . 1 2 93 . :
use efficiency therefore requires that M RS 8?1?1@ = MRS!? gfm 8?51,(1. The classical efficiency

condition would instead associate the marginal social value of pure intermediate good 3 with its
MRS and require MRSM 2G5, = MRS 8?512. Since M RS}? 3%23 > MRS = 0 at the efficient

onlld — c Oz

allocation, the classical condition would lead one to conclude the use of labor in the production of

good 3 is inefficiently high, illustrating Corollary 5c.
We conclude the study of non-interior economies with a remark that highlights the importance
of characterizing efficiency conditions in terms of MW P and M RS instead of M RS and M RT.

Remark 1. (MW P z MRS generalizes MRS z MRT). One central takeaway from this section
is that MW P and M RS are the appropriate objects to characterize efficiency conditions, rather

than MRS and M RT, as in the classical approach. For instance, when good /¢ is mixed or factor
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f is in elastic supply, efficiency requires that
MWPI* = MRSY and MWPI = MRSY, (21)

for all 4 such that x¥ > 0 and for all j such that ng > 0, but the classical efficiency conditions
in (20) would not be valid if j is a pure intermediate. More generally, the correct inequalities that
characterize production efficiency — see Theorem 2 — can be written in terms of MW P and M RS,

but not MRS and M RT.

4.4 Planning Problem, Lagrange Multipliers, and Socialist Calculation Debate

We have emphasized that the welfare accounting decomposition can be leveraged to derive efficiency
conditions directly. Equivalently, each allocative efficiency component maps directly into an

optimality condition of the planning problem.

Definition. (Planning Problem). The planning problem — formally stated in Appendiz E.2
— mazimizes the social welfare function in (5), with preferences V' defined in (1), subject to

technologies and resource constraints, as well as non-negativity constraints.

There are two reasons why studying the planning problem is useful. First, it provides an
equivalent characterization of the efficiency conditions in Theorems 3 and 4. As we show in the
Appendix, the restriction to feasible perturbations that underlies our characterization of efficiency
conditions is implied by the Kuhn-Tucker multipliers on the constraints of the planning problem.
Second, and more importantly for this paper, the planning problem provides a justification for the
welfare accounting decomposition. As we show in the Appendix, each of the components of the
decomposition can be interpreted as a particular perturbation of the planning problem.

Two implications of our new characterization of efficiency conditions are worth highlighting.

Remark 2. (MSVy] and AMW Pl as Lagrange Multipliers on Resource Constraints). The planning
problem provides an interpretation of the technology change (and good endowment change) and
factor endowment change components of the welfare accounting decomposition in terms of the
Lagrange multipliers on goods and factors resource constraints: Cg and ¢f, since (?Z =M SVyj
when y/ # 0 and ¢ = AMWP] when n/® # 0. To our knowledge, our results provide the
first characterization of the Lagrange multipliers of the planning problem in general disaggregated

economies.

Remark 3. (Socialist Calculation Debate with Intermediate Goods). Our characterization of
efficiency conditions directly speaks to the socialist calculation debate, which discusses the feasibility
of central planning — see e.g. Lange (1936), Lerner (1944), or Hayek (1945). Our results illustrate
how computing efficiency conditions in production economies is significantly harder than efficiently

allocating goods across individuals, especially in economies that feature pure intermediates. In
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particular, our results imply that computing M S Vyj for pure intermediates requires knowledge of
the entire production network — to compute the goods inverse matrix ¥, — while computing
M SVyj for mixed or pure final goods only requires knowledge of aggregate individual valuations
via marginal rates of substitution. Intuitively, the value of goods that are consumed by individuals
can be ascertained from individual valuations, even when these goods also used to produce, while
pure intermediates only derive value once eventually consumed.

This observation can be used to support the hypothesis that the losses associated with planning
increase with the complexity of production networks, in particular when these feature pure
intermediate goods. It is thus not a a surprise that Friedman and Friedman (1980) chose a pencil
— a good with a complex production structure that relies on pure intermediates — as the example

to praise the virtues of competitive markets.

5 Competitive Economies

Our results so far have made no assumptions about the individual behavior, budget constraints,
prices, or notions of equilibrium. We now specialize the welfare accounting decomposition to
competitive economies with and without wedges. This provides new insights by shedding light on
the relation between efficiency and competition and by relating prices and wages to the welfare

determinants that we have identified in this paper.

5.1 Competitive Equilibrium with Wedges

We now assume that individuals maximize utility and technologies are operated with the objective
of minimizing costs and maximizing profits. To allow for distortions, we saturate all choices with
wedges, which we take as primitives. For simplicity, we set /¥ = 0.

Individual ¢ faces a budget constraint of the form
S (14+70) =S w! (147l (i ) 43wl 4 T, (22)
J f J

where p? denotes the price of good j, wf denotes factor f’s per unit compensation, v denotes the
profit associated with the operation of technology j received by individual 4, and T% is a lump-sum
transfer that rebates wedges back to individuals. Individual ¢ faces individual-specific consumption
and factor supply wedges 7/ and 7/%,

Firms operate technologies to minimize costs, which defines the cost functions

0 (sfer) (7)) = i, ST () S k)
l

nifd pit
subject to equation (2), facing technology-specific factor wedges Tgf 4 and technology-specific
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intermediate input wedges 7. We assume that the supply of good j can be expressed as the

solution to a profit maximization problem given by
7 = maxp’ (147])yf — ¢/ (yj;{wf} ') > (24)

y] f V4

where Tg denotes a markup wedge for technology j.
The definition of competitive equilibrium with wedges is standard, so we include it in the
Appendix. In a competitive equilibrium, individuals equalize marginal rates of substitution with
prices or wages cum wedges, while firms equalize marginal revenue products with marginal costs cum

wedges, whenever non-negative constraints are slack. We can compactly represent the optimality

conditions in matrix form as

MRSc <p (]-c + Tc) and pGx <p (]—x + 7_:1:)

25
MRSnzw(lns"i_TnS) pGr Sw(lnd+Tnd)7 ( )

where all matrices are defined in Appendix A. The matrices 7, and 7, include markup wedges 7'5
in addition to intermediate input use wedges 73¢ and factor use wedges 7774,

We refer to economies with no wedges (1% = 72/ = 7t = 7ihd = Tg = 0) as frictionless
competitive economies. In these economies, the First Welfare Theorem holds, so any competitive
equilibrium allocation is efficient. Conditions (25) link prices to marginal rates of substitution and

(physical) marginal products, an insight that we exploit repeatedly in this section.

5.2 MSV and Converse Hulten’s Theorem

Characterizing the marginal social value of goods in competitive economies with wedges is critical
because it directly determines the efficiency gains from technology change as well as marginal

welfare products, which in turn govern all production efficiency components.

Theorem 5. (MSV in Competitive Economies with Wedges). In competitive economies with

wedges, the marginal social value of goods, defined via a 1 x J matrix MSV , is given by
MSV, =p+pmy¥®, where T,=¢,Ts+ DT, (26)

where p denotes the 1 X J wvector of prices, T, and T. denote J X J diagonal matrices of aggregate
intermediate input and consumption wedges, with elements given by 7 = Y, XYY and 71 =
S XYTH @, and ¢, are J x J diagonal matrices of aggregate intermediate use and consumption

shares, T, defines the aggregate goods wedge, and ¥, is the goods inverse matriz defined in (14).

Equation (26) shows that the marginal social value of goods equals the vector of prices augmented

by a term that captures the average of the aggregate wedges in consumption and intermediate
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input use.® Aggregate consumption and intermediate input use wedges are weighted averages of
individual consumption wedges, 77 = >, X7, and intermediate input use wedges, 74 = >, x4 7.
The aggregate goods wedge is in turn a weighted average of the two.

In order to understand why M SV, takes this form in competitive economies, it is useful to start
from its definition, MSV, = AMRS.¢.¥,, and proceed gradually. First, using the optimality

conditions for individual consumption, M SV, can be written as

MSV, =pop. ¥, + (AMRS,. — p) p.¥,. (27)
—_——
PTe

Intuitively, a unit impulse in aggregate supply ultimately increases aggregate consumption by
¢.¥,, for given allocation shares and factor supplies. The social value of this change in aggregate
consumption can be split into its market value and the deviation between the true social value,
given by AMRS,., and the market value. This difference is precisely determined the aggregate
consumption wedge, 7.

Next, the market value of the change in aggregate consumption, can be expressed as

pd’c‘I’y =p+ (pGa:Xx - p) d)a:\I’y (28)
~————
PTe

Intuitively, the ultimate change in aggregate consumption induced by a unit impulse in aggregate
supply, ¢.¥,, can be expressed as the ultimate change in aggregate supply net of aggregate
intermediate use.

Formally, (28) uses the following physical identity, which follows from (15):
¢C‘I’y = lIly - ¢x\I’y =1I;+ st‘I’y - ¢:(:‘I/y =1I;+ (GxXx - IJ) (bx‘Ilya

where the ultimate change in aggregate supply, ¥, is decomposed into the unit impulse, I;, and
knock-on effects, G,£¥,. Hence, the ultimate market value of a unit impulse in aggregate supply
corresponds to the sum of the market value of the impulse, given by p, and the market value of the
knock-on effects net of aggregate intermediate use, given by pG;x» —p. This difference is precisely
determined by the aggregate intermediate input wedge, 7.

Combining (27) and (28), we can reformulate (26) as

MS‘/EJ =P+ (pGCCXZ - p) d)I‘I’y + (AMRSC - p) ¢C\Py-

=pTz =PpTec

This expression illustrates that aggregate consumption (intermediate input use) of good j is too

8In sum form, we can express an element of M SV, as MSVZf =p'+ Zj pj?gwié, where 7_'5 = @il + ¢pi 7.
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low when 77 > 0 (7J > 0), and aggregate supply of good j is too low when 7_'?3 =¢lTl + ¢l7 > 0.
Hence, the marginal social value of goods that ultimately increase the aggregate supply of goods
with positive aggregate goods wedges is higher than the price.

While prices capture the marginal social value of goods in frictionless competitive economies
— see Corollary 7 below, Theorem 5 allows us to establish a converse result that has been missing

from the existing literature, and that we state as Corollary 6.

Corollary 6. (Converse Hulten’s Theorem: Condition for M SV, = p) The condition that ensures
M SV, = p is that aggregate goods wedges are zero, that is,

Ty = QeTe + PuTr = 0. (29)

While frictionless competition guarantees that (29) is satisfied, this condition may also hold
otherwise, possibly at inefficient allocations. In particular, prices will capture the marginal social
value of goods as long as aggregate goods wedges are zero, even when intermediate input and
consumption wedges are non-zero (7, # 0 and 7. # 0) and the competitive equilibrium is inefficient.
Aggregate goods wedges can be zero when aggregate consumption and intermediate use wedges
cancel out, or when both are zero. In turn, aggregate consumption and intermediate use wedges
can be zero when its elements cancel out, or when all its constituents are zero. For cancellations

to occur, it must be that some wedges are positive and other negative.

5.3 Hulten’s Theorem Revisited

Theorem 5 allows us to revisit the impact of technology changes in the frictionless competitive case.
This is the widely studied Hulten’s theorem (Hulten, 1978), a result that has played a prominent
role in the study of the macroeconomic impact of microeconomic shocks and growth accounting
(Gabaix, 2011; Acemoglu et al., 2012; Bigio and La’O, 2020; Baqaee and Farhi, 2020).

Corollary 7. (Hulten’s Theorem Revisited). In frictionless competitive economies, the efficiency

impact of a proportional Hicks-neutral technology change j is

1 =E _ Py’
NI ST
—
Sales Share

(30)

Gy
where £LY—
E jp]c]

is the Domar weight or sales share of good j in 3, Pl

Corollary 7 provides a general Hulten-like result that applies to frictionless competitive economies
with heterogeneous individuals, elastic factor supplies, arbitrary preferences and technologies, and
arbitrary social welfare functions. Its generality allows us to systematically present the many

qualifications associated with this result in three remarks.
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Remark 1. (Normalizations behind Domar Weights). Comparing Theorem 5 and Corollary 7
highlights why Hulten’s theorem is typically stated in terms of Domar weights. First, considering
proportional Hicks-neutral technology shocks implies that 88—% = 4/, which ensures that the
numerator of the Domar weight in (30) is p/y/. Second, Hulten’s theorem is typically stated
using nominal GDP as numeraire, which ensures that the denominator of the Domar weight in (30)
is Zj p?cd. These are valid normalizations that transform the condition M .S Vyj = p/ into a Domar

weight.

Remark 2. (Welfare vs. Efficiency vs. Production Efficiency vs. Output). In economies with a
single individual (I = 1) and in which supplying factors causes no disutility (dui/on/** = 0),
changes in final output, production efficiency, efficiency, and welfare coincide, which justifies the
typical formulation of Hulten’s theorem in terms of final output. Corollary 7 highlights that Hulten’s
theorem is at its core a result about efficiency (via production efficiency). Why is this the case?
In economies with a single individual, redistribution and exchange efficiency are zero, so efficiency
and welfare coincide and are exclusively determined by production efficiency.” And when supplying
factors causes no disutility, there is no need to subtract the social cost of supplying factors to
transform final output changes into welfare changes, so production efficiency exclusively captures

changes in final output (i.e. aggregate consumption).

Remark 3. (Efficient vs. Frictionless Competitive vs. Efficient Interior Economies). Corollary 7
states that Hulten’s Theorem applies to frictionless competitive economies, rather than efficient
economies, as often formulated. Omne reason that may explain why Hulten’s theorem is often
formulated in terms of efficiency is that prior to the results in Section 4 there had been no
general characterization of efficiency conditions that dealt with non-interior allocations. Why is this
relevant? When an allocation is efficient, all allocative efficiency components are necessarily zero,
which guarantees that efficiency gains are exclusively due to technology and endowment changes.
But efficiency is not enough to guarantee that M SV, = p. The converse Hulten’s Theorem shows
that this occurs when 7, = 0, a condition that holds in frictionless competitive economies, but that
need not hold in efficient economies. That is, there may exist efficient non-interior allocations in
which 7, # 0 and Hulten’s theorem does not hold. This occurs because in efficient non-interior
allocations input prices need not reflect marginal welfare products. Therefore, while Hulten’s
theorem applies to i) frictionless competitive economies and ii) efficient interior allocations, it can

fail in efficient non-interior allocations. We illustrate this possibility in Example 3.

Example 3. (Failure of Hulten’s Theorem in Non-Interior Efficient Equilibrium). We consider the
same environment as in Example 1, and focus on a technology change for good 2, so 88—%2 = 0. For

simplicity, we set all wedges to zero, with the exception of 712 # 0. The competitive equilibrium of

9In fact, Bigio and La’O (2020) have already shown that Hulten’s theorem is valid for efficiency in an I = 1
environment with elastic labor supply.
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this economy is efficient, with the relevant efficiency condition here being M RS gﬁ; > (. In this

case, competition ensures that pl 8G2 = p (1 + TI12). But note that

oG' G
MSV) = MRS} 2 = p! =7 = p” (14727) #0%

so prices do not capture the marginal social value of goods and Hulten’s theorem fails in this
efficient economy. This example illustrates that T = 72 = 712 = 0 is the condition that ensures
M SVy2 = p?, not efficiency. Baqaee and Farhi (2020) already provide an example analogous to
this one in which Hulten’s theorem fails, justifying this failure in that revenue- and cost-based
Domar weights are not equal. Our result complement theirs in the sense that we establish that
this failure of Hulten’s in efficient economies can only occur at non-interior allocations. Our result

further underscores the importance of carefully dealing with non-interior allocations when studying

disaggregated economies.

5.4 Marginal Revenue Product vs. Marginal Welfare Product

In frictionless competitive economies, marginal revenue products are equalized across all uses and
the cross-sectional factor use efficiency component is zero. However, equalization of marginal
revenue products is not sufficient to ensure that the cross-sectional factor use efficiency component
is zero in competitive economies with wedges, even when factor use wedges are zero. A similar logic
applies to cross-sectional input efficiency. Why is this the case?

As explained in Section 4, efficiency requires the equalization of marginal welfare products
across uses of a factor, while competition when factor use wedges are zero ensures the equalization
of marginal revenue products across uses. If M SVyj £ pJ for some goods that use a particular
factor, the marginal welfare products of that factor won’t be equalized across uses, allowing for

cross-sectional factor use efficiency to be non-zero. We illustrate this possibility in Example 4.

Example 4. (Marginal Welfare Product vs. Marginal Revenue Product). We consider the same
environment as in Example 2. All wedges are zero except 7'23 # 0. In this case, competition
ensures that MRS = p! and MRS!? = p?, as well as p' 8 11 9G — w! and p? 8 31 96 — w!. The only

equilibrium condition with a wedge is p? ggg = (1+ 7'23) p3. Consequently, competition implies

that marginal revenue products are equalized across uses, so M RP]Ll M RP31 Therefore,

LaG 0GB el 1,06 9G8
P gnttd =P gpatd T P guitd T 14 78 g% gpatd

However, this condition is inconsistent with cross-sectional factor use efficiency,

L oGt LoG? aG
P g itd — =’ 0223 On3Ld’
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which requires the equalization of marginal welfare products. This discrepancy is due to the fact

that marginal social value of good 3 does not equal its price, since ?5’ = 7'%3 > 0.

6 Applications

In this section, we illustrate how the welfare accounting decomposition can be used to trace the
origins of welfare gains to changes in allocations and primitives in four workhorse models in
macroeconomics and trade. Our first application shows how an increase in tariffs contributes
negatively to exchange efficiency via cross-sectional consumption efficiency in the simplest
endowment economy (Armington, 1969). This application also illustrates subtle patterns in
redistribution. Our second application shows how the efficiency gain induced by an improvement in
a matching technology in a Diamond-Mortensen-Pissarides (DMP) model is due to cross-sectional
factor use efficiency gains that are large enough to compensate for aggregate intermediate input
efficiency losses due to an increase in vacancy postings. This application illustrates how to use the
welfare accounting decomposition in economies that are not competitive. Our third application
illustrates how an increase in markup dispersion generates cross-sectional factor use efficiency
losses in a Hsieh and Klenow (2009) economy. Our final application shows how to use the welfare
accounting decomposition to identify the welfare gains from optimal monetary stabilization policy

in a macroeconomic model with household and sectoral heterogeneity.

6.1 Armington (1969) Model

Environment. We consider the simplest Armington (1969) economy, which has I = 2 individuals
(here representing countries), J = 2 goods, and F' = 2 inelastically supplied factors.'” Each country
produces a single good with their domestic factor — normalized so that 7/ = 1 — but consumes

both goods. Country ¢ has preferences given by

and faces the budget constraint
Sop/ (1 - Tij) ¢ =wl +3 T where TV =piric. (31)
J J

Since the iceberg costs 7 are rebated they should be interpreted as tariffs rather than physical costs,

although it is straightforward to consider the alternative case. Goods are competitively produced

10As we show in the Appendix, this economy is isomorphic to an economy without factors in which each country
has a predetermined endowment of their home good.
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Figure 3: Welfare Accounting Decomposition: Applications

Note: This figure illustrates the welfare accounting decomposition for the first three applications. The top panel
shows that an increase in tariffs decreases exchange efficiency through cross-sectional consumption efficiency in an
Armington model. It also show that cross-sectional consumption redistribution is positive, since the tariff increase
hurts more the country with lower consumption. The bottom left panel shows that the efficiency gain induced by an
improvement in a matching technology in a DMP model is due to cross-sectional factor use efficiency gains that are
large enough to compensate for aggregate intermediate input efficiency losses due to increase vacancy postings. The
bottom right panel shows that all welfare losses due to the increase in the dispersion of wedges/markups — typically
referred to as misallocation — are attributed to production efficiency via cross-sectional factor use efficiency in Hsich
and Klenow (2009) economy.
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according to constant returns to scale technologies — which justifies the absence of profits in (31)
— given by

n — Alpitd 44 y? — AZp22d

so each country uses the domestic factor to exclusively produce the domestic good. An
equilibrium is characterized by allocations ¢/, prices p’, and wages w*/ such that both countries
choose consumption optimally, countries produce competitively, and all markets clear. Resource
constraints in this economy are given by >, ¢ = 3/, Vj, and nhd =pfs =1, Vf.

Our parameterization assumes that 0 = 2, A' =1, A2 =50, 7% =0, and 77 = 79" = 7. We
use aggregate world consumption as welfare numeraire, and assume that the planner has a social

o=l
welfare function given by >, (V') = .

Results. The top panel in Figure 3 illustrates the welfare impact of a multilateral increase in
tariffs 7 — see also Figure OA-4. The welfare accounting decomposition yields insights for both
efficiency and redistribution.

First, a multilateral increase in tariffs always features a negative exchange efficiency component,
due to cross-sectional consumption efficiency. This occurs because the increase in tariffs reallocates
consumption toward each country’s domestic good, which is the one with a relatively lower M RSY
as long as 7 > 0. Note that ZFX = 0 at 7 = 0, since this economy is efficient in the absence of
tariffs.

Second, an increase in tariffs eventually makes both countries worse off, but initially benefits
country 2, because p? /p' increases in equilibrium. Since country 2 is more productive and consumes
more of both goods than country 1 in equilibrium, the planner attaches a lower individual weight
to country 2, so w! > w?. Hence, initially, the increase in tariffs benefits the country relatively less
preferred by the planner and harms redistribution, with Z%P < 0. However, once tariffs are large
enough, further increases in tariffs make both countries worse off. Around 7 = 1.2, the marginal
increase in 7 hurts country 2 disproportionately more. From this level of tariffs onwards, Z#P > 0,

since country 1 — the relatively preferred by the planner — is hurt by less.

6.2 DMP Model

Environment. We consider a stylized version of the textbook labor search model, as in e.g.
Pissarides (2000). We consider a two date economy, t € {0, 1}, populated by a single/representative
individual (I = 1) endowed with a unit supply of labor (F' = 1), which can be used in technology
j = 1 (unemployment) or j = 2 (employment). Each of these technologies produces perfectly

substitutable goods (or equivalently, a single final good), so the preferences of the representative
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individual can be written as

V =co+ fei, where ¢ = ¢ +c, (32)

where ¢] denotes consumption of the good produced by technology j at date t. Both technologies

have constant returns to scale and are given by
1 1(, 1 1,1 1,1 2 2(, 2 2,2 2.2
vy = Gy (nt) =2 N =2 Xin and y; = Gy (nt) =2"N; = 2" Xin (33)

where X%yn and XtQ,n respectively denote the employment and unemployment rates, and where
22> 2L
Moreover, there exists a third “vacancy-generating” technology (J = 3) at date 0 that takes the

final good and generates vacancies, as follows

1
yf =Vt = G? (xt) = ;ﬂfm (34)
t

where k¢ captures the marginal cost of vacancy posting. Vacancies can be interpreted as a good that
no individual desires to consume, which means that in a first-best environment vacancies should

be zero. Hence, the resource constraints in this model can be expressed as
vty =cta  and X, xi, =1 (35)

Equation (32) through (35) are sufficient to characterize the efficiency conditions for this economy.
Since 2?2 > z!, efficiency requires full employment, with X%,n =0 and X%,n =1, as well as, v, = 0.
However, we consider a standard random search equilibrium in which employment only adjusts

according to
Xttt = Xtn = ¢ (1= Xtn) =m (Xt 1)

where ¢ denotes the job destruction rate and the matching function m (+) is given by
« 1—
m (X%,n) vt) =K (X%,n) (vt) “.

As usual in this class of models, labor market tightness is defined as 6; = vat We formally describe
t,n

the (standard) characterization of the equilibrium in the Online Appendix and describe the welfare

impact of a change in the matching technology p. Our parameterization assumes that g = 0.99,

2t =0,22=1,1=05,a=0.7, 9 =0.036, bp = by =0, ko = 0.1, with x§,, = 0.037.

Results We consider a standard search equilibrium in this economy — see Online Appendix —

and explore the welfare implications of improvements in the matching technology u. The effects are
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illustrated in the bottom left panel in Figure 3 — see also Figure OA-5. Several insights emerge.

First, the technology change component of the welfare accounting decomposition is zero even
though the matching technology improves. This occurs because the matching technology does not
change the production frontier of the economy, and it is simply a mechanism to determine how
factors of production are allocated. Second, as the matching technology improves, firms post more
vacancies at date 0, which translates into higher employment at date 1. The increase in employment
drives the positive cross-sectional factor use efficiency component — as discussed above, at the first-
best, unemployment should be zero. However, the additional vacancies posted make the aggregate
intermediate input efficiency component negative. This occurs because posting vacancies entails
using a technology that produces no final output, and it only contributes to reallocating factors,
something that could be done freely in the absence of search frictions.

Hence, even though the improvement in the matching technology generates welfare efficiency
gains, the welfare accounting decomposition shows that these gains combine positive and negative
effects. More generally, this application illustrates how adjustment cost functions will typically

generate a negative aggregate intermediate input efficiency component.

6.3 Hsieh and Klenow (2009) Model

Environment. We consider a simplified version of the Hsieh and Klenow (2009) economy, with
a representative individual (I = 1) — whose index we drop — and a single final good, which we

index by 7 = 1. Individual preferences are given by
V=u (cl) ,

where the final good is produced according to the technology

€
J e—1 e—1

yl _ Z (mlj)T

=2

where € denotes the elasticity of substitution between the J — 1 intermediate inputs. Each

intermediate input 57 > 2 is produced according to the technology
Y = Aipithd,

where a single factor not elastically supplied (F' = 1) — whose index we also drop — can be used to
produce the different intermediates. Formally, resource constraints in this economy can be written

as

J
Aoyl yimat vi22 ad 3ol
=2
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If the final good is produced competitively, and the intermediate inputs are chosen under
monopolistic competition subject to wedges 77 (which can be interpreted as markups) the

equilibrium factor use shares X{{d, can be expressed as

(49) 7 (79)
L (AT ()

x5t = :
Our parameterization — designed to mimic Hsieh and Klenow (2009) — assumes that
(log A7,log77) ~ N (s pir,0%4,0%,074), where pg = 0.5, ur = 1.1, o4 = 0.95, o, = 0.63,
ora = 0.36, J = 211,304, and € = 3. We explore the welfare implications of an increase in markup

dispersion through o.

Results. The bottom left panel in Figure 3 illustrates the welfare impact of a change in markup
dispersion — typically referred to as misallocation. Since all intermediate inputs in this economy are
fully specialized and there is a single final good, no welfare changes are attributed to intermediate
input efficiency. And since the single factor is fixed, aggregate factor efficiency is also zero. Hence,
all welfare losses due to the increase in the dispersion of markups are attributed to production
efficiency via cross-sectional factor use efficiency. Given our calibration of the model, chosen to
mimic Hsieh and Klenow (2009), these effects are quantitatively large. Since there is a single

representative individual, both exchange efficiency and redistribution are zero.

6.4 New Keynesian Model

This application shows how the welfare accounting decomposition can be used to identify the welfare
gains from optimal monetary stabilization policy. To that end, we develop a static, multi-sector
heterogeneous agent New Keynesian model with an input-output production network — a static
“HANK-IO” model (Schaab and Tan, 2023). This model builds on La’O and Tahbaz-Salehi (2022)
and Rubbo (2023) but allows for household heterogeneity in addition to sectoral heterogeneity.

Environment. There are I (types of) households indexed by i. Each has mass u?, with 37, u = 1.
There are N production sectors indexed by j. Each comprises a continuum of firms indexed by
¢ € ]0,1]. Each firm produces a distinct good, indexed by j¢.

The preferences of household ¢ are given by

1

_7,”1' 1+
1+g0( )

,  where (36)

. . . me—1 . | . -
= Z(F’CJ)Tlc(cZ])n"c and c”:(/o (c”e)ejch) ’ 1,
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where ¢! denotes a final consumption aggregator, ¢/ denotes a sectoral consumption aggregator,
and ¢! is household 7 ’s consumption of good j¢. Each household is endowed with a unique labor
factor and n’ denotes hours of work. The household budget constraint is given by > fol Pt =
Wint + T, where p/¢ is the price of good j¢, W' is the wage paid to factor i, and T" is a lump-sum
transfer that accounts for profits. Household optimization implies (n)” (c!)” = W*/P".

Firm ¢ in sector j produces according to the nested CES production technology

n

_Nw
. . . . — . . — n . .. cpe w — nw—1
it = AT ((1 — )i+ (ﬁﬂ)é(xﬂ)”nl) . where 1= (Z(rg;)%(nﬂ%)%l> , (37)
Nx 2

z—1 —-—
It = <Z(Fi€)"1r($j”) nfml> ! and 2% = (/l(wﬂw)eifldﬁ'> 62_1.
0

¢

We denote by A’/ a sector-specific, Hicks-neutral technology shifter, %/ governs sector j’’s
intermediate input share, and 7 is the elasticity of substitution between labor and inputs. Firm /¢
in sector j uses a bundle of labor n/¢ that is itself a CES aggregate of its use of labor factors i, n/%.
It also uses a bundle of intermediate inputs z7¢, which is a CES aggregate of sectoral bundles z7,
where 27" denotes firm 7 ’s use of good £¢' in production.

Firms are monopolistically competitive. They choose labor and inputs to minimize costs, and
prices to maximize profits. Each firm £ is small and takes as given aggregate and sectoral variables.
Profits are 19 = (1 — 77) pifyit — 3, fol pladqp — 50, Wind® = (1 — 79) pity? — meiy?’, where
77 is a revenue tax. Marginal cost mc’ is uniform across firms in each sector as we show in Appendix

e 1
a—11—77

To introduce nominal rigidities, we assume that only a fraction 8/ € [0, 1] of firms in sector j can

G.4.1. If prices are flexible, firms set prices as a markup over marginal cost, p/¢ = p/ = mel.

reset their prices in response to a shock. Otherwise, prices remain fixed at some initial level p’,

which we specify in the Appendix. The sectoral price distribution is thus given by

pﬂ _ Efil 1ij mcd for 4 e [0, (5j] (38)
P for £ € (67,1].

We model monetary policy by assuming that aggregate nominal expenditures are constrained by
a cash-in-advance constraint of the form }_; fol pHyitde < M, where M is the monetary policy

instrument. Finally, the markets for goods and labor factors have to clear, requiring
. | r . o r
Yt = ZMCUZ + Z/ 2940 and  pint = Z/ nide. (39)
z 7 J0 7 Jo

We formally define competitive equilibrium in Appendix G.4.2.
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Figure 4: Welfare Accounting Decomposition: New Keynesian Model

Note: This figure illustrates the welfare accounting decomposition for the New Keynesian application when varying
monetary policy in response to an unanticipated positive technology shock.

Calibration. We calibrate a model with N = 66 sectors and I = 10 household types,
corresponding to deciles of the income distribution, as in Schaab and Tan (2023). We use data from
the Consumer Expenditure Survey to calibrate I'/ so the model matches consumption expenditure
shares. Similarly, we use data from the American Community Survey and the BEA’s I-O and GDP
tables to calibrate 97, Fgf, and I'J! so the model matches sectoral input-output data and payroll
shares. We calibrate ¢/ to match sectoral markup data from Baqaee and Farhi (2020) and 87 to
match Pasten et al. (2017)’s data on sectoral price rigidities. We allow revenue taxes 77 to offset
initial markups and study the case with 77 = 0 in Appendix G.4.4. Finally, we assume an equal-

weighted utilitarian social welfare function. Appendix G.4.3 presents a detailed discussion of our

calibration.

Results. We study monetary policy in response to a 2% technology shock that is uniform across
sectors. When households and sectors are symmetric, Divine Coincidence holds and there exists
an optimal monetary policy M* that closes output and inflation gaps. Through the lens of the
welfare accounting decomposition, Divine Coincidence implies that each allocative efficiency term
of Theorems 1 and 2 is zero. We discuss this case in Appendix G.4.4.

When households and sectors are heterogeneous, Divine Coincidence fails. Figure 4 plots the
welfare accounting decomposition, treating M as the perturbation parameter (6).!! The left panel
decomposes welfare gains (yellow) into gains from efficiency (blue) and redistribution (green). The

blue line intersects 0 at around MAF = 0.974, which is the policy that maximizes efficiency.

"Even though households are heterogeneous, exchange efficiency is zero because goods and factor supply markets
are frictionless.
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Redistribution is negative at this point, indicating that the redistribution motive of the utilitarian
social welfare function calls for a more contractionary policy (lower M).

The right panel decomposes efficiency into its four allocative efficiency components: cross-
sectional and aggregate factor and intermediate input efficiency. Several additional insights emerge.
First, factor and input efficiency are both quantitatively important determinants of the production
efficiency gains from monetary policy. Second, at MAF = 0.974, aggregate (light blue) and cross-
sectional (green) input efficiency are negative. These two motives call for more contractionary
policy. Third, aggregate (yellow) and cross-sectional (red) factor use efficiency are positive at
MAE = 0.974, calling for more expansionary policy. The policy that maximizes efficiency trades
off and balances these considerations.

It is well understood that stabilizing inflation (which maps to cross sectional factor use efficiency)
is more important than stabilizing the output gap (which maps to aggregate factor efficiency) for
welfare in standard calibrations of the New Keynesian model (Rotemberg and Woodford, 1997;
Woodford, 2003). Our results preserve this conclusion and also show that the cross-sectional
component also dominates the aggregate component for intermediate input efficiency. Lastly,
Appendix G.4.4 illustrates the role of revenue taxes. When they are not available to offset initial
markup distortions, aggregate input and factor efficiency become quantitatively more important

and call for expansionary policy.

7 Conclusion

This paper introduces a welfare accounting decomposition that can be used to identify and quantify
the origins of welfare gains and losses induced by changes in allocations or primitive changes in
technologies or endowments. The distinguishing feature of this decomposition is the fact that it is
written solely in terms of preferences, technologies, and resource constraints, making no reference to
prices, budget constraints, or equilibrium notions. For that reason, it is also useful to characterize
the set of Pareto efficient allocations, which allows us to provide a new characterization of efficiency
conditions in disaggregated production economies with heterogeneous individuals that carefully
accounts for non-interior solutions, extending classical efficiency results. In competitive economies,
prices and wedges contain information about the elements that determine the decomposition, in
particular, the marginal social value of goods. We illustrate the use of the welfare accounting
decomposition through several minimal examples and four applications to workhorse models in
macroeconomics and trade.

In the Appendix, we extend our results to dynamic stochastic economies without accumulation
technologies. In ongoing work, we extend the approach of this paper to economies with accumulation

technologies, which opens a new set of nontrivial considerations.
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ONLINE APPENDIX

A Matrix Definitions

This section defines all matrices used in the body of the paper and in this Appendix. To simplify the
exposition, we represent all matrices for the I = 2, J = 3, F' = 2 case, although we define matrix dimensions
for the general case. For clarity, we typically use L to denote the number of intermediate inputs, although
L=J.

Allocations. We collect consumption allocations, ¢/, and individual endowments of goods, 4*°*, in the
IJ x 1 vectors ¢ and ggﬁ, as well as intermediate uses, 27, in the JL x 1 vector &, given by

211
21
Al —11,s &
Y 231
21 91,5
Y 12
12 —12,s
&= C o5 Yy &= 29
T 22 Y= oo ) = *
Y 232
13 —13,s
Yy 213
23 23
IJx1 IJx1 223
233

JLx1

Similarly, we collect factor uses, n/*¢ in the JF x 1 vector hd7 and elastic factor supplies, n*/**, and
individual endowments of factors, /%, in the IF x 1 vectors n® and n®, given by

pild
n2L.d pils Fils

. d n31,d \ s n21,s - ,’7L21,3

n = ni2.d y = pl2.s y = 712,
ZZZZ n?*s IFx1 s IFx1

JFx1

Aggregate allocations. We collect aggregate consumption, ¢/, aggregate intermediate use, z7,
aggregate produced supply, 7%, aggregate endowment, 47°, and aggregate supply, 3/, of goods in J x 1
vectors ¢, x, y®, y°, and y given by

1 1 1,s =1,s 1
c T Y Yy Y
_ 2 _ 2 s _ 2, =S —2, _ 2
c= c ) T = X ’ Yy = Yy 8 9 Yy = Yy s ) Y= Yy
3 3 3,5 3,8 3
T , )
¢ Jx1 Jx1 Yy Jx1 Yy Jx1 Yy Jx1

Similarly, we collect aggregate use, nf?, aggregate elastic supply n/*, aggregate endowment, 7/>*, and

d

aggregate supply, nf, of factors in F' x 1 vectors n?, n®, n®, and n given by

J nl,d . nl,s _, ,ﬁl,s nl
" n2d T n2s = n2s » = n? :
Fx1 Fx1 Fx1 Fx1
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Aggregates satisfy
—5 ° s

c=1.2, x=1,2, y° =1,9°, ¥ =139, n?=1.0" n°=1,7" n’=1.n

where we define the following matrices of zeros and ones:

110 00 1110 0 00
lo=1p=1;=[0 0 1 1 0 , 1,=]1000 111 0 0
00001 000000 11

JxIJ

0
0
1
11 0 0 1100
].nd: B lnailﬁsi .
00 0 1 11 0 0 1 1
FxJF FxIF

We can thus write resource constraints (3) and (4) as

JXxJL

—
o

y=c+x and n=n where y=y’+y® and n=n’+n’.

Allocation shares. We collect consumption shares, x%/, in a I.J x J matrix x., factor use shares, 2/,
in a JF x F matrix x,a, and factor supply shares, x%/%, in a IF x F matrix, Xy, given by

xet 00 Xt 0
X2 00 X0 Xn® 0
Xc = 0 Xéz 0 ) Xnd = Xil’d 102 d ) Xns = X%LS 102 s
0 x&& 0 0 xu» U
0 0 X 0 x> 0 X2/ per
0 0 ng IJxJ 0 X%Q’d JFXF

We collect intermediate-use shares, ¢, and intermediate-supply shares, &/¢, in JL x J matrices x, and &,

given by
xitoo0 0 oo 0
X2t0 0 e 0
3o 0 el 0 0
0 x2 o0 0 &2 0
Xz = 0 x3* 0 ., €= 0 & 0
0 x2 0 0 &2 0
0 0 X3 0 0 &3
0 0 X% 0 0 &3
0 0 X3’ JLxJ 0 0 &¥ JLXJ

We collect aggregate consumption and aggregate intermediate shares, ¢J and ¢/, in J x J diagonal matrices,
@. and ¢, given by

¢ 0 0 ¢p 0 0
¢c = 0 clﬁ 0 5 ¢ac = 0 (bi 0 5
3 3
0 0 ¢C IxJ 0 0 ¢w IxJ

where ¢, + ¢, =I5, and
c=¢y and x=d,y.
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We can thus write

c= XcCs ﬁd = Xndnda ’hS:XnSnS» T = Xz = gyv 5 = Xazd)z
Note that
]-CXc = IJ; ]-TI,SXnS = IF7 lnand = IF7 ]-QCXT = IJa 115 = ¢ma
where I; and Ir denote identity matrices of dimensions J and F' respectively.
Marginal products/technology change. We collect marginal products of intermediates in a J x JL

matrix G, marginal products of factors in a J x JF matrix G,,, and technology changes in a J X 1 vector
Gy, given by

les aG! aG!
1T 02 0 B2 02 0 13 02 0
_ file] 8G oG
G, = 0 BT 0 0 5oz 0 0 5,73 0
8G? G aG?
0 0 dx3L 0 dx32 0 0 Ox33 JxJL
dG! dG! dG!
Falld 822 0 Fnizd 322 0 2,
Gn = 0 goora 303 0 goma 803 , Go= an,
G G 0G
0 0 on31l.d 0 0 On32.d JIXJF 00 JIx1

Marginal rates of substitution. We collect marginal rates of substitution in 1 x I.J and 1 x I'F
vectors M RS, and M RS,,, given by

MRS, = ( MRS!' MRS? MRS} MRS? MRS} MRSCQg)l 1
X

MRS, = ( MRS MRS?' MRS!? MRS ) .
1xXIF

The 1 x J and 1 x F vectors of aggregate marginal rates of substitution, AM RS, and AMRS,,, can be
written as

AMRS. = MRS,x. and AMRS, = MRS, Xn-.

Marginal social value of goods. We collect the marginal social value of goods in 1 x J vector M SV,
given by

MSV, = ( MSV} MSVZ MSV} ) . where MSV, = AMRS.$.%,.

Marginal welfare products. We collect marginal welfare products in 1 x JL and 1 x JF vectors
MW P, and MW P,, given by

MWP, = MSV,G,, and MWP,=MSV,G,.
The 1 x J and 1 x F vectors of aggregate marginal welfare products, AMW P, and AMW P,,, can be

written as

AMWP, = MWP,x, and AMWP, = MW P,x,..
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Goods inverse matrix. We define the elements of the J x J goods inverse ¥, as follows:

wll w12 wlS
Y Y Y
T, = 2t 92 yB , where W, =(I;—G,¢) .

31 32 33
vy U Y ) g

Competitive economies. In competitive economies, we collect prices p’ in the 1 x J vector p and
wages w/ in 1 x F vector w, given by

— 1 2 3 — 1 2
= , w=| w w .
p (p p p >1><J ( )1><F

We also collect consumption wedges in a J x IJ vector, 7., factor supply wedges in a F' x [ F vector, Ty,
intermediate use wedges in a J x JL vector, 7, and factor demand wedges in a F' X JF, 7,4, given by

1 .21
Te Te 0 0 0 0 7_ll,s 7_21,3 0 0
— 0 0 12 22 0 — n n
Te Te Te ’ Tns 0 0 7_12 s 7_22,5 )
13,23 n n FxIF
0 0 0 0 T Jx1J X
'rgil—'r1 Tﬁl—T? 7'31—7'3
s e v 0 0 0 0 0 0
Fl2_ 1 7222 7323
J— Ty x Ty e Ty
’ 0 O O 1+T1} 1+Ty2 1+T’3 130 1 230 2 330 3 7
Tz _Ty Tz _Ty Ta _Ty
0 0 0 0 0 0 St omm o
Tylll,d__nl Tyllz.d_Tl
1+Ty1 . 1+‘r; - 0 0 0 0
Tﬁl‘dfTQ 7_721,2,(177_12
Tpd = 0 0 1+72 - 1+72 : 0 0
1,d 2.d
0 0 0 0 L Bl
y Y FxXJF
We use I, and I, to denote the following J x J indicator matrices:
1[ct > 0] 0 0 1[z! > 0] 0 0
I. = 0 1[c2>0] 0 , I, = 0 1[x2>0] 0
3 3
0 0 1 >0 ), 0 0 1[z>>0] )

We use and I,,s to denote the following F' x F' indicator matrix:

1 [nl’s > O} 0
Ins == .
0 1 [nQ*S > O] E

We collect aggregate supply, aggregate consumption, and prices in J x J diagonal matrices g, ¢, and p, given
by

yb 0 0 ¢ 0 0 pt 0 0
y = diag (y) = 0 2 0 , ¢é=diag(c) = 0 ¢ 0 , p=diag(p) = 0 p*> 0
3 3 3

0 0 y JxJ 0 0 ¢ JxJ 0 0 p JxJ

In parallel to the definition of marginal welfare products, we define marginal revenue products as M RPJ¢ =

p 95 and MRPIT = ﬁ% In matrix form, M RP, = pG, and M RP, = pG,,.

Ozt
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B Shares Definitions

Here we provide formal definitions of shares that apply also when denominators can take zero value. We
define individual 4’s consumption share of good j, X%, and individual i’s factor supply share of factor f,

i3 g
% ifed >0 ”ff ifnfs >0
y deid , ; , dnifs e
Xy = d}zj if¢?=0 and % >0 and yi* .= # if n/* =0 and - >0
. ; j . . fis
0 if > =0 and % =0 0 if nf* =0 and dZQ =0.

Individual consumption shares Y% represent either the share of aggregate consumption ¢/ consumed by
individual i, when ¢/ > 0, or the share of the change in aggregate consumption dc’ /dfl consumed by individual
i, when ¢/ = 0 and dc’ /df > 0. Individual factor supply shares y/>* are defined analogously.

We define good (s intermediate share, ¢%, and the intermediate-use share of good { used to produce

good j, x3, as

iyt >0 2 el >0
¢ =l dy* M dr't d’
(bw = dd;[ if Yyt = 0 and e >0 and ij = dxzz if x@ =0 and Taé >0
du” ’
el dr” __
0 lfyé:() and %:0 0 if 2*=0 and d—mo—O

Good ¢’s intermediate share, ¢!, represents either the share of good ’s aggregate supply y* devoted to
production, when y > 0, or the share of the change in good ¢’s aggregate supply % devoted to production,
when 3° = 0 and Lfiye > 0. Its complement defines the aggregate consumption share ¢° = 1 — ¢. The
intermediate-use share of good £, ¢, represents either the share of good ¢’s aggregate intermediate use
devoted to the production of good j, when 2 > 0, or its counterpart in changes when 2 = 0 and > 0.

Depending on ¢, good ¢ can be i) pure final, when ¢% = 0; ii) pure intermediate, when ¢% = 1, or iii)
mized, when ¢! € (0,1). Equivalently, good ¢ can be i) final when ¢! € [0,1) or ii) intermediate, when
#% € (0,1], with mixed goods being simultaneously ﬁnal and intermediate. These categorizations are only
meaningful when y¢ > 0 or 2 > 0. Depending on ¢, an intermediate input £ is i) specialized, when 3¢ = 1
for some j; or diversified, When it € (0,1) for some j.

Finally, we also define the intermediate-supply share of good ¢ by ¢t =yt which corresponds to #

when 3* > 0 or to its counterpart in changes when y* = 0 and % > 0. These definitions of shares ensure
that changes in intermediate use can be expressed as
dmj@ 5]13 dfﬂ deé

= J L’ — ‘4
@~ ag Y t¢ where =5~ g Pt

JZ d(bi
Xz g

(OA1)

even when 3° = 0 and 2° = 0. Expression (OA1) initially decomposes level changes in the use x7¢ of good

4
£ in the production of good j into two terms. First, changes in the intermediate-supply share % change

¢ in proportion to good £’s aggregate supply y¢. Second, changes in good £’s aggregate supply % change
27¢ in proportion to the intermediate-supply share £7¢. In turn, changes in the intermediate-supply share
deit

can occur either due to reallocation of good ¢ across different intermediate uses — a change in the
intermediate-use share x7¢ — or due to reallocation from consumption to production — a change in the
intermediate share ¢¢.
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At last, we define the factor use share of factor f used to produce good j, x%/*¢, as

jf.d .
";L;f,d if n/4 >0
. dnif:d f.d
Xﬁlﬁd = 4 if nfd =0 and d" >0
de
. fid
0 ifnfd=0 and 9¢&- =0.

do

The factor use share x7/-¢ represents the share of factor f’s aggregate use n/*¢ devoted to the production

dnf

of good 7, or its counterpart in changes when n/¢ = 0 and > 0. In this case, equation (OA1) ensures

that changes in factor use can be expressed as

dnifd dX]fdnf’d—F jfyddnf’d

do df "oode (042)

even when n/f? = 0. Equation (OA2) decomposes level changes in the use n//+¢ of factor f in the productlon

if
of good j into a change in the factor use share, oy and a change in the aggregate factor use, " . A factor

a6
[ is i) specialized, when x5 = 1 for some j; or diversified, when Y774 € (0,1) for some j. The fact
that reformulating the model in terms of shares is useful is a consequence of the linearity of the resource

constraints, as explained in Dévila and Schaab (2023).

C Proofs and Derivations

To simplify the exposition we assume throughout that i) consumption is (weakly) desirable but supplying
> 0 and 31 i~ < O' ii) the marginal products of using intermediates and factors are
) amﬂ > 0 and 2 OG> 0; and iii) the no-free-lunch property holds, i.e., G7 (-) = 0 if
27t =0, V¢, and n//¢ = 0, Vf. Many of our results, including the welfare accounting decomposition, do not

factors is not, i.e., 8 s

(weakly) positive, i.e.

require such restrictions.

C.1 Section 2
Proof of Lemma 1. (Efficiency/Redistribution Decomposition)

Proof. For any welfarist planner with social welfare function W (+), we can express %‘)/ as

AW WAV~ ow A
g~ £« 9Vidg 4= ovit N

utils of individual

- 22 that allows us to express
units Of numeraire

where \' is an individual normalizing factor with units dim ()\’) =
individual welfare assessments into a common unit/numeraire. We can therefore write

e % oo o B o5 B s cop | B
w? = — + JCov; |w', | = (Cov w', 4|

df 7 Zz 3‘1% A 21: B Z Z M\ + i \ - B + \i
h,_/ —_—

=1 —EE —=RD
) oW yi ]
where w" = f:vlaw +7» Which implies that 1YW =1 O
i oV?

C.2 Section 3
Proof of Theorem 1. (Exchange Efficiency)
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. av?i
Proof. Given the definition of V* in equation (1), we can express 42~ as

av’ du’ i

e ez dc dn dn”‘ :
de OctJ Bn’f s 7 if

47 = — M J M .
i -y S,

The marginal rate of substitution M RS% measures individual i’s valuation in units of the welfare numeraire
of a marginal increase in good j’s consumption. Analogously, M RS/ measures individual i’s cost in units
of the welfare numeraire of a marginal increase in factor f’s supply. Hence, from Lemma 1, it follows that

=F — gix Z Z MRS” Z Z MRS d” -

Given (9), we can write

ZMRS” dd - = Cov} [MRS” e }cﬂ + AMRSI %

cde’
where AM RSJ is defined in (16). Similarly, we can write

if,s d
ZMRS’f Sd” © — Cov? {MRS” . dfl% } I + AMRS] 29 ,

E,X

where AM RS,J: is also defined in (16). Hence, exchange efficiency, =%, can be expressed as

dx¥? dxil
28X — Cov? |MRSY, 25| ¢ —Covs | MRSYs, 20| pfs
do do
Cross-Sectional Cross-Sectional
Consumption Efficiency Factor Supply Efficiency

while production efficiency corresponds to

~dc? dn’>*
gEP AMRS?— — Y AMRS! ——
ZJ: RSI—5 > AMRS] 0
Alternatively, in matrix form, we can write
dV‘ o
de dn
=E _ - M = _ M s
- )\’ RS. “de RSn do’
where (9) can be expressed as
de  dx. de dn®  dx,s dn?®
b~ a0 T Xeqg ™ g T ag ™ T X g
Hence,
de dx de dn’® dX s dn®
MRS.— = MRS.-—£= AMRS.— d MRS, =MRS,=2n°+ AMRS, —,
a0 <" @ " a0 a " a0
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where AMRS, = MRS .x. and AMRS, = MRS, X,:- We can thus write

=FE Xc an s dn’
== MRS, —MRS, AMRS —AMRS,,——
a9 € a " ‘B a0
Cross-Sectional Cross-Sectional ZE.P (Production Efficiency)

Consumption Efficiency Factor Supply Efficiency

ZE.X (Exchange Efficiency)

Proof of Corollary 1. (Properties of Exchange Efficiency)

Proof. Proceeding item-by-item:

(2) When I = 1, Cov® [MRSZJ, dga] Cov® [MRS”S dn'ls } — 0, Vj and V7.

(b) When n/* = 0, Cov? [MRS”C’s dx" ]nf’ =0, Vf.

(c) When MRS¥ is identical for all i, Cov® [MRS@J, de’” } = 0. When MRS/ is identical for all f,
Cov? [MRSZf d’”“} ~0.

O
Proof of Lemma 2. (Goods Inverse Matrix)
Proof. Given (11) and (13) we can write %j and 2" in matrix form, as
dy® dn? dé  d§
_ at d = A
10 =G, d6‘+G 73 + Gy an 0= Y +£ (OA3)
h
whnere d7y B dys N dg@
9 df de -

- . dy®
Combining these expressions, we can express - as

dy* d dy*s  dy® dn?
yG<£ +§(y y))+G LCNES

do a0” do do do

B d€ dn? dy*®
—‘I’y<G dey—i—G W"‘Gzé +G0>7

where ¥, = (I; — GxE)_l. Finally, we use the fact that ¥, = I; + ¥,G,§, so that we can express ‘;—g as

dy dy* dy* de¢ dn?®  dy*
—_— = = ‘I’ n I
a9~ dg " ad y<G va6Y TGy g TG
which corresponds to equation (14) in the text. O

Proof of Theorem 2. (Production Efficiency)

Proof. As shown above, we can express =% in matrix form as
dc dn’®
—E,P
=" =AMRS.— — AMRS,—.
do do
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de

First, note that we can express the change in aggregate consumption, %7, as

de dy dx dy <¢dy+d¢m>_ dy do,

a0 a0 a0 a0 \Peap " ap Y a9~ dp ¥

d
oy and ¢, = I; — ¢,

. de _ o dy
where we use the fact that 97 = ¢, 58 +
Next, note that Z—g can be written as

dy dx do dXpi 4 dn? dy
— =9, |G L G z G, =2 G —+ =+ Gy |,
df y(”d9m+ wXa g YT O gy G Xna g g TG0
where we use the fact that
€ dx, do, i dxpe g dn?

a0~ o T XeTgp

y oand = g ™ T Xnd g

This result allows us to express % as

de _
e

dg,
df

d dX pa dn‘ dy®
0¥, G DT (B8, Go X, — 1) TEY W, G 4§ W G s Tt BT <y+Ge>

do do

Hence, combining this expression for % with the resource constraint for factors, which implies that

d s =5 . . .
dgg = dC?Q + %’ we can express production efficiency exactly as in text, as follows:

dx,

d
2@ T(AMWP, - AMRS.) %y

—E,P
=00 = MWP
v do

Cross-Sectional Aggregate
Intermediate Input Efficiency Intermediate Input Efficiency

dX e dn’®
do do

Cross-Sectional Aggregate
Factor Efficiency Factor Efficiency

d_s d_s
/- + MSV,Gy + AMRS, -

do
Technology Goodcﬁljr;?](éxgment Factor Endowment

Change Change

+MWP, n’ 4+ (AMWP, — AMRS,)

+MSV

where

MW P, = MSV,G,, MW P, = MSV,G,,, MSV, = AMRS,$,¥,,.

Proof of Corollary 2. (Properties of Production Efficiency Decomposition)

Proof. Proceeding item-by-item:

(a) When J = 1, Cov¥ {MWng, dgﬂ =0, VL.

b) With no intermediate goods, z* = dée _ 0, Ve.
9

: dn®s _
(c) If all factors are in fixed supply, “— = 0, Vs.
g

y it _
(d) If all intermediate inputs are specialized: d 2o =0, Vj, VL. If all factors are specialized, % =0, V7,

Vf.
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(e) When marginal welfare products are equalized for intermediates: (Cov MW Pt dé‘g = 0, V¢; for

factors: (Cov MW Pt dX” =0, Vf.

C.3 Section 4

In the body of the paper, we assume that that ¢/ > 0 and n/*¢ > 0, but here we also allow for 3/ = 0 and
fd—q
n .

Proof of Theorem 3. (Efficiency Conditions: Exchange Efficiency)

Proof. If MRS¥ is different across any two individuals with x% > 0 for good j with ¢/ > 0, then there
exists a perturbation of consumption shares in which cross-sectional consumption efficiency is positive. If
MRSY is less than AM RS? when x% = 0, then there is no feasible perturbation that reduces the share of
consumption for individual . The same logic applies to cross-sectional factor supply efficiency. O

Proof of Theorem 4. (Efficiency Conditions: Production Efficiency)

Proof. If MW PJ* is different across any two intermediate uses of good ¢ two individuals with yZ¢ > 0, then
there exists a perturbation of intermediate use shares in which cross-sectional intermediate input efficiency
is positive. The same logic applies to cross-sectional factor use efficiency.

When ¢!, € (0,1), then there exists a perturbation of ¢, such that aggregate intermediate input efficiency
is positive unless AMW P! = AMRS®. 1If ¢! = 0, it must be that AMW P! < AM RS’ for the best possible
combination of intermediate use shares, which is the one that allocates good ¢ to its highest marginal welfare
product intermediate use. If ¢2 = 1, it must be that AMW P! > AMRS! for the possible combinations of
consumption shares, which is the one that allocates the consumption of good j to the individual with the
highest M RS.

When nf* > 0 (and n/¢ > 0), then there exists a perturbation of n/* such that aggregate factor
supply efficiency is positive unless AMW P/ = AMRS/. If nf* = 0, it must be that AMW PS < AMRS]
for the best possible combination of factor supply shares, which is the one that allocates the consumption
of good j to the individual with the lowest M RSY . If n/* = nf = 0, then it must be that the most
costly way of supplying a factor is higher than the highest marginal welfare product of doing so, formally:
max; {MWng} < min; {J\lRSfo}.12 O

Proof of Corollary 3. (Interior Economies)

Proof. Recall that we define marginal rates of substitution in units of the numeraire, i.e., M RSY =
If condition (20) holds, then M RS /M RSY = MJ,_;
do not depend on 4. This implies that two individuals’ valuation of good /¢, expressed in units of good 7, is

AZ
gur/
must be equal across individuals since marginal products

equalized. Since (20) applies for all j and /¢, it also implies the equalization of M RS in units of the welfare

numeraire. To derive the equalization of M RT', notice that (20) can be rewritten as O
oGI e oG7 gy
ij ij ij iy’ _ 33" L
MRSC 9 Je_MRS 957t = MRSY /MRS = 9 3'5/8 7 = = MRT

where the RHS defines the marginal rate of transformation (M RT'). Condition (20) therefore implies both
MRS = MRT (after a change of units) and the equalization of M RT across uses since the LHS does not
depend on /. A similar argument applies to factor use.

2When n'*® = 0, the value of a marginal unit of endowment of factor f is simply max; {M WPt }
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Proof of Corollary 4. (Classical Efficiency Conditions Hold for Interior Links)
Proof. Proceeding item-by-item:

(a) At an interior link, Theorems 4 and 6 imply that both equations in (20) hold.

(b) The result follows then from the same logic as in Corollary 3.

O

Proof of Corollary 5. (Scenarios in which Classical Efficiency Conditions Do Not Hold)
Proof. Proceeding item-by-item:
(a) If good j is a pure intermediate, then M SVyj # AMRS?, which implies that the classical efficiency

conditions cannot hold, since efficiency requires that M SV, gci; = MRS,
X

(b) If good ¢ is a pure intermediate, then last condition of Theorem 4 already implies that the classical
efficiency conditions cannot hold.

(c) Asin (a), MSV] # AMRS], which implies that the classical efficiency conditions cannot hold, since
efficiency requires that M.S Vyj 887% = MRSY.

O

M SV under Efficiency

The marginal social value of goods is a central object for welfare accounting. It is a key determinant of
marginal welfare products and thus governs each component of production efficiency. It is furthermore
the single determinant of the technology change (and good endowment change) component of the welfare
accounting decomposition. Theorem 6 characterizes the marginal social value of goods at efficient
allocations.!?

Theorem 6. (MSV under Efficiency). At an allocation that satisfies aggregate intermediate input efficiency,
the marginal social value of good j is given by

AMRS!  if ¢ >0

. . OA4
AMWPI if ¢l >0. (044)

MSV] = {

At an allocation that additionally satisfies cross-sectional consumption and cross-sectional intermediate input

efficiency, the marginal social value of good j is given by

- | MRSY Vi st x¥ >0 if ¢>0
M8V = ¢ Tahxe G (0A5)

MWPY Ve st x99 >0 if ¢ >0.

Proof. Note that MSVyj can be defined in terms of AMRS? and AMW P}, as
MSV] = ¢JAMRS] + ¢J AMW P}. (OA6)

This equation, which provides an alternative definition for M S Vyj , shows that the value of a good corresponds
to the value of consuming its aggregate consumption share ¢/ and using its aggregate intermediate use share

!3Characterizing the factor endowment change component under efficiency is straightforward. When nhd > 0,
efficiency requires that AMW P = MW P2¥, Vj with 25 > 0.
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@’ in production. This definition is recursive since AMW PJ is a function of the marginal social value of all
goods.
In matrix form, it follows from Equation (OAG) that

MSV, = AMRS.¢.+ MSV,G,,§ = AMRS.¢p. + AMW P, ¢,,

where £ = x,¢, and AMWP, = MSV,G,x,. Therefore, equation (OA4) follows immediately when
aggregate intermediate input efficiency holds. Equation (OA5) follows directly from the cross-sectional
efficiency conditions. O

The marginal social value of a good derives from its consumption value when the good is final and from
its production value when the good is used as an input. Aggregate intermediate input efficiency guarantees
that these are equalized for mixed goods, i.e., AMRSI = AMW PJ for j mixed. When j is a final good
with @2 > 0, therefore, its marginal social value equals its consumption value AMRS?. When j is an
intermediate good with ¢4 > 0, its marginal social value equals its production value AMW PJ. And
when good j is mixed with ¢/ > 0 and ¢J > 0, consumption and production value must be equalized,
so MSV] = AMRS] = AMWPj.

Conversely, the marginal social value of a pure final (pure intermediate) good is not equal to its production
(consumption) value. As long as aggregate intermediate input efficiency is satisfied, M S Vyj > AM RS’ when
J is a pure intermediate with ¢} =1 and MSV;) > AMW P] when j is a pure final good with ¢! = 1.

Cross-sectional consumption efficiency furthermore guarantees that M RSY = AMRS? are equalized
across all individuals i that consume good j (x% > 0). The MSV of a final good must therefore coincide
with the valuation of each individual. Similarly, cross-sectional intermediate input efficiency guarantees that
MWPY = AMW PJ are equalized for good j across all its intermediate uses ¢ (x% > 0). The MSV of
goods used as intermediate inputs must then coincide with the marginal welfare product of each use. More
broadly, efficiency requires that the value of using a good must be equalized across all uses and coincide with
the M SV of the good.

C.4 Section 5

Definition. (Competitive Equilibrium with Wedges). A competitive equilibrium with wedges comprises a
feasible allocation {cij,nif’s,xje,njf’d,yj’s} and prices {pj,wf} that satisfy resource constraints (3) and
(4), such that individuals optimize,

MRSY <p/ (1+79), Vi,Vj and MRS >wf (1+71%), Vi, Vf,

where the equations hold with equality when ¢ > 0 and n*7* > 0, respectively, and firms minimize costs and

maximize profits,

- 0GY 1+ 79t . OGY 14 7ifd
J <t "’Tg;_ Vi, V0 and pja i Swf +7'nj ,
n 147y

P <p ; Vi, v,
dxJ 147
where the equations hold with equality when x7* > 0 and ni’? > 0, respectively.
In this section, we implicitly choose the nominal numeraire (i.e. the unit in which prices, wages, and
profits are defined) to be the welfare numeraire. This is without loss of generality since we can always

renormalize M RS.

Proof of Theorem 5. (MSV in Competitive Economies with Wedges)
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Proof. In a competitive equilibrium with wedges, we can express aggregate marginal rates of substitution as
AMRSC = MRSCXC =D (Ic + 7_-0) )

where I, is J x J diagonal matrix in which the j’th element is 1 when ¢/ > 0 and 0 if ¢/ = 0, and where we
define a J x J matrix of aggregate consumption wedges as T. = T.X,. It is also the case that

PG X, :p(Ix +7'9ch) :p(Iac +‘Fx)a

where I, is J x J diagonal matrix in which the j’th element is 1 when 27 > 0 and 0 if 27 = 0, and where
we define a J x J matrix of aggregate intermediate use wedges as 7, = T,X,. Hence, we can express the
marginal social value of goods as

MSV,=AMRS.¢. ¥, =p(I.+ 7.) p. ¥, = pp. ¥, + pTcp. ¥,
=p+p (ﬁ@bm + 77-c¢c> ‘I’y7

where we use the fact that I.¢, = ¢, and that

quc‘I’y = p((Gm - 1z>£‘Ily + IJ) = (sz _p]-w) de):r‘:[’y +p
= (pGyXs — D) ¢V, +p= (p(Iy +72) — p) ¢:¥y +p=pT:. ¥y +p.

Given Theorem 5, the technology change component of the welfare accounting decomposition is simply given
by
MSV,Gy = ;MSVJW = XJ: <pf + %:p T 5
O

This result also implies that the marginal social value of goods does not depend directly on factor supply
or factor use wedges. This result underscores the asymmetry between consumption and intermediate input
distortions on the one hand and factor supply and use distortions on the other. Because M SV, enters in
the definition of marginal welfare products, all production efficiency components are non-zero when 7, # 0,
but only factor efficiency components directly depend on factor wedges.

Theorem 5 also has two important implications for network propagation. First, when 7, = 0, the
marginal social value of goods can be read exclusively off prices and does not require knowledge of the entire
production network. This observation is made at times in frictionless competitive economies — see Corollary
7 — which Theorem 5 shows applies more generally. Second, when 7, = 0, the goods inverse matrix ¥,
contains the necessary information on network propagation to determine MSV,. While it is possible to
characterize ¥, in terms of prices, allocations, and intermediate input wedges — as we do in Appendix E.3
— this is only relevant insofar as it captures ultimate changes in aggregate supply. Only intermediate input
wedges directly enter W, which echoes existing insights highlighting the outsized role that intermediate
input distortions play in production — see e.g. Ciccone (2002) or Jones (2011).

Proof of Corollary 6. (Converse Hulten’s Theorem)

Proof. Follows directly from Theorem 5. O

Proof of Corollary 7. (Hulten’s Theorem Revisited)
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Proof. Since frictionless competitive economies are efficient, =¥

simply equals technology change. When
T, = T, = 0, it follows from Theorem 5 that MSV; = p/. Hence, ZF = pjaa—gg'] = p/y?, where we use the
fact that 88%] = g/ for proportional Hicks-neutral technology changes. Simply dividing by > j p'cd yields

equation (26) in the text. O

Relation to Cost-Based Domar Weights. A central result of Bagaee and Farhi (2020) is that cost-
based Domar weights summarize the impact of pure technological change on final output in an environment
with a single individual, factors in fixed supply, and markup wedges. Their result is a special case of Theorem
5. Formally, under the assumptions in that paper,

1 1 . ~
J — i P ~—
= Technology Change N——— Cost-Based
Normalization Component Final Expenditure Leontief Inverse
Share

where & = diag(c) and \ily is the proportional goods inverse, which in turn maps to the intermediate input
block of the cost-based Leontief inverse defined in Bagaee and Farhi (2020) — see Appendix E.3. Relative
to equation (OAT), Theorem 5 illustrates how competitive forces guarantee that M SVyj = p’ when 7, = 0.
Away from the assumptions in Bagaee and Farhi (2020), Theorem 5 highlights that cost-based Domar weights
cease to capture the efficiency gains from pure technological change, for instance in the presence of aggregate
consumption wedges.

Allocative Efficiency in Competitive Economies

Here we specialize the allocative efficiency components of the welfare accounting decomposition to
competitive economies with wedges.

Theorem. (Production Efficiency in Competitive Economies). In competitive economies with wedges, in

the absence of technology and endowment changes, production efficiency is given by

L dy It L OGT dydt
EP _ | e WXz | ¢ ¢ b _ z | 0
= % Cov; [Tg 20 ]p xt + % Cov; [(MSVyJ pj) S b

Cross-Sectional Intermediate Input Efficiency

L, , N 0GT L\ det
+)° pé<T£—Tf)+Z(MSVy]—p])axﬂng %y‘
- :

J

(1]

Aggregate Intermediate Input Efficiency

. i f>d . .
+) Cov? [735 B ] w/nh 43" Covy [(Msvyﬂ —p)
!

aGT  dxj ndd
do r

onifd’  qde

Cross-Sectional Factor Use Efficiency

) o 0GI . dnfs
§ F(=f _=f E _ f.d
+ o w (Tns Tnd)+ e (Msvvy] p]) 87’ljf’dX% do

Aggregate Factor Efficiency

Theorem C.4 follows from imposing the equilibrium conditions in (25) into the production efficiency
decomposition in Theorem 2. In line with Remark 3, Theorem C.4 further underscores the asymmetry
between aggregate goods wedges, which directly impact all production efficiency components (via the terms
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that contain MSVyj — p?, since MSV, —p = p7,¥,) and other wedges. Hence, any changes in inputs or
factors that increase the supply of goods with high aggregate goods wedges have a separate impact on the
efficiency components. Since these effects are identical across all components, we focus on describing the
remaining terms.

First, cross-sectional intermediate input efficiency directly depends on the dispersion in intermediate
input use wedges. Intuitively, reallocating intermediate inputs towards uses with higher wedges is valuable
since the competitive equilibrium features too little of those input uses. Second, aggregate intermediate
input efficiency directly depends on the difference between aggregate intermediate input and consumption
wedges. Intuitively, if 7% > (<) 7¢, the aggregate intermediate use of good £ is inefficiently high relative to its
consumption use. Third, cross-sectional factor use efficiency directly depends on the dispersion in factor use
wedges. Intuitively, reallocating factors towards uses with higher wedges is valuable since the competitive
equilibrium features too little of those factor uses. Finally, aggregate factor efficiency directly depends on the
difference between aggregate factor supply and factor use wedges. Intuitively, if f,’; > (<) 7_'7{ 4, the aggregate
supply of factor f is inefficiently low (high) relative to its use. In the Appendix, we characterize the factor
endowment change component.

While the general proofs of the First Welfare Theorem by Arrow (1951) and Debreu (1951) apply to the
economy considered here, our results provide an alternative constructive proof. Under standard convexity
assumptions, a Second Welfare Theorem also holds.

Theorem. (Ezchange Efficiency in Competitive Economies). In competitive economies with wedges,
exchange efficiency is given by

E,X s X 5 s [ ips A
250 = E Covy |7, == | P’ — E Cov? |rifs 20| winls, (OASB)
, db do
J f
Cross-Sectional Cross-Sectional
Consumption Efficiency Factor Supply Efficiency

Equation (OAS8) highlights that cross-sectional dispersion in consumption or factor supply wedges is necessary
for exchange efficiency to be non-zero. Intuitively, reallocating consumption towards individuals with
higher consumption wedges is valuable since these individuals consume too little in equilibrium. Similarly,
reallocating factor supply towards individuals with lower factor supply wedges is valuable since these
individuals’ factor supply is too high in equilibrium. Finally, note that intermediate input wedges, factor
use wedges, or the aggregate levels of consumption and factor supply wedges do not determine exchange
efficiency directly.

D Redistribution

Our analysis in the body of the paper exclusively focuses on efficiency. However, perturbations with identical
efficiency implications may have different distributional implications. Theorem D decomposes redistribution
gains or losses into four components: Cross-sectional consumption and factor supply redistribution capture
redistribution gains due to the reallocation of consumption and factor supply shares, for given aggregate
levels of consumption and factor supply. And aggregate consumption and factor supply redistribution
capture redistribution gains due to changes in aggregate consumption and factor supply, for given shares.
Critically, the choice of social welfare function will directly impact the welfare gains from redistribution and
its components.

Theorem. (Redistribution Decomposition).  The redistribution component of the welfare accounting
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decomposition, ZRP | can be decomposed into
Cross-Sectional Aggregate
Consumption Redistribution Consumption Redistribution
dx . dc?
Cov? |w', MRSY =< | ¢ + Cov? w , MRS %
- Yeo? sy Se 0+ 3 %
J J
. X . A dn’s
— Z Covy” {wﬂ MRS dz ] ns — Z Cov;” [w', MRSflfxiif’s] R
f
Cross-Sectional Aggregate

Factor Supply Redistribution Factor Supply Redistribution

Proof. Note that
=RD i _do
(Cov |
where
dvl f d l S
zg T
Z MRS Z MRS,/ =
Hence, using the fact that
dc  dxY . dcd dn'fs _d if.s dn’+*
= chj—i—xzj— and = WX fis 4 xils ,
dé dé do do Sde de

we can express =270 as in the statement of the theorem. O

The cross-sectional terms capture redistribution gains or losses due to the reallocation of consumption and
factor supply, for given ¢/ and n/>*. In particular, cross-sectional consumption redistribution is positive for
good j when individuals with high normalized individual weight w® — those relatively favored by the planner
— see their consumption shares increase; M RSY captures potentially different marginal consumption values.
The aggregate terms capture redistribution gains due to changes in aggregates, for given allocation shares. In
particular, aggregate consumption redistribution is positive for good j when aggregate consumption increases
and individuals with high w’ consume a relatively larger share of the good. The logic is parallel for factor
supply redistribution. The cross-sectional terms parallel exchange efficiency since they are driven by changes
in consumption or factor supply shares given aggregates, while the aggregate terms parallel production
efficiency since they are driven by changes in aggregates consumption and factor supply.

E Additional Results

E.1 Dynamic Stochastic Environment

Here we consider a general dynamic stochastic economy in which individuals have preferences of the form

= zt: (ﬂi)t Z;Wt (s7) <{Ct] (St)}jej ’ {nifﬁs (St)}fef;8t> 7

and in which the production structure introduced in Section 2 repeats history by history. Figure OA-1
illustrates the results
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For any welfarist planner with social welfare function W (Vl, v vl ) we can express % as

AW OWdV oW L
A~ L QVidg A qvit N

where A’ is an individual normalizing factor that allows us to express individual welfare assessments into a
common unit/numeraire. We can therefore write

AW ddvg ) dd\/; Z Wi Vi Cdv? Vi av'’t
= = E w2 I(Cov wh 40| = 40 4 Cov> |w', -40
do ZZ at - At I - A’L + Y : 2\ + ) |
—_— 2 N, e’ K3 3
T ] —_— ————
=E —=RD

T which implies that % > wh=1.

We can express individual i’s lifetime welfare gains in units of the lifetime welfare numeraire as

i vt i 1|)\ z\)\
dV ‘/\: da Z)\zz Al )th Zwtzwt (8)7

where w? =
7 Z

where A" and A! (s!) are normalizing factors to express welfare gains at particular dates or histories across

individuals in a common unit. In this case, w! = i—i and w! (s!) = M\w, where
. Bui(st) . Buz(st) )
avi™ (st) oy def! () | N~ “on” dnil* (st)
o - Ai(st) df )\ﬁ (st) g
i dc o dni® (st
=> MRS/ v MRS (st T_222
Z e (1) Z RS do
J
oui(s") o)
.. ] " ]
where MRS}, (s') = % and MRS/, (s) = — Sy

Note that the efficiency component can be decomposed into aggregate efficiency, risk-sharing, and
intertemporal-sharing components:

av’t dV” wi (st) PATAL (s?)
=E _ o _ t t t
= i X zt:wt%:wt (s)z; +Zwt2wt ) Cov;” o) b
SAE =RS
Y o |4
e P T

=1S

where 247 = 3" w; 37wy (1) EAF (st), with

dvi\/\ t dct d ifis (ot
=07 (s') = Zitda(s) = Z;MRS;{C( ") ct ZZMRS‘f fy S22 d9( )

( J
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Hence, it follows that
de] (")
de

dny® (s*)
dg ’

B ij o/t 1J (ot X .
S MRS, (st) L dés) Cov? [MRSt”C( t),cb(cde(s)}c{(st)+AMRS§,C (")

if,s if,s
Z MRS (s dntdie() Cov? [MRS’f (s, d"de()] nf* (") + AMRS{,, (s")

so from this stage onwards it is possible to follow the steps in the proof of Theorems 1 and 2.

E.2 Planning Problem

The Lagrangian of the planning problem can be expressed as

L=w (V... vi. .. v

— £ i€ if.d _ f if.d _ if,s _ 7l
>4 (z e e D) B3 PO I
f J i (
WIS 3 SNS 3 SIS 3 ST
i g i f j ¢ Jj f
where V7 is defined in (1). Hence, the first-order conditions can be derived from a perturbation of the form

aL = ZZ( i —(3 —I—H >dcm _,_ZZ( ng Q{_’_H:‘lﬁs) dnifs
+ZZ ( Y 9pil Ce 5]{%@> gj]€+zz ( i o7 C£+f€¥;f’d> dnjﬁgl7

1
" . Au’

where we take good j' as numeraire, which allows us to substitute o for o’ 8‘9“ =¢ =a = < 2’;5 ) ,
Y

and where we define MW PJ¢ = Cé g(’;( and MW P/ = Cé B?L%d. Formally, the Kuhn-Tucker conditions are

i) K¥c =0= ((:J MRS?) ¢ = 0, with generically one of the two terms > 0;

=

iii

i)
ii) &i*nif* =0= (¢ + MRS}) n'/>* =0, with generically one of the two terms > 0;
i) wifeit =0= ((é — MWP%Z) 27 = 0, with generically one of the two terms > 0;

)

iv) kifdnifd =0 = (Cf — MWPJf) n?fd = 0, with generically one of the two terms > 0.

By adding up the consumption optimality conditions for all individuals for good j :

¢ —MRSY)c? =0= Y MRSYc” — (1Y =Y MRSYcY =(id.

If ¢/ > 0 (as long as one agent is consuming the good, so good j is final):

Z MRS”

Z X/ MRS = AMRS.
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If ¢/ = 0, we must have (Z > MRS, for all i, which means that CZ > max; {MRS?}. By adding up the
intermediate good optimality conditions for all uses j of good ¢:

STO(MWP =)ot =0=Y MWPI 2t — 0> 27t =Y MWP a2t = (lat.
J J J J

If 2° > 0 (as long as one good j uses good ¢ as input, so good / is intermediate):

=> MWPﬂ

J

Z XMW Pt = AMW P,

If 2 = 0, we must have ¢} > MWPJ*, for all j, which means that ¢§ > max; {MWPJ*}. Combining
consumption and intermediate good optimality:

> MRSF +> " MW Pt = ¢y,

J

so if y* > 0, it must be that ¢; = AMRS{O, + 2, () ggj,z €%, which can be written in matrix form as

¢,=AMRS .$,¥, where ¥, =(I;—G,¢)"

Similarly, for factors, if n/** > 0 (as long as one agent is supplying factor f ):

n'ls ij if,s ij
L= X MRS = Yot ansy = v
1 K3

If n/* = 0, we must have ({ < MRS¥, for all i, which means that ¢ < max; {MRS¥}. If n/54 > 0 (as
long as factor f is used to produce a good j):

jf.d .
¢ => MwPPZ " =3 MWP il = AMW P

J J

If n//¢ = 0, we must have ¢ > Y2, MW PJ/xj5?, for all j, which means that ¢} > max; {MWP}/}.
If n/* > 0 and nf¢ > 0 : AMWP/ = AMRS]. If nf* = 0, it must be that ¢/ < MRS, or
¢f < min; {MRSY}. If n/? = 0, it must be that MWPI/ < (I, or max; {MWPI'} < (/. Hence,
for n/* = 0 = n*4, we must have that max; {MWPJI/} < min; {MRS}/}. Finally, for 7 = 0 to be
optimal, it must be that ¢/ = % = 0 on the use side and z7¢ = n?f¥ = 0 on the input side. This condition

can be written as

ou’ aG! o oG8\ o
max{mlax{acij},méax{f(w}}<@<mln{m1n{(anﬁd> Q}:},meln{(axﬂ> Cﬁ}}

E.3 Propagation Matrices

Intermediate Inverse Matrix. Following similar steps as in the Proof of Lemma 2, we can express
changes in intermediate input use as follows. Using both equations in (OA3), we can instead solve for 4 96 as

de  dg dn’ L
a0~ an? +5<Gd9+G a0 T an +G9>’

follows
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so we can define a JL x JL propagation matrix in the space of intermediate links ¥ :

dz de dn®  dy® 1
— = v — — h v, = (I — . A
40 x <d9y + € (Gn 4o o + G9 , where T ( JL éGw) (O 9)
Propagation
Impulse

Propagation in the space of goods and the space of intermediate links is connected. In particular, Woodbury’s
identity implies that
lI’z = IJL + E\I’me

and it is also the case that
‘les = €qu,

connecting propagation in the space of goods and the space of intermediate links. Leveraging (OA9), it is
possible to solve for changes in consumption as

de dy d=z dx dn? dx
W a0 G TG Ty
de¢ dn?

Proportional Goods Inverse Matrix. While the goods inverse is expressed in levels, at times, it

dy

70> it follows

may be useful to work with proportional propagation matrix. Starting from the definition of
that

dy ., dE o dnt
aA—1 A—1 ~ A—1 A 1G ~ 1G
~ _ d€ _ dn? _
— A1 A1 A—1
y<y Gx—d6y+y Gn—de + Yy G9>,
where
v, =4 ',

In the competitive case, ¥, = g (py — (I, + 7.)P&) ' p and v, = (py — (I, + 7.)P&) " PP, where we
define a JL x JL matrix of prices as p = p ® I;, where 7, is a J x JL matrix analogous to 7, but with
the same ordering as the J x JL matrix [, given by

o

I, =

o O =
O = O
= o O
o O =
o = O
= o O
o O =
o = O
(@)

JxJL
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and where we define an alternative JL x J matrix of intermediates uses &, given by

z 0 0
21 0
23t 0 0
0 22 0
T = 0 222 0
0 2% 0
0 0 13
0 0 23
0 0 33

JLxJ

Regularity Conditions for Goods Inverse Matrix. In order to provide conditions under which
the inversion step to define the goods inverse is valid, we can appeal to the Perron-Frobenius theory of
non-negative matrices. If production functions have constant returns to scale, then by the homogeneous
function theorem, we have that

oG7 . oGy . 0log GJ Olog G7
Jis 7k Jf.d 1=
Y - dzik " 7 nifd" - Z 0log xik Z Olognifd’

This implies that the matrix (here represented for J = 2 case)

dlogG!  HlogG!
~—1 ~ dlog x1! dlog x12
Yy Gasgy - dlog G? dlog G? ’

dlog x21 dlog x22

features rows whose sum can be written as
Z 8 log Gj
0log xik

Hence, this result implies that the spectral radius (maximum of the absolute value of eigenvalues) of 9 'GLEY
is less than 1, so the Neumann series lemma concludes that the proportional goods inverse is well defined
(Meyer, 2023). It is possible to derive bounds of convergence, so that the sectors with lowest and highest
intermediate shares drive the speed of convergence. Convergence of the proportional goods inverse is sufficient
for convergence of the the goods inverse. Hence, the goods inverse exists in economies with constant or
decreasing returns to scale.

E.4 Welfare Accounting vs. Growth Accounting

Here we discuss the relation between welfare accounting, as developed in this paper, and the well-established
approach of growth accounting. Growth accounting measures the contribution of different inputs to final
output (i.e. aggregate consumption), indirectly computing technological growth as a residual. Instead,
welfare accounting attributes aggregate welfare gains to different sources, which brings it closer to the
“beyond GDP” literature (Fleurbaey, 2009, Jones and Klenow, 2016, Basu et al. (2022)). See Nordhaus and
Tobin (1973) for an earlier account of these ideas.

Heuristically, the welfare accounting decomposition can be expressed as

Welfare = Exchange Efficiency + Final Output — Factor Supply Cost +Redistribution,

Production Efficiency
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where the goal is to compute welfare changes by computing or measuring all right-hand side elements.
Instead, growth accounting abstracts from exchange efficiency, factor supply costs, and redistribution, and
exploits a relation of the form

Final Output = Intermediate Inputs + Factors + Technology, (OA10)

where the goal is to measure both final output (left-hand side) and the intermediate input and factor
components (part of the right-hand side) to back out the technology component. These are distinct exercises
which are nonetheless related. For instance, when I = 1, exchange efficiency and redistribution are zero,
and when factors are not supplied by individuals, the welfare cost of factor supply is also zero. In that case,
welfare and final output are identical.

Moreover, when directly measuring the components of the welfare accounting decomposition, growth
accounting can be used to measure technology growth. Through the lens of the welfare accounting
decomposition, the adequate counterpart of the growth accounting relation in (OA10), solving for the
technology change component, is

de do, dn?
MSV,Gy :AMRSC@f(AMWPffAMRSC) 20 nyWPnW, (OA11)
| S —
Technology Change Final Output Intermediate Input Use Factor Use

where AM RSC% becomes the welfare-relevant change in final output, which is a welfare-analog of GDP.
Equation (OA11) is stated exclusively in terms of preferences and technologies. Additional assumptions
about market structure would make it possible to conduct a growth accounting exercise by measuring all
right-hand side components of (OA11), a task we leave for future work.
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F Minimal Welfare Accounting Economy: Special Cases

Applying Theorems 1 and 2 to simple economies is helpful to illustrate the economic forces that underlie each
of the components of the decomposition. Figure OA-2 summarizes the minimal welfare accounting economy,
which is the simplest economy in which each component of the welfare accounting decomposition can take
non-zero values. We present here seven special cases of this economy in which particular components of the
welfare accounting decomposition are non-zero. Table OA-1 summarizes these special cases. For simplicity
we assume that good endowments are zero.

F.1 Minimal Welfare Accounting Economy

The minimal welfare accounting economy features two individuals, two goods, and single factor in elastic
supply: I =2, J =2, and F = 1. Individual preferences take the form V! = u! (¢!, ¢*?, n'**) and VZ =
u? (', ¢*?,n*1*) and technologies are given by y' = G* (2!, 2'2,n'14;0) and y* = G? (2%, %2, n?14;0).
Finally, resource constraints are simply given by y! = ¢! 4 ¢?! + 2! + 22! and 3% = ¢'2 + ¢?2 4+ 2!2 4 222
and n'Ls 4 n2bs 4 plls 4 p2hs = plhd L p21d Tp this economy, all of the components of efficiency can be

non-zero, as we illustrate in a series of special cases.™

F.2 Vertical Economy

This minimal vertical economy is a special case of the minimal welfare accounting economy. In this economy,
there is a single individual who consumes a final good produced using an intermediate good, which is in turn
produced by a single factor in fixed supply, so I =1, J = 2, and F = 1. This is the simplest economy that
illustrates the role played by pure intermediate goods. In this economy, individual preferences are given by
V1t =u' (c'), technologies by y' = G* (2'?;6) and y* = G* (n?";0), and resource constraints by y' = c'!,
y? = 2'2, and n"* = n?L4. By construction, all allocative efficiency components of the welfare accounting
decomposition are zero, so this economy exclusively features technology and endowment change components.

Aggregate and production efficiency are given by

Gt G? oG dn'*
E 1 26" 1
vy 89+MSV 89+MSV Iaitd gg

=
—

==BF - MmS8

where MSV,] = MRS}' and MSV} = M RScl,lgflz. In this economy, an efficient allocation must satisfy
MRS >0 and MRS1 25, > 0.

c Oz

F.3 Robinson Crusoe Economy

One-producer one-consumer economies (i.e., Robinson Crusoe economies) are the simplest to study
production - see Section 15.C of Mas-Colell et al. (1995). In these economies, a single individual consumes
a single good and elastically supplies a single factor of production. A single production technology uses the
supplied factor to produce the good, so I = 1, J = 1, and F = 1. Formally, preferences, technology,

and resource constraints are respectively given by V! = u! (c”,nn’s), y! = Gt (n“’d;ﬁ), y' = el
and n'h* = n'H?  This economy exclusively features aggregate factor efficiency and technology change
components.

14 At times, it is necessary to have J = 3 goods to represent some phenomena in production networks. For instance,
three goods are necessary to have a pure intermediate good being used to produce another pure intermediate good.
This is a relevant case in which classical efficiency conditions do not apply, as illustrated in examples 1 and 2.
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Figure OA-2: Minimal Welfare Accounting Economy

Note: This figure illustrates the minimal economy in which all components of the welfare accounting decomposition
can take non-zero values. We summarize special cases of this economy in Table OA-1 and study them in Appendix

F.
Exchange Efficiency Production Efficiency
Cross-Sectional Aggregate
Cross-Sectional | Cross-Sectional Cross-Sectional Aggregate
Intermediate Intermediate
Consumption Factor Supply Factor Use Factor
Input Input
Efficiency Efficiency Efficiency Efficiency
Efficiency Efficiency
Vertical X X X X X X
Robinson X X X X X v
Crusoe
Horizontal X X X X v X
Roundabout X X X v X X
Diversified X X v X X
Intermediate
Multiple X v X X X v
Factor
Suppliers
Edgeworth v X X X X X
Box

Table OA-1: Summary of Minimal Welfare Accounting Special Cases

Note: This table illustrates the components of the welfare accounting decomposition that can be non-zero in special
cases of the minimal welfare accounting economy introduced in Figure OA-2. All economies are formally defined in

Appendix F.
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(a) Minimal Vertical (b) Robinson Crusoe

ZEll
oLl nild
i=1 @ f=1
(¢) Minimal Horizontal (d) Minimal Roundabout
nll,s

n21,s

(f) Minimal Multiple Factor Suppliers

(g) Edgeworth Box (h) Edgeworth Box (alternative)

Figure OA-3: Minimal Welfare Accounting Economy: Special Cases
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The production efficiency decomposition takes the form

oGH dnt'* oGH
EE,P _ M Vl - M 11 M 1Y~
SVy Guira ~ MBS, | =g+ M5V, 5

AMW P} AMRS),

where the marginal social value of good 1 is given by M SVy1 = MRS!. In this economy, an efficient

allocation must satisfy M SV;% = MRS}

F.4 Horizontal Economy

This minimal horizontal economy is the simplest to illustrate the role played by the possibility of reallocating
factors across different uses. This economy generalizes to many well-known frameworks, including Heckscher-
Ohlin, Armington (1969), and Hsieh and Klenow (2009). In this economy, a single individual consumes two
different goods that can be produced using the same factor, which we assume to be in fixed supply, so I =1,
J =2, and F = 1. Formally, preferences, technology, and resource constraints are given by V! = ! (011, 012),
y' =G (n'h40), v = G (n?%0), yt = ', y? = ¢'?, and 2 = n'H? 4 p?h4. This economy exclusively
features cross-sectional factor use efficiency and technology and endowment change components
The production efficiency decomposition takes the form

S OGT dyibd OG! 0G? dnlts
=EP _ b j n 1,d 1 2 1
= (Covj MSVyianjl,d7 20 n +MSVy 0 +MSVy 0 +AMWPn—d9 ,
~—_———
MWw Pt

where AMW P} = xAb M SV} 26 42V 9MSV2 267 and where M SV} = MRS} and MSV,? = MRS}

onil.d n Yy 9n2Ld>

. In this economy, an efficient allocation must satisfy M SVylaaTGid =MS V;%.

F.5 Minimal Roundabout Economy

Roundabout economies have been used to illustrate the impact of intermediate goods on production—see e.g.,
Jones (2011). The minimal roundabout economy is the simplest economy in which aggregate intermediate
input efficiency can exist. In this economy a single individual consumes a single mixed good, which is at the
same time final and intermediate to itself, so I = 1, J = 1, and F' = 1. Formally, preferences, technology,
and resource constraints are given by V! = u! (cu), yl =Gt (1’11, nthd; 9), yt =ct 2t and b = nthd,
This economy only features aggregate intermediate input efficiency, and technology and endowment change
components.

The production efficiency decomposition takes the following form

oGt dol OG! dn'®
—E,P 1 11 z, 1 1 1
=290 = | MSV, — MRS MSV — + AMWP
vl e | g Yt T nTde
AN AMRS}
where AMWP! = M SVl% and MSV! = %. In this economy, an efficient allocation must
n Y On Y 1—g1t a9G

8z 1L

satisfy MSV,} = MSV,} 9% = MRS}

ozl —
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F.6 Diversified Intermediate

This minimal diversified intermediate economy is the simplest economy in which cross-sectional intermediate
input efficiency can exist. In this economy, a single individual consumes a final good, which is exclusively
produced by a pure intermediate that can be also used for roundabout production. This pure intermediate is
produced using a single factor in fixed supply, so I =1, J = 2, and F' = 1. Formally, preferences, technology,
and resource constraints are given by V' = u! (¢!, y* = G (2'%6), y? = G? (2?2, n21%0), y' = M,
y? =2 4+ 212 + 222, and n"* = n?b?. This economy features cross-sectional intermediate input efficiency,
aggregate intermediate input efficiency, and technology and endowment change components.

The production efficiency decomposition takes the form

OGI  dxI2 8G1 G2\ dp?
—E,P __ = n 2 12 1 22 2 z, 2
= =Couv; MSVJa 2 a0 | ® +( MSV, Y B 5 T Xo MSV; Y 9 22) 70
MW P32 AMW P2
oGH , 0G? 0G? \ dn'*®
MSV— + M MSV? —_
+ M8V, o + MSVy =0 + <Sv8m> =
N——
AMW P}
oGl +12
where MSV,} = MRSI' and MSV? = MRS 225
Bx22

F.7 Two Factor Supplier Economy

This minimal two factor supplier economy (we could also call it Robinson Crusoe and Friday economy)
is the simplest economy in which cross-sectional factor supply efficiency can exist. In this economy, we
assume that two individuals have identical linear preferences for consumption of a single produced good,
which we use as numeraire. This eliminates potential gains from cross-sectional consumption efficiency, since
MRSY = MRS?' = 1. We also assume that there is a single production technology that uses a single factor
that can be supplied either of the two individuals, with in principle different disutility, so I = 2, J = 1,
and F = 1. Formally, preferences, technology, and resource constraints are given by V! = ¢! + u! (nn’s)7
V2 =M+ u? (n?F), yt = G (' 0), ¢t = M + P and n'tt 4 n?® = p3bd. This economy features
cross-sectional factor supply efficiency, aggregate factor efficiency, and technology change components.
The exchange efficiency decomposition takes the form

d il,s
EFX = _Covy {MRSZl fl@ ] nbs.
The production efficiency decomposition takes the form
OG! dnl® OG! dnb
2P = | MSV,) 1= — (xn"*MRS)! + X2 MRS} +MSV,— + AMWP,
v g~ L X )| o T T
MW PL AMRS},

where AMW P! = MS Vy1 8‘21% where the marginal social value of good 1 is

MSV,) = x;' MRS + x2' MRS} =
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F.8 Edgeworth Box Economy

Pure exchange economies (i.e., Edgeworth Box economies) are the simplest to study most phenomena in
general equilibrium and welfare economics. In this economy, two individuals consume two different goods,
which appear as endowments. It is possible to formalize endowments by assuming that there is a single factor
in fixed supply and that factor uses are predetermined, so I = 2, J = 2, and F' = 1. Formally, preferences,
technologies, and resource constraints are respectively given by V! = u' (c!!,c'?), V2 = u? (¢*!,¢??),
Yl =Gt (nn,d;e)7 y? = G? (n21,d;9)’ gt =t y? = 12 4 2 and AlS =

features cross-sectional consumption efficiency, and technology and endowment change components, where

nthd 4 n124 This economy

the last two can be interpreted as changes in endowments. Alternatively, we could simply model endowments
of the goods.
The exchange efficiency component takes the form

i i2
EPX = Cov? {MRS?, d;(GC } ¢! + Cov? {MRS?, dgg ] .

The production efficiency component takes the form

OG! 0G? dnt-* dn?*
=P - MV 4 MSV2 4+ AMWP!— + AMW P? .
SVyao-i- SVyao-i- Wnd0+ W”d6

where the marginal social value of goods is

(&

MSV, = (x!' MRS +x2' MRS?'  x2MRS}? +x?*MRS?) .
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G Applications

G.1 Armington (1969) Model

Model Solution. First, note that country profits are given by 77 = (pj AT — wT) ndi* where we already

impose that 5 = f. Hence, profit maximization requires that p/ = % Without loss of generality, we
normalize p' = 1, so w! = A!. We also assume that 7% =0 and 7% = 79% = 1.

Hence, exploiting Walras’ law, an equilibrium of the model can be expressed as the solution to the system

ctt 1 i d 2t 14+7\°
—_ = =— and — =
12 P21+7) 22 2

Al _ 11 +021 and A2 _ 012 +022
p2A2 — +p2622

for {cll, c'?, 2t 2, pQ}. If instead we had assumed that countries have endowments of goods, then their
budget constraints take the form

ij(1+Ti] zg_pz zs+ZT1j
J

which is equivalent to the formulation in the text when A* = 4»°. Hence, our parameterization implies that
country 2’s good is 50 times more abundant than country 1’s.

Welfare Accounting Decomposition. Country i’s welfare gains induced by a perturbation take the
form

avir Az 8 V> deid
_ T c 7,] ’Lj
el D) - § MRS § ' MRS

ij i dc” _ pr 4 dc do?
where MRSY = ¥ /)\ , = ¢+ xP 4 and 4= = 0.

We can therefore eXpresses the normahzed Welfare gain as

dW)\ dW . L. dXU .
=N Wi ST MRS X
dr 7 Zz g“;‘f A Z Z dr

Z(Coviz {MRS” ! } Jdo+ Z(Cov {w MRS =< ! } do,
- dr

Cross-Sectional Consumption Efficiency  Cross-Sectional Consumption Redistribution

i OW
where W' = +<<2%%-. We choose aggregate world consumption as welfare numeraire, which implies that

PR

A= j ng ¢?. Similar results obtain if we choose unit world consumption, which implies that A\* = Y j gl/,; .
Even though country 2’s consumption is substantially higher than country 1 in the absence of tariffs, as shown

in the middle plots in Figure OA-4, the linear homogeneity of the preferences imply that gyn = gyzi and
oV, _ 9v2 Hence, to ensure that the planner attaches a higher weight to the country that consumes less

6012 8022
-
(country 1), we use a social welfare function of the form W (V?!,V?) = 3. (V?) @ , which implies that
i A(Vvi)Te o=l
w' = (1) ° . This is equivalent to expressing country preferences as V' =Y y (c”) 7 and assuming

LS Nvi)TE

a utilitarian social welfare function. The bottom two plots in Figure OA-4 illustrate the equilibrium values
of w® and N°.

OA-30



G.2 DMP Model

Model Solution. We consider the standard search equilibrium definition (Pissarides, 2000), whose
notation we mostly follow. Job-filling and job-finding rates, respectively denoted by qo (6p) and po (6o),
are given by

1 1
qo (0o) = 7( 2}0 ) =pby® and po(6o) = Ooqo (6o) = 4( 01 *) = pby .
0,n

The value of an occupied job, denoted by Jy, is given by
Jo=22—wo+B[1—¢)Ji +¢Vi] and J; = 2% —w,
where w,; denotes the wage. The value of a vacant job is given by
Vo=—ko+ Bq (00) J1 + (1 —q:(6;)) V1] and V5 =0.

At an equilibrium with free-entry, Vo = 0, so

Ko

Bqo (00)

The value of employed and unemployed workers, respectively denoted by E; and Uy, are given by

J = and  Jy =22 —wo + (1 — )

0 (6o)

Ey =wo + BeUr + (1 — ) E4] and FE; =w;
Uo=bo + B[p: (0¢) E1 + (1 —p (0;)) Ur] and Uy = by.

The wage is determined by Nash bargaining, with
w; = arg max (B —U)" (J; — V,g)l_77 .
The solution to this problem is
Ey—U=n(E—-U+Ji=V) and Ji=Vi=(1—n)(E —U+J = V).

Given our parametrization, we have that U; = V; = 0, which means that w; = E; = n(E; + J1) = n2% and
that J; = (1 —n) 22

Hence, the condition
2 Ko

~ Bao (60)

pins down equilibrium tightness 6. Given 6y and x{ ,,, we can compute equilibrium vacancies, which is

(1-m)z

sufficient to compute the welfare accounting decomposition. Figure OA-5 illustrates how an improvement in
the matching technology translates in higher vacancies posted at date 0, which in turn translates into lower
unemployment at date 1.

Welfare Accounting. The welfare gain of a marginal change in x can be written as

aw - dCO dCl
W dp Jrﬂcl,u
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Using unit perpetual consumption as lifetime welfare numeraire, we can express the normalized welfare gain
as

AW, e de
du A Odp T
where A = 1 + 8 and where wy = o5 and wy = Note that

dco dy(% dy(% doz.0 1 2
= 9o, ( + =) = —— (% + ¥
W dp (40 + o)

d dxen
where dy = 2J ﬁ; which allows us to write

dW)\ : dle n d¢r,0 1 2
i 1w12j:¢1,czjﬁ — Wo dp (Z‘/OJFyO)
dxi , dds.0
= wiCo} [MWP,,, =t | — wo =g (46 + i) :

Cross-Sectional Factor Use Efficiency Aggregate Intermediate Input Efficiency

where marginal welfare products are given by M WPlj)n = ¢1.027.

G.3 Hsieh and Klenow (2009) Model

Welfare Accounting. Since the solution of the model is completely standard, we exclusively describe
here how to characterize the welfare accounting decomposition. We consider a perturbation in o, which is
associated with a welfare change given by

dW  du dct
do, 9ctdo,’
Using good 1 as numeraire, A = 6017 SO
dw> y Z an ZMW dXJ ¢ Cov® | P dxd?
ov; ) ,
do, ayJ do, J " do,
Cross-Sectional Factor Use Efficiency
1
. J €
where the marginal welfare product of factor use x7:¢ is MW PJ = gy] A7 and where g?J = (z—l) .

G.4 New Keynesian Model

This Appendix presents additional model details in G.4.1, competitive equilibrium in G.4.2, a self-contained
quantitative calibration in G.4.3, and additional numerical results in G.4.4.
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G.4.1 Additional Model Details
Households. Household preferences (36) give rise to the usual CES demand functions

I\ y o
c (;;Z) ¢ and it = (Z) c.
Under homothetic CES consumption preferences, each household ¢ faces an ideal price index

T—nc

P = Z Fij (pj)l—nc
J

Production. The production function (37) features three nests of CES aggregates. Taking as given prices
and wages, firms choose inputs to minimize cost

1
y / . ! . e pn .
Cj[ — min / pN x]ZM df/ + E Wznjlz7
0 -
4 i

{2} ppr, {nd*i}

subject to the CES production structure in (37). This problem gives rise to labor demand

. , , N\ T i y i
nJé:(AJ)"l(l—ﬁj)(W ) ylt and n]h:I‘jwl(W) nt

mcl Wit

and intermediate input demand
) ) fpIEN\TT . ) O\ T - N
m]@ _ (Aj)n—l,l?_] ( Py ) yjé , .TJ“ _ FJZZ (p/> x]f and x]@@é _ (pg> .’BJM.
macl s p

Nominal marginal cost is given by

1
=

[y ) )]

which is symmetric across firms £ in sector j. Marginal cost is not affected by the revenue tax, which is the
only wedge in this application. Finally, the cost indices are given by

wi= | Srgery )T = | S|

14 L

Since production functions are homogeneous of degree one, total cost is given by C’* = meiyit,
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Sectoral Aggregation. Firms set prices according to (38). Aggregating to the sectoral level, the price
of sector j ’s good is

j N 7 o € 1 N Lo =
= JeyL—e¢ — J —7\1—€;
J </O(p ) d£> [/0 (Gj—].l—ijc> d€—|—/5j(p7) dé}

1

Lﬁ( €l 1 .mcj)lej (1 _6j)(pj)1_€j:| o

e —11—79

_ 7 1 ,[5j(mcj)16j+(1—5j)(mcj)lE]}l_d,

e —11—717

where the very first equality follows since

R Lot _ R ==
p’c :/ ptetde :/ it () Al = p = </ (pjz)lfE d€> .
0 0 p’ 0

Aggregating the goods market clearing condition, we have
Py = / plhytde ="y " p / plévtde+ / / ptattitde ar,
0 p 0 7 Jo Jo

where fol p?tyitdl denotes total nominal expenditures on sectoral good j. This also implies a resource
constraint at the sectoral level, given by y/ = > p'c? + %", fol 29 d¢. All this relies on our assumption that
all agents buying in sector j share the same homothetic demand aggregators over varieties £. In particular,
it implies that we also have

) il —e . . 1 L gjei
yJZ = (ZZJ) y? and Yy = (/ (yﬂ) e.fld£> l.
0

Fiscal Rebates. In the absence of fiscal policy, the rebate T that household i receives simply corresponds

to total corporate profits plus the proceeds from the revenue tax. That is,
> T = Z/ 7de + Z/ ripltyltdl = Z/ (p"" —mc) ytde
Z 770 7 Jo 7 Jo
Assuming a uniform rebate, we simply have 7" = j fo (p-7 — mc7) yItde.

G.4.2 Equilibrium
Definition. (Competitive Equilibrium). Taking as given an initial price distribution {ﬁjz }j ,» & realization
of technology shocks {Aj}j, revenue taxes {Tj}j, and monetary policy M, a competitive equilibrium

comprises an allocation {ciﬂ ,nt, x”“l, yﬂ} and prices {pjé, W’} e such that (i) households optimize

i,Ge00 @
consumption and labor supply, (ii) firms ¢ € [O, (V) in sector j reset their prices optimally, and (iii) markets

for goods and factors clear
Yt = Z,ulc”e + Z/ zItqe and wn' = Z/ n?tde.
i ¢ 70 j /0

Notice that each sector features two representative firms ex post since all firms are symmetric ex ante
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and those firms that reset prices all choose the same reset price. At the sector level, there is consequently a
representative price-adjusting firm and a representative fixed-price firm.

Computing competitive equilibrium requires an initial price distribution { ;57[}]. ,- We assume that initial
prices are given by

7R ¢l ; B ,767j 1 ( {%[} {71}>
P 7p]76j_11_7-jm0]76j_11_7_jmcj L\p o’ w )

That is, p’ corresponds to the price firms in sector j would set if all technologies remain at their default

level A7 = AJ. This initialization is heuristically consistent with the zero-inflation steady state of a dynamic
New Keynesian model. In the absence of technology shocks, therefore, no firm faces an incentive to adjust
prices. If A7 # A7 a fraction 67 of firms in each sector reset their price.

Numeraire. We take as our numeraire total nominal expenditures in the absence of shocks, i.e.,
M = > j piy? = 1. Therefore, M = 1 provides a benchmark stance for monetary policy. In the absence of
technology shocks, setting M = M = 1 implies production efficiency and therefore efficiency since all firms
are symmetric.

Macro Block. To compute this model, it is particularly convenient to characterize a macro block by
aggregating to the sectoral level. To that end, we aggregate several key equilibrium conditions. The aggregate
labor market clearing condition (aggregated to the level of household type) is

o L Lo\ e
,ulnl:Z/O njhdﬂzz:/o r{;<Wj> nitde
J J
LW T . CWINTT
- i =11 — 9 - Jjt
3 i) @rta-m(os) [yt
SWE\ T CWINTT
= T8 AN (1 =99 =) Diy
3 i) @rta-on(ns) o

—d

where D7 = fol 7?:;) dl is a measure of sectoral price dispersion. Aggregating the goods market clearing

condition yields

je i gl pj o Y ﬂ o 1A2 n—1¢ i - e qp
y—Zchrpj prg O() ) ytar

¢

And plugging in for CES demand functions implies
j é‘pjinxe 1,96 Pl 777@13
v=wes nre() T (T v

i ¢ z

yielding sectoral goods market clearing conditions written as a fixed point in 77.
Finally, the budget constraint can be written as

Pict = Win' + Z(p] — Dimd )y
J

Computationally, it is now easiest to solve the macro block as a separate system of equations. Firm-level
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allocations can then be obtained from CES demand functions.

G.4.3 Calibration

Our calibration broadly follows Schaab and Tan (2023) and is summarized in Table OA-2. It is based on
66 production sectors and 10 household types, which we associate with deciles of the household income
distribution.

For household preferences, we set the coefficient of relative risk aversion to v = 2 and the inverse Frisch
elasticity to ¢ = 2. We use an elasticity of substitution of 1. = 1, so the consumption aggregator is Cobb-
Douglas, and we calibrate the consumption weights I'%/ to match consumption expenditure shares across
household types in the CEX.

Parameters Value / Target Source

Household preferences
~y Relative risk aversion 2 Classical Efficiency
%) Inverse Frisch elasticity 2 Classical Efficiency
Ne Elasticity of substitution across goods 1 Cobb-Douglas

'y CES consumption weights Consumption expenditure shares CEX
Production and nominal rigidities
n Elasticity of substitution across inputs and labor 1

¥/ CES input bundle weight

Cobb-Douglas
Sectoral input share BEA

ne  Elasticity of substitution across inputs 1 Cobb-Douglas
nw  Elasticity of substitution across factors 1 Cobb-Douglas
'Y  CES input use weights Input-output network BEA 1I-O

'Yy CES factor use weights Payroll shares ACS

€’ Elasticities of substitution across varieties Sectoral markups Baqaee and Farhi (2020)

57 Sectoral price adjustment probabilities Price adjustment frequencies Pasten et al. (2017)

Table OA-2: List of Calibrated Parameters

On the production side, we set the elasticity of substitution between the labor and intermediate input
bundles to n = 1. Therefore, ¥ and 1 — ¥ correspond respectively to the input and labor shares in
production, which we obtain from the BEA GDP-by-Industry data. We compute the input share ¥/ as input
expenditures relative to gross output, averaged between 1997 and 2015, and treat the labor share as its
complement. We set the elasticities of substitution across intermediate inputs and factors to 7, = n, = 1.
We calibrate I' and T'%J to match data on input-output linkages and payroll shares. For the former, we
use data from the BEA Input Output “Use” Table to compute input shares as a sector j’s expenditures on
goods from sector ¢ as a share of j’s total expenditures on inputs, averaged between 1997 and 2015. We
obtain payroll shares from a linked ACS-IO dataset as type i ’s earnings from sector j as a share of total
earnings, averaged between 1997 and 2015. We use data from Bagaee and Farhi (2020) on sectoral markups
to calibrate the elasticity of substitution across sectoral varieties ¢/. Sectoral markups are computed as
Mj = 63‘611 . ‘

Finally, we use data from Pasten et al. (2017) on price adjustment frequencies to calibrate ¢7. They

estimate monthly price adjustment frequencies using the data underlying the Bureau of Labor Statistics’
Producer Price Index for 754 industries from 2005 to 2011. First, we link these estimates to the 66 sectors

1— monthly adjustment frequency
100

Finally, we bin these estimates into quintiles. This allows us to solve our model assuming that each of the

in our data. Second, we obtain quarterly adjustment probabilities as 1 — (

66 sectors consists of 5 firms.
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G.4.4 Additional Results

In this subsection, we present additional numerical results that are referenced in the main text.

Divine Coincidence. Consider an alternative calibration where households and sectors are symmetric,
so there exist a representative household and a representative sector. Our model then collapses to the
standard, one-sector New Keynesian model, albeit with roundabout production. Divine Coincidence holds
in this model. That is, the optimal monetary policy response to an aggregate technology shock closes both
output and inflation gaps. Figure OA-6 illustrates this benchmark from the perspective of our welfare
accounting decomposition. In that context, Divine Coincidence implies that each allocative efficiency
component is 0, indicating that optimal policy can attain an efficient allocation. Moreover, since households
are symmetric, there is no scope for redistribution gains, so welfare and efficiency coincide.

Importance of Markup Distortions. Figure 4 in the main text corresponds to a calibration of
the model that assumes revenue taxes are available to eliminate initial markups. We reproduce our main
experiment in Figure OA-7 below, assuming that revenue taxes are not available.

It is well known from the New Keynesian literature that monopolistic competition implies inefficiently low
steady state employment. In that context, optimal monetary policy under discretion, which is heuristically
comparable to the static optimization problem we consider, seeks to raise employment via expansionary
monetary policy. We revisit this result from the perspective of our welfare accounting decomposition.
Figure OA-7 demonstrates that, in the presence of initial markup distortions, aggregate factor and input
use efficiency considerations push optimal monetary policy towards a more expansionary stance. In the
one-sector New Keynesian model (without roundabout production), aggregate factor efficiency corresponds
to the standard labor wedge. In this multi-sector variant, aggregate factor and input use efficiency formally
capture that aggregate employment and aggregate activity are inefficiently low.

Cross-sectional factor use and intermediate input efficiency, on the other hand, push monetary policy
towards a relatively more contractionary stance. Optimal policy therefore trades off the gains from
stimulating aggregate activity in the presence of markup distortions against the cost of creating misallocation
in the form of price dispersion, captured by cross-sectional factor use and intermediate input efficiency.
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Figure OA-4: Armington Model
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Figure OA-6: Optimal Monetary Policy under Divine Coincidence
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