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1 Introduction

There is large heterogeneity in households’ exposure to business cycle fluctuations. At the same

time, there is now a growing consensus that monetary policy has distributional consequences—a

view supported by mounting empirical evidence (Doepke and Schneider, 2006; Coibion et al.,

2017; Ampudia et al., 2018) and the burgeoning heterogeneous-agent New Keynesian (HANK)

literature (McKay et al., 2016; Kaplan et al., 2018; Auclert, 2019; Auclert et al., 2018). Household

heterogeneity may therefore be an important determinant of the welfare impact of monetary policy

and should inform the study of optimal policy design. However, accounting for rich heterogeneity

and incomplete markets in dynamic optimal policy problems remains challenging.

In this paper, we characterize optimal monetary policy in a canonical one-asset HANK econ-

omy with wage rigidity, which represents a minimal departure from the representative-agent New

Keynesian (RANK) model. Our goal is to systematically revisit the canonical New Keynesian

consensus on optimal monetary policy (Clarida et al., 1999; Woodford, 2003; Galí, 2015). To do so,

we structure our analysis of optimal monetary policy to parallel that of Clarida et al. (1999), starting

with policy under discretion in Section 3 and studying optimal policy under commitment in Section

4. Concluding with a quantitative analysis in Section 5, we compute optimal monetary policy both

non-linearly and using sequence-space perturbation methods (Boppart et al., 2018; Auclert et al.,

2021), which we extend to Ramsey problems and welfare analysis.

Optimal monetary policy under discretion. Under discretion, a utilitarian planner in a HANK

economy has an incentive to raise output above natural output and overheat the economy, even in

the absence of markup distortions. This occurs because the planner values redistribution toward

indebted, high marginal utility households via lower interest rates. At the optimum, the planner

trades off this novel redistribution motive against aggregate stabilization. However, when agents

anticipate the planner’s incentives to lower interest rates, inflationary bias in the sense of Barro

and Gordon (1983) emerges in equilibrium. Quantitatively, the redistribution motive dominates

the standard markup distortion as a source of inflationary bias. The gains from commitment are

consequently larger in heterogeneous-agent economies.

Optimal monetary policy with commitment. Motivated by the results under discretion, we study

optimal policy under commitment in three steps. Each step isolates an important dimension of

optimal monetary policy design: long-run policy, time consistency, and stabilization policy. We

study the implications of household heterogeneity for optimal monetary policy along each of these

dimensions.

In the first step, after introducing the standard Ramsey problem and characterizing the

associated Ramsey plan, we study optimal long-run policy. We show that the optimal stationary
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equilibrium under commitment features zero inflation, eliminating the inflationary bias of policy

under discretion in the long run. This result is due to the fact that inflation and the nominal

interest rate affect households’ financial income symmetrically, which can be seen as a relevant

benchmark. Therefore, since the long-run real interest rate is invariant to policy, but inflation is

costly while adjusting the nominal rate is not, the planner finds it optimal to keep inflation at zero

in the stationary Ramsey plan.

In the second step, we show that while the standard Ramsey problem eliminates inflationary

bias in the long run, it still suffers from inflationary bias in the short run. This is a due to a “time-0

problem” (Kydland and Prescott, 1980) associated with two dimensions of time inconsistency. The

first source of time inconsistency is the forward-looking Phillips curve, through which inflation

expectations enter the Ramsey problem. This time consistency problem has been widely studied in

RANK economies by the literature following Barro and Gordon (1983). In the presence of household

heterogeneity, a new second time consistency problem emerges because forward-looking individual

Bellman equations appear as constraints in the Ramsey problem.

While the standard Ramsey planner chooses policy with commitment from time 0 onwards,

time inconsistency still manifests at time 0. In order to find a “timeless” planning solution, we ex-

tend the approach of Marcet and Marimon (2019) to our setting (i.e., continuous-time heterogeneous-

agent economies) by introducing timeless penalties for each forward-looking implementability

condition. We then define a timeless Ramsey problem, which augments the standard Ramsey

problem with such timeless penalties, and prove that it no longer suffers from a time-0 problem:

the planner has no incentive to deviate from the stationary Ramsey plan in the absence of shocks.

Hence, the timeless Ramsey problem eliminates inflationary bias in both the short and the long run.

We analytically characterize the two timeless penalties required by the timeless Ramsey

problem: an inflation penalty and a distributional penalty. We first show that the inflation penalty,

which is already present in RANK economies, depends on novel distributional considerations

in HANK. When households are heterogeneous, changes in aggregate economic activity have

distributional consequences. The standard Ramsey planner’s incentive to generate inflation out

of steady state at time 0, which the inflation penalty is designed to counteract, is consequently

also governed by distributional considerations. Second, we show that the new distributional

penalty penalizes the welfare gains of indebted, high marginal utility households. While it may

seem counterintuitive that a utilitarian planner penalizes high marginal utility households, this

is precisely to counteract the planner’s time inconsistent incentive to redistribute towards such

households, which becomes a source of inflationary bias under discretion. Finally, we show that

the distributional penalty solves a novel promise-keeping Kolmogorov forward equation.

Concluding our discussion of time consistency, we explore whether a central bank that sets

policy under discretion can still implement the optimal commitment solution under an appropriate
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institutional arrangement or with the appropriate penalties or targets. We first show that the

timeless Ramsey plan can be implemented under discretion if the planner’s objective is augmented

to incorporate the appropriate time-varying inflation and distributional penalties. Moreover, a

strict zero-inflation target implements the timeless Ramsey plan in the absence of shocks, while a

modified flexible inflation target around zero inflation can implement optimal stabilization policy

under commitment.

In the third and final step, we study optimal stabilization policy under the timeless Ramsey

problem, which allows us to separate the pure stabilization motive from the time-0 problem. We

characterize an analytical targeting rule for optimal stabilization policy in response to demand,

supply, and cost-push shocks, and use it to illustrate the departures from optimal policy in RANK,

which it nests. In a RANK economy, no tradeoff emerges between inflation and output in the

absence of cost-push shocks; the planner finds it optimal to simultaneously close both the inflation

and output gaps. In HANK economies, on the other hand, this Divine Coincidence result generi-

cally fails even in the absence of cost-push shocks. The planner now accounts for the distributional

impact of policies and perceives a tradeoff between aggregate stabilization and distributional con-

siderations. That is, even in the absence of cost-push shocks and with the appropriate employment

subsidy, the planner finds it optimal not to simultaneously close the inflation and output gaps in

response to shocks.

Quantitative analysis in sequence space. This paper extends the sequence-space approach (Bop-

part et al., 2018; Auclert et al., 2021) to Ramsey problems and welfare analysis. We develop a general

sequence-space representation of (timeless) Ramsey plans that builds on Auclert et al. (2021)’s

sequence-space representation of competitive equilibrium in heterogeneous-agent economies. Un-

der this representation, a Ramsey plan is a system of equations that take as inputs the time paths of

aggregate allocations and prices, aggregate multipliers, policies, and shocks.

While our approach allows us to characterize and compute timeless Ramsey plans non-linearly,

an important contribution of this paper is to bring sequence-space perturbation methods to bear on

optimal policy questions in heterogeneous-agent economies. We extend the fake-news algorithm of

Auclert et al. (2021) to compute optimal policy and show that our timeless Ramsey approach is

critical for the validity of sequence-space perturbations.

We show how to leverage both the primal and dual forms of the timeless Ramsey problem.1

In the primal representation, we compute an extended set of sequence-space Jacobians and solve

for the time paths of the multipliers that comprise a Ramsey plan. In the dual representation, we

1 Throughout the paper, we say that a planning problem is in primal form when allocations or prices are explicit
control variables for a planner, perhaps in addition to policy instruments. We say that a planning problem is in dual
form when the only explicit control variables are the policy instruments. This terminology is consistent with standard
use in related environments, e.g., Chari and Kehoe (1999) and Ljungqvist and Sargent (2018).
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avoid having to compute the time paths of multipliers. However, approximating optimal policy in

the dual is no longer possible in terms of sequence-space Jacobians and instead requires a second-

order analysis. To that end, we introduce sequence-space Hessians as the natural, second-order

generalization of sequence-space Jacobians.

Leveraging these methodological results, we conclude with a quantitative analysis of optimal

monetary stabilization policy. Our approach allows us to compute transition dynamics under

optimal policy—under discretion and with commitment—both non-linearly and to first order. We

contrast optimal policy dynamics in HANK and RANK in response to demand shocks (Section 5.2),

and productivity and cost-push shocks (Appendix F).

Related literature. Our paper contributes to multiple strands of the literature on optimal mone-

tary policy, in particular recent work on optimal policy in HANK economies. Our continuous-time

approach is most closely related to the work of Nuño and Thomas (2020), on which we build.2,3

Nuño and Thomas (2020) study optimal monetary policy under commitment in a small open econ-

omy, in which short-term real interest rates and output are unaffected by policy.4 Our paper studies

optimal monetary policy in a closed economy that features the classic output-inflation tradeoff,

which is central to the New Keynesian literature. Farhi and Werning (2016) study optimal monetary

and macroprudential policies in a general heterogeneous-agent environment, highlighting the

importance of labor wedges for optimal policies in the presence of nominal rigidities. Bhandari

et al. (2021) introduce a small-noise expansion method to compute optimal monetary and fiscal

policy in a HANK model with aggregate risk. Acharya et al. (2020) study optimal monetary policy

in closed form in a HANK economy with constant absolute risk aversion (CARA) preferences

and normally distributed shocks. Le Grand et al. (2021) study optimal monetary and fiscal policy

keeping heterogeneity finite-dimensional by truncating idiosyncratic histories. González et al.

(2021) characterize optimal monetary policy with heterogeneous firms. McKay and Wolf (2022)

study optimal monetary policy with heterogeneous households in linear-quadratic environments.5

Smirnov (2022) computes optimal monetary policy using a variational approach.

Our contribution relative to this body of work is fivefold. First, we provide the first analysis

2 Nuño and Moll (2018) solve constrained-efficiency problems treating the cross-sectional distribution as a control.
3 As emphasized by Werning (2011), continuous time Ramsey problems in New Keynesian economies are particularly

tractable.
4 Formally, the open economy setup in Nuño and Thomas (2020) immediately implies that both the Lagrange

multipliers of the households’ HJB equation and their optimality condition—which correspond to φt(a, z) and χt(a, z) in
our paper, see equation (29)—are zero by construction. Hence, in their model, the planner would make the same savings
decisions as households. Characterizing and computing these multipliers is a novel contribution of our paper.

5 Several other papers study optimal monetary policy in environments with heterogeneity, typically relying on a
second-order approximation to aggregate welfare. In particular, in two-agent New Keynesian environments, Bilbiie
(2008, 2018) study optimal monetary policy without and with idiosyncratic risk, respectively; Cúrdia and Woodford
(2016) study optimal monetary policy in a model with credit frictions; and Benigno et al. (2020) study optimal monetary
policy at the zero lower bound.
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of optimal policy under discretion in HANK economies, which shows that a utilitarian planner

trades off aggregate stabilization against a novel redistribution motive. This redistribution mo-

tive is a new source of time inconsistency and exacerbates inflationary bias. Second, we jointly

characterize three important dimensions of optimal monetary policy design: long-run policy, time

consistency, and stabilization policy. Third, we introduce and analytically characterize the timeless

penalties that resolve the time-0 problem of the standard Ramsey problem. A planner under

discretion can implement the timeless Ramsey policy when confronted with the appropriate penal-

ties. Relative to RANK, time consistent policy requires a novel distributional penalty. Fourth, the

analytical targeting rules we derive for optimal monetary stabilization policy allow us to contrast

policy prescriptions in HANK and RANK, which they nest as a special case. Finally, we extend

the sequence-space approach to Ramsey problems, which allows us to compute optimal policy

efficiently and fast.

We relate our results to the vast literature on monetary policy in RANK models and provide

analytical insights into the departures of optimal policy from the RANK benchmark (Clarida

et al., 1999; Woodford, 2003; Galí, 2015). At an abstract level, our approach is closest to Khan et al.

(2003), who initially characterize standard and augmented (timeless) Ramsey plans and then use

perturbation methods to characterize stabilization policy. Schmitt-Grohé and Uribe (2010) and

Woodford (2010) systematically study and review optimal long-run policy and optimal stabilization

policy in RANK economies. Our goal is to systematically revisit the canonical New Keynesian

consensus on optimal monetary policy in the presence of household heterogeneity.

We formalize Woodford (1999)’s timeless perspective in our heterogeneous-agent setting by in-

troducing a timeless penalty that resolves the standard Ramsey planner’s time-0 problem (Kydland

and Prescott, 1980).6 Our characterization of the timeless penalty builds on the recursive multiplier

approach of Marcet and Marimon (2019), which we extend to continuous-time heterogeneous-agent

economies. Relative to RANK, we show that a time consistent implementation of monetary pol-

icy requires a novel distributional penalty and an inflation penalty augmented by distributional

considerations. One contribution of our paper is to show that the distributional penalty solves a

promise-keeping Kolmogorov forward equation.

Finally, we extend the sequence-space apparatus to Ramsey problems and welfare analysis,

contributing to recent work on computational methods in heterogeneous-agent environments

(Boppart et al., 2018; Auclert et al., 2021). We develop a sequence-space representation of timeless

Ramsey plans, which we can compute non-linearly and using sequence-space perturbation methods.

In particular, we extend the fake-news algorithm of Auclert et al. (2021) to compute Ramsey

problems in both primal and dual forms. We also introduce and define sequence-space Hessians as

the natural, second-order generalization of sequence-space Jacobians.

6 See Woodford (2003, 2010) and Benigno and Woodford (2012) for expositions of the timeless perspective.
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2 Model

Our baseline model is a one-asset heterogeneous-agent New Keynesian (HANK) model with wage

rigidity (Auclert et al., 2018). It represents a minimal departure from a representative-agent New

Keynesian (RANK) model (Clarida et al., 1999; Woodford, 2003; Galí, 2015).

Time is continuous and indexed by t ∈ [0, ∞). There is no aggregate uncertainty and we focus

on one-time, unanticipated shocks. Following much of the New Keynesian literature, we allow for

demand, productivity, and cost-push shocks.

2.1 Households

The economy is populated by a unit mass of households whose lifetime utility is

V0(·) = max E0

∫ ∞

0
e−
∫ t

0 ρsds Ut(ct, nt)dt, (1)

where Ut denotes the instantaneous utility flow from consumption ct and labor nt. Households

discount at a potentially time-varying rate ρt, which represents a source of demand shocks. They

can trade a single bond at and face a budget constraint

ȧt = rtat + ztwtnt + Tt(zt)− ct, (2)

where rt is the real interest rate and wt the real wage rate. Beside financial and labor income,

households may receive a lump-sum transfer Tt(zt) from the government, which will be zero in

equilibrium, as described below. Finally, households face the borrowing constraint at ≥ a.

While there is no aggregate uncertainty, households face idiosyncratic earnings risk, captured

by the exogenous Markov process zt. Since we abstract from permanent heterogeneity, we can

index individual households by their idiosyncratic state variables (a, z). We denote the mass of

households in state (a, z) by gt(a, z), which we also refer to as the cross-sectional distribution.

2.2 Labor Market

As is standard in the New Keynesian sticky-wage literatures without heterogeneity (Erceg et al.,

2000; Schmitt-Grohé and Uribe, 2005) and with heterogeneity (Auclert et al., 2018), labor unions

determine work hours.7 While Appendix A.1 details the union problem, we only summarize its

relevant implications to study optimal monetary policy here. Labor is rationed, so all households

supply the same hours,

nt = Nt, (3)

7 It is possible to rederive our results in a model with price rigidity. The assumptions of sticky wages and symmetric
labor rationing make our model more tractable. Moreover, firm profits are zero in equilibrium instead of counter-cyclical.

6



where Nt is aggregate labor. Nominal wages are sticky, and unions pay a quadratic Rotemberg

(1982) adjustment cost to change wages. We assume this cost is passed to households as a utility

cost, so that instantaneous flow utility in equation (1) takes the form

Ut(ct, nt) = u(ct)− v(nt)−
δ

2
(πw

t )
2, (4)

where πw
t denotes wage inflation and the parameter δ ≥ 0 modulates the degree of wage rigidity.

Unions choose wages to maximize stakeholder value—the private lifetime values of house-

holds. We show in Appendix A.1 that the union problem gives rise to the non-linear New Keynesian

wage Phillips curve

π̇w
t = ρtπ

w
t +

εt

δ︸︷︷︸
NKPC slope

∫∫ (
εt − 1

εt

Employment Subsidy︷ ︸︸ ︷
(1 + τL)︸ ︷︷ ︸

Desired
Markup

zu′(ct(a, z)) − v′(nt)

At

)
wtntgt(a, z) da dz, (5)

where εt, the elasticity of substitution across unions, is potentially time-varying and a source of

cost-push shocks. As is standard in the New Keynesian literature, we allow for a time-invariant

employment subsidy τL to potentially offset unions’ market power. This Phillips curve illus-

trates that labor wedges, which will play a key role in our welfare analysis, are key determi-

nants of the dynamics of inflation. Formally, we define individual inflation-relevant labor wedges

as τt(a, z) = ( εt−1
εt

(1 + τL)zu′(ct(a, z))− v′(nt)
At

)wtnt, and refer to zu′(ct(a, z))− v′(nt)
At

as individual

(welfare-relevant) labor wedges.8 This definition allows us to rewrite the Phillips curve as

π̇w
t = ρtπ

w
t +

εt

δ

∫∫
τt(a, z)gt(a, z) da dz, (6)

which highlights that unions target an aggregate inflation-relevant labor wedge of zero.9

8 Note that the inflation-relevant labor wedges are proportional to labor wedges when εt−1
εt

(1 + τL) = 1. In the limit
as wages become flexible, δ→ 0, there are no cost-push shocks, εt = ε, and we allow for the appropriate employment
subsidy, the aggregate inflation- and welfare-relevant labor wedges coincide and are both zero.

9 Equation (6) implies that an increase in the aggregate inflation-relevant labor wedge (on the RHS) leads to an
increase in the rate of change of inflation (on the LHS). Since the Phillips curve is a forward-looking equation with a
terminal condition, an increase in the rate of change of inflation requires a fall in the actual level of inflation. This is
consistent with the interpretation of negative aggregate labor wedges indicating a recession, which generates deflationary
pressure. The aggregate inflation-relevant labor wedge can rise either if individual inflation-relevant labor wedges
τt(a, z) increase or mass gt(a, z) shifts to states with high τt(a, z).
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2.3 Final Good Producer

A representative firm produces the final consumption good using labor,

Yt = AtNt, (7)

where total factor productivity (TFP) At is potentially time-varying and a source of exogenous

productivity shocks. Under perfect competition and flexible prices, profits from production are

zero and the marginal cost of labor is equal to its marginal product, with

wt = At, (8)

so the real wage wt is equal to the marginal rate of transformation (MRT) At.

2.4 Government

The role of fiscal policy is deliberately minimal. There is no government spending and no debt, with

bonds in zero net supply. The fiscal authority pays an employment subsidy τLztwtnt to households

with labor productivity zt. To balance the budget, it raises a lump-sum tax also proportional to

labor productivity as well as aggregate labor income. Households therefore receive a net fiscal

rebate of Tt(zt) = τLztwtnt − τLztwtNt = 0. Our focus is instead on the monetary authority, which

optimally sets the path of nominal interest rates {it}t≥0. This is the only policy instrument of the

planner. A Fisher relation holds, with

rt = it − πt, (9)

where πt is consumer price inflation. Finally, we can relate price inflation to wage inflation by

differentiating equation (8), which yields

πt = πw
t −

Ȧt

At
. (10)

2.5 Equilibrium and Implementability

Definition 1. (Competitive Equilibrium) Given an initial distribution over household bond holdings and

idiosyncratic labor productivities, g0(a, z), and given predetermined sequences of monetary policy {it} and

shocks {At, ρt, εt}, an equilibrium is defined as paths for prices {πw
t , πt, wt, rt}, aggregates {Yt, Nt, Ct, Bt},

individual allocation rules {ct(a, z)}, and the distribution {gt(a, z)} such that households optimize, unions
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optimize, labor is rationed, firms optimize, and markets for goods and bonds clear, that is,

Yt = Ct =
∫∫

ct(a, z) gt(a, z) da dz (11)

0 = Bt =
∫∫

a gt(a, z) da dz. (12)

The Ramsey problems we study in Sections 3 and 4 take a primal approach: the planner chooses

among those competitive equilibria that are implementable by policy. We formally derive these

implementability conditions in Lemma 12 in Appendix A and show there that they comprise five

equations—three at the individual level and two at the aggregate level.

At the individual level, the planner must respect individuals’ consumption-savings decisions.

These are encoded in the household’s standard first-order condition for consumption, which

equates marginal utility of consumption with the private marginal value of wealth,

u′(ct(a, z)) = ∂aVt(a, z). (13)

Because equation (13) features the private lifetime value Vt(a, z), the planner must also respect its

evolution over time. A standard Bellman equation—or Hamilton-Jacobi-Bellman (HJB) equation in

continuous time—relates current lifetime value Vt(a, z) to flow utility and continuation value,

ρtVt(a, z) = u(ct(a, z))− v(Nt)−
δ

2
(πw

t )
2︸ ︷︷ ︸

Flow Utility

+ ∂tVt(a, z) +AtVt(a, z).︸ ︷︷ ︸
Continuation Value

(14)

The continuation value from state (a, z) at time t is Et
[ dVt(a,z)

dt

]
= ∂tVt(a, z) +AtVt(a, z), where

At denotes the infinitesimal generator of the process (at, zt), formally defined in equation (60) in

Appendix A.4.10 Finally, the planner internalizes that a change in policy affects the evolution of

the cross-sectional household distribution, characterized in continuous time by the Kolmogorov

forward (KF) equation

∂tgt(a, z) = A∗t gt(a, z), (15)

where A∗t denotes the adjoint of At.11 The KF equation tracks the movement of households across

individual states (a, z) over time. The relationship between the generator At and its adjoint A∗t
connects the Bellman equation (14) and the KF equation (15): Under a law of large numbers, a

household’s rational expectations over future transitions across states must be consistent with the

actual evolution of the cross-sectional distribution.

10 Using households’ Bellman equations and consumption-savings optimality conditions as implementability condi-
tions instead of consumption Euler equations is critical to derive analytical insights.

11 The adjoint of an operator can be seen as a generalization of the transpose of a matrix.
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At the aggregate level, the implementability conditions comprise the aggregate resource

constraint that combines the goods market clearing condition (11) with the production function (7),

∫∫
ct(a, z) gt(a, z) da dz = AtNt, (16)

as well as the New Keynesian wage Phillips curve (6).

Comparison benchmarks. Our HANK model nests two useful benchmarks. First, we relate

our results to the RANK limit of our model (Appendix E). Second, we define the flexible-wage

benchmark as the limit of our economy as δ → 0, analogous to the flexible-price limit in the

canonical New Keynesian analysis (Appendix A.3). We refer to natural output as the output that

obtains in the flexible-wage limit, denoted Ỹt.

2.6 Sources of Suboptimality

To conclude the description of the model, we discuss its four sources of suboptimality.12

1. First, monopolistic competition drives a wedge between the real wage, which is equal to

the marginal rate of transformation (MRT), At, and households’ average marginal rate of

substitution (MRS) between consumption and labor. The appropriate employment subsidy

may offset this wedge in steady state.

2. Second, nominal wage rigidity implies that the economy’s average MRS can converge only

gradually to the MRT in response to shocks. Moreover, wage adjustment costs represent a

direct deadweight loss (utility cost to households).

3. Third, our model also features labor rationing. In the absence of aggregate shocks and with

the appropriate employment subsidy, an appropriate notion of average MRS is equal to the

MRT in our economy. However, individual MRS are not equalized across households because

all households are required to work the same hours.

4. Finally, and most importantly, there are incomplete markets for risk: Noncontingent bonds

are the only financial asset in this economy and households face a borrowing constraint,

jointly restricting their ability to self-insure against idiosyncratic earnings risk. Both forms

of incompleteness imply that households’ marginal rates of substitution are not equalized

across periods and states.

12 This subsection is meant to parallel Section 4 of Khan et al. (2003) and Chapter 4.2 of Galí (2015), which discuss
sources of suboptimality in RANK economies.
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The first two sources of inefficiency exactly mirror those in the standard New Keynesian model.

Labor rationing and incomplete markets, on the other hand, are unique to the heterogeneous-agent

environment. While labor rationing is not critical for the insights of this paper, and could be

eliminated at the cost of complicating the labor market block, the presence of incomplete markets is

central to our analysis. Due to these two inefficiencies, the flexible-wage allocation is no longer

first-best in a HANK economy even with the appropriate employment subsidy.

3 Optimal Monetary Policy under Discretion

We structure our analysis of optimal monetary policy to parallel that of Clarida et al. (1999),

starting with policy under discretion in Section 3 and studying policy with commitment in Section

4. Throughout the paper, we adopt an equal-weighted utilitarian welfare criterion. While this

assumption is not innocuous, it is a natural starting point—see Dávila and Schaab (2022) for a

systematic study of welfare criteria in general dynamic stochastic environments.13

Ramsey problem with finite commitment horizon. Under discretion, a planner has control over

policy in the present and takes future policy—under the control of a future planner—as well as

agents’ expectations as given. In discrete time, it is straightforward to associate the present with

period t and the future with periods t + 1 and onwards (Clarida et al., 1999). To stay as close as

possible to this notion of policy under discretion in continuous time, we introduce a Ramsey problem

with finite commitment horizon.

Formally, we consider a planner who exercises control (and has commitment) over policy over

some finite time horizon—the analog of the time interval [t, t + 1) in discrete time. At the transition

time, which occurs at the transition rate ψ, the present planner is replaced by another who sets

policy going forward until she herself is again replaced. Planners do not honor promises made by

previous planners. We denote the times at which planners transition by {τn}∞
n=0, with τ0 = 0 the

starting time of the first planner.14

Definition 2. (Ramsey Problem with Finite Commitment Horizon) A Ramsey planner with finite

commitment horizon [0, τ1) chooses allocations, prices, and policy

X = {ct(a, z), Vt(a, z), gt(a, z), Nt, πw
t , it}τ1

t=0

13 In ongoing work, we study optimal monetary policy and central bank mandates under alternative welfare criteria
(Dávila and Schaab, 2023).

14 Formally, our infinitesimal discretion approach merges insights from Marcet and Marimon (2019) with the
continuous-time results of Harris and Laibson (2013). Schaumburg and Tambalotti (2007) study a similar planning
problem with finite commitment horizon in a RANK model in discrete time. See Appendix C for details.
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as well as multipliers

M = {φt(a, z), χt(a, z), λt(a, z), µt, θt}τ1
t=0

to maximize social welfare subject to implementability conditions (6, 13 – 16), taking as given the initial

cross-sectional distribution g0(a, z) as well as future policy. That is,

W0(g0) = min
M

max
X

E0

[
L(0, τ1, g0) + e−

∫ τ1
0 ρsdsWτ1(gτ1)

]
(17)

where the expectation E0 is over the transition time τ1, E0
[
e−
∫ τ1

0 ρsdsWτ1(gτ1)
]

denotes the expected

discounted continuation value, and L(t1, t2, gt1) is the planner’s Lagrangian over the horizon [t1, t2), given

an initial cross-sectional distribution gt1(a, z):

L(t1, t2, gt1) =
∫ t2

t1

e−
∫ t

t1
ρsds

{ ∫∫ {
Ut(a, z) gt(a, z)

+ φt(a, z)
[
− ρtVt(a, z) + Ut(a, z) + ∂tVt(a, z) +AtVt(a, z)

]

+ χt(a, z)
[

u′(ct(a, z))− ∂aVt(a, z)
]

+ λt(a, z)
[
− ∂tgt(a, z) +A∗t gt(a, z)

]}
da dz

+ µt

[ ∫∫
(ct(a, z)− AtzNt)gt(a, z) da dz

]

+ θt

[
− ∂tπ

w
t + ρtπ

w
t +

εt

δ

∫∫
τt(a, z)gt(a, z) da dz

]}
dt, (18)

where Ut(a, z) = u(ct(a, z))− v(Nt)− δ
2 (π

w
t )

2. The operators At and A∗t are defined in Appendix A.4.

In the remainder of the paper, we focus on two limits of this finite-horizon Ramsey problem: First,

as ψ→ 0, planners never transition. In fact, the first planner stays in power forever. The resulting

Ramsey problem is thus simply the standard Ramsey problem with an infinite commitment horizon

as we show in Section 4.1. Second, as ψ→ ∞, planners transition increasingly frequently and their

commitment horizon becomes vanishingly small. This is the limit we associate with policy under

discretion in continuous time.15

15 Formally, for a given ψ, we study the Markov perfect equilibrium of the game played by a sequence of Ramsey
planners with finite commitment horizon. It comprises i) paths for prices, πw

t , aggregates, Nt, individual consumption
allocations and value functions, ct(a, z) and Vt(a, z), as well as cross-sectional distributions, gt(a, z), that satisfy the
competitive equilibrium conditions (6, 13 – 16) given paths for policy, it, and shocks, (At, ρt, εt), as well as an initial
distribution g0(a, z); ii) a path of interest rate policy it; and iii) a sequence of multiplier functions, φt(a, z), χt(a, z),
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The implementability conditions encoded in the Lagrangian (18) include two forward-looking

constraints: the individual Bellman equations and the Phillips curve, respectively associated with

the multipliers φt(a, z) and θt. In Clarida et al. (1999), lack of commitment implies the planner

takes as given next-period inflation expectations. In our continuous-time formulation, the planner

similarly takes as given expectations about inflation and value assignments beyond the current

commitment horizon. Formally, this is encoded in the terminal conditions πτ1 and Vτ1(a, z) that the

planner faces, and which are themselves part of the solution of Markov perfect equilibrium as in

discrete time.16

Optimal monetary policy under discretion: optimality conditions and interpretation. We now

summarize the necessary first-order conditions that characterize optimal monetary policy under

discretion, i.e., in the limit of the finite-horizon Ramsey problem (17) as ψ→ ∞.

Proposition 1. (Policy under Discretion: Optimality Conditions) The necessary first-order conditions

that characterize optimal monetary policy under discretion are given by

ρtλt(a, z) = Ut(a, z) + µt(ct(a, z)− AtzNt) + ∂tλt(a, z) +Atλt(a, z) (19)

0 = u′(ct(a, z))− ∂aλt(a, z) + µt − χ̃t(a, z) (20)

0 =
∫∫

z∂aλt(a, z)gt(a, z) da dz + z ξHTM
t gt(a, z) da dz− µt −

v′(Nt)

At
(21)

0 =
∫∫

a∂aλt(a, z)gt(a, z) da dz + a ξHTM
t gt(a, z) da dz (22)

where

ξHTM
t ≡ u′(ct(a, z))− ∂aλt(a, z) + µt and χ̃t(a, z) ≡ −u′′(ct(a, z))

χt(a, z)
gt(a, z)

.

In the limit as ψ→ ∞, the paths of the multipliers on forward-looking implementability conditions converge

to θt → 0 and φt(a, z)→ 0 for all t and (a, z).

Equations (19) through (22) correspond to the first-order conditions for the cross-sectional distribu-

tion gt(a, z), individual consumption ct(a, z), aggregate activity Nt, and the nominal interest rate it,

λt(a, z), µt, and θt that solve (17). Policy under discretion corresponds to the limit of this equilibrium as ψ → ∞ and
planners have vanishingly small commitment horizons.

16 In this problem, there are two direct linkages between the present finite-horizon Ramsey problem and future policy.
The first is encoded in the continuation valueWτ1 (gτ1 ): the present Ramsey planner internalizes that choosing policy
today affects the evolution of the cross-sectional distribution and, therefore, the initial condition gτ1 (a, z) of the future
planner at the time of transition. Second, taking future policy as given implies that the present planner faces terminal
conditions for each forward-looking constraint. Concretely, the planner takes as given inflation πτ1 and values Vτ1 (a, z)
at the time of transition. This is analogous to the setup in Clarida et al. (1999), where the present planner takes as given
inflation expectations.
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respectively. Judiciously combining these conditions allows us to characterize the properties of

optimal monetary policy under discretion.

To that end, we start by providing an economic interpretation of the three non-zero multipliers

χt(a, z), λ(a, z), and µt. First, the multiplier χt(a, z) corresponds to the social shadow value of

relaxing households’ consumption-savings decisions. When χt(a, z) > (<) 0, the planner perceives

that households in state (a, z) save (consume) too much relative to an environment in which the

planner could perfectly manage consumption-savings decisions. The multiplier χt(a, z) acts as

the shadow penalty that ensures the planner respects private consumption-savings decisions.

Second, the multiplier λt(a, z) corresponds to the social shadow value of increasing the mass of

households in state (a, z). As we show below, this multiplier represents the social lifetime value

of a household in state (a, z). Third, the multiplier µt corresponds to the social shadow value of

increasing aggregate excess demand. When µt > (<) 0, the planner perceives that increasing

(reducing) aggregate demand or reducing (increasing) aggregate supply is socially beneficial.17

After introducing the non-zero multipliers, we interpret the four optimality conditions (19)

through (22). First, equation (19) implies that λt(a, z) defines the social lifetime value of a house-

hold.18 The difference between private lifetime value (14) and social lifetime value under discretion

(19) is given by the term µt(ct(a, z) − AtzNt), which captures the contribution of a household

in state (a, z) to aggregate excess demand. Intuitively, households for whom ct(a, z) > AtzNt

put positive pressure on aggregate excess demand since their contribution to aggregate demand,

ct(a, z), is higher than their contribution to aggregate supply, wtzNt, which is socially desirable

(undesirable) when µt > (<) 0. Equation (19) allows us to characterize the social marginal value of

wealth—a key input for the remaining optimality conditions—as

∂aλt(a, z) = ∂aVt(a, z) +Mt(a, z)µt, (23)

whereMt(a, z) denotes an operator, introduced in Appendix A.4, that acts on the path of multipliers

µt. The difference between the private and the social marginal value of wealth,Mt(a, z)µt, can be

interpreted as the present discounted value of the contribution of future consumption to aggregate

excess demand induced by an increase in the household’s wealth at time t.19

Second, equation (20) has the interpretation of a social consumption-savings optimality con-

17 The interpretation of ξHTM
t is the social marginal value of giving a dollar of (unearned) income to every hand-to-

mouth household, whose mass is gt(a, z). For our proofs, we assume that zt ∈ {z, z} follows a two-state Markov chain,
so only households at the borrowing constraint a and with the low earnings realization z are hand-to-mouth (Achdou
et al., 2022). For the perturbations that feature ξHTM

t , we are holding fixed consumption for all households when, e.g.,
perturbing it, except for the hand-to-mouth households: The planner must respect the borrowing constraint and cannot
freely choose the consumption of households at the borrowing constraint. We therefore consider perturbations where,
only for the hand-to-mouth household, a change in income leads to a change in consumption.

18 The multiplier λt(a, z) takes the form of an HJB equation and can alternatively be written as ρλt = Ut + µt(ct −
wtzNt) + Et

[ dλt
dt
]
, suppressing the dependence on (a, z).

19 Mt(a, z) is positive and bounded between 0 and 1 under mild regularity conditions. See Appendix A.4.
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dition. Like households, the planner trades off the direct benefit of increasing consumption,

u′(ct(a, z)), against the marginal value of having higher future assets from savings, which the

planner values at ∂aλt(a, z). Moreover, increasing consumption increases aggregate excess demand,

which is socially desirable (undesirable) when µt > (<) 0. Since the planner must also respect

private consumption-savings decisions, χ̃t(a, z) > (<) 0 acts as an additional social shadow cost

(benefit) of consumption that ensures that the individual consumption-savings optimality condition

is satisfied.

Third, equation (21) has the interpretation of an aggregate activity condition, and represents

the planner’s valuation of an increase in hours worked by all households, which has three com-

ponents.20 First, household wealth increases in proportion to the effective wage zwt = zAt. The

planner values this effect using the social marginal value of wealth for unconstrained house-

holds, ∂aλt(a, z), and the social marginal value of consumption for constrained households,

∂aλt(a, z) + ξHTM
t (a, z).21 Second, aggregate supply increases by

∫∫
zAtgt(a, z) da dz = At, which

the planner values at the shadow value of aggregate excess demand, µt. Third, the planner ac-

counts for households’ direct disutility from working more,
∫∫

v′(Nt)gt(a, z) da dz = v′(Nt). When

choosing optimal aggregate economic activity, the planner trades off these three forces.

Finally, equation (22) represents the planner’s valuation of an increase in the nominal interest

rate. In this environment, an increase in the interest rate redistributes dollars across households in

proportion to their bond holdings a. The planner values such redistribution in dollars according to

∂aλt(a, z) for unconstrained households and ∂aλt(a, z) + ξHTM
t for constrained households. This

term captures the distributive pecuniary effect of a change in interest rates, which is central to the

determination of optimal monetary policy, as we show next.22

Targeting rule and inflationary bias. Combining the optimality conditions just described allows

us to characterize a targeting rule for optimal monetary policy under discretion in Proposition 2.

This targeting rule illustrates the forces that optimal monetary policy under discretion balances

in our HANK model and facilitates the comparison of our results to the canonical analysis of

monetary policy in RANK, which we show to be nested as a special case by our targeting rule. We

20 Since the planner must respect how the union allocates labor, the planner can only consider perturbations that
change hours worked for all households symmetrically.

21 The social value of increasing the consumption of a household at the borrowing constraint corresponds to

∂aλt(a, z) + ξHTM
t = u′(ct(a, z)) + µt. (24)

Intuitively, the planner internalizes that a marginal change in the wealth of a household at the borrowing constraint leads
to a one-for-one change in consumption, whose social value is given by the sum of the direct utility benefit, u′(ct(a, z)),
and the impact on aggregate excess demand, µt.

22 We use the terminology distributive pecuniary effects as in Dávila and Korinek (2018). That paper shows that
distributive pecuniary effects are characterized by i) changes in net asset positions, here a, and ii) differences in valuation,
here ∂aλt(a, z). As shown in that paper, if the planner valued a dollar across households identically, market clearing
would imply that distributive pecuniary effects are zero, so

∫∫
a∂aλt(a, z)gt(a, z) da dz + a ξHTM

t gt(a, z) da dz = 0.
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present a constructive proof of Proposition 2 in Appendix C.2.

Proposition 2. (Targeting Rule under Discretion) Optimal monetary policy under discretion is charac-

terized by the non-linear targeting rule

∫∫ (
zu′(ct(a, z))− v′(Nt)

At

)
gt(a, z) da dz︸ ︷︷ ︸

Aggregate Labor Wedge

= ΩD
t

∫∫
au′(ct(a, z))gt(a, z) da dz︸ ︷︷ ︸
Distributive Pecuniary Effect

, (25)

where ΩD
t , given by

ΩD
t =

∫∫
z(1−Mt(a, z))gt(a, z) da dz− (1−Mt(a, z)) z gt(a, z)∫∫
a(1−Mt(a, z))gt(a, z) da dz− (1−Mt(a, z)) a gt(a, z)

,

is positive under mild regularity conditions.

This non-linear targeting rule shows that, under discretion, the utilitarian planner trades off

aggregate stabilization against a novel redistribution motive. The LHS of equation (25) is the

aggregate labor wedge and represents the aggregate stabilization motive of the planner, while the

RHS is the distributive pecuniary effect of interest rate changes. Crucially, the marginal utility of

consumption falls with household wealth, so that

∫∫
au′(ct(a, z))gt(a, z) da dz = Covgt(a,z)

(
a, u′(ct(a, z))

)
< 0,

where Covgt(a,z)(a, u′(ct(a, z))) is the cross-sectional covariance between wealth and marginal

utility.23

Therefore, optimal monetary policy under discretion targets a negative aggregate labor wedge,

which is associated with an overheated economy. To illustrate, consider a level of interest rates at

which the aggregate labor wedge is zero and policy attains aggregate stabilization. The negative

RHS of (25) implies that, relative to the policy stance under consideration, the planner finds it

valuable to lower the real interest rate in order to redistribute towards indebted, high marginal

utility households. To lower the real rate, the planner lowers the nominal policy rate, which results

in a negative aggregate labor wedge, i.e., an overheated economy. Proposition 2 thus offers a novel

perspective on optimal monetary policy under discretion in a heterogeneous-agent environment.24

23 While the positive HANK literature has concluded that marginal propensities to consume (MPC) are central for
monetary policy transmission, equation (22) highlights that marginal utilities are instead the key direct determinant
of the targeting rules for optimal monetary policy. This is the case under discretion, but also with commitment—see
Section 4.

24 In the RANK limit of our economy, the planner’s motive to redistribute via distributive pecuniary interest rate
effects vanishes. Formally, the RHS of equation (25) goes to 0 in that limit and, as a result, optimal monetary policy
under discretion focuses solely on aggregate stabilization, targeting an aggregate labor wedge of 0.
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When assuming isoelastic (CRRA) preferences, with u(c) = 1
1−γ c1−γ and v(n) = 1

1+η n1+η , the

targeting rule under discretion takes the form

Yt = Ỹt ×
(

εt

εt − 1
1

1 + τL

) 1
γ+η

︸ ︷︷ ︸
Desired Markup: ≥ 1

×
(

1−ΩD
t

∫∫
au′(ct(a, z))gt(a, z) da dz∫∫
zu′(ct(a, z))gt(a, z) da dz

) 1
γ+η

︸ ︷︷ ︸
Desired Redistribution: > 1

(26)

where Ỹt denotes natural output as defined in equation (59). While this output gap targeting rule is

more closely connected to the canonical results on optimal monetary policy in RANK, equations

(25) and (26) have the same content.

Equation (26) shows that, under discretion, monetary policy targets output to be equal to

natural output, i.e., to close the output gap, up to two wedges. The first wedge is the familiar one

deriving from monopolistic competition and unions’ desired markups, due to which employment

may be inefficiently low. Whenever the employment subsidy τL is not sufficiently large, this wedge

is positive, motivating the planner to raise output above potential to raise employment.

In HANK, a second redistribution wedge emerges, since marginal utility of consumption falls

with wealth, i.e., Covgt(a,z)(a, u′(ct(a, z))) < 0. This wedge is therefore strictly positive, encouraging

the utilitarian planner under discretion to overheat the economy even further.

An important conclusion of the canonical monetary policy analysis in RANK is that there are

no gains from commitment when the planner sets the correct steady state employment subsidy

and there are no cost-push shocks. Indeed, in the RANK limit of our economy, ΩD
t → 0 and the

redistribution wedge vanishes. And when εt
εt−1

1
1+τL = 1, equation (26) collapses to Yt = Ỹt: In

that case, in RANK, monetary policy under discretion closes the output gap, which also closes

the inflation gap and Divine Coincidence obtains even without commitment. In HANK, this is no

longer the case as a planner under discretion always has an incentive to overheat the economy due

to distributional considerations.

In equilibrium, agents anticipate the planner’s incentive to raise output above natural out-

put, rendering the planner’s attempt to stimulate the economy futile. Instead, inflation ensues.

Proposition 3 shows that a Markov perfect stationary equilibrium features inflationary bias, now

exacerbated by the novel redistribution motive.

Proposition 3. (Inflationary Bias) The Markov perfect stationary equilibrium with optimal monetary

policy under discretion features inflationary bias, given by

πw
ss =

ε

δ
AssNss

[ (
1− ε− 1

ε
(1 + τL)

)
Λss︸ ︷︷ ︸

Markup: ≥ 0

− ΩD
ss Covgss(a,z)

(
a, u′(css(a, z))

)
︸ ︷︷ ︸

Redistribution: < 0

]
. (27)
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Consistent with our discussion of targeting rules under discretion, inflationary bias emerges

from two sources: inefficiently low employment due to markups, as in the RANK limit, and

redistribution. Quantitatively, the contribution of the novel redistribution motive is over 4 times

larger than that of markups in our calibration exercise—see Figure 1 in Section 4.3.

Our stylized model features a single distributive pecuniary effect associated with adjusting

interest rates. In richer models, optimal policy would account for all pecuniary effects and infla-

tionary bias would be determined by the covariance between marginal utility and the aggregate of

those effects. While our approach and the logic behind our results apply more generally, the exact

quantitative conclusions—including whether policy under discretion features an inflationary or

deflationary bias—may not.

Practical implications of optimal monetary policy under discretion. Summing up, our analysis

of optimal monetary policy under discretion yields three main takeaways. First, a utilitarian

planner has an incentive to run an overheated economy. This occurs because the planner values

redistribution toward indebted, high marginal utility households via lower interest rates. The

planner trades off this novel redistribution motive against aggregate stabilization. Second, the

economy features inflationary bias in the sense of Barro and Gordon (1983). The standard motive

to stimulate the economy due to markups is exacerbated by a novel desire to redistribute towards

indebted households. When agents anticipate these incentives in equilibrium, both result in ele-

vated inflation. Quantitatively, the redistribution motive is the dominant source of inflationary bias.

Third, the markup-correcting employment subsidy, ε−1
ε (1 + τL) = 1, that eliminates inflationary

bias in RANK is no longer sufficient to address inflationary bias in HANK.25

4 Optimal Monetary with Policy with Commitment

We have shown in Section 3 that the desire to redistribute exacerbates inflationary bias when a

utilitarian planner sets optimal policy under discretion. In this section, we characterize optimal

monetary policy under commitment. We proceed in three steps.

First, in Section 4.1, we introduce the standard Ramsey problem and characterize the associated

Ramsey plan and stationary Ramsey plan. In particular, we show in Section 4.2 that the optimal

stationary equilibrium under commitment features zero inflation, eliminating the inflationary bias

of policy under discretion in the long run.

Second, in Section 4.3, we show that while the full-commitment standard Ramsey problem

eliminates inflationary bias in the long run, it still suffers from inflationary bias in the short run.

This is due to a “time-0 problem” (Kydland and Prescott, 1980) associated with two dimensions

25 In principle, it is possible to set a sufficiently large employment subsidy τL so that inflationary bias is zero.
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of time inconsistency. In order to find a “timeless” planning solution, we extend the approach of

Marcet and Marimon (2019) to our setting (i.e., continuous-time heterogeneous-agent economies)

by introducing timeless penalties for each forward-looking implementability condition. We then

define a timeless Ramsey problem, which augments the standard Ramsey problem with the timeless

penalties, and prove that it no longer suffers from a time-0 problem—there is no incentive to deviate

from the stationary Ramsey plan in the absence of shocks. Hence, the timeless Ramsey problem

resolves inflationary bias in both the short run and the long run. In Sections 4.4 and 4.5, we study

the determinants of the timeless penalty and contrast implementations of optimal policy based on

penalties and targets.

Finally, in Section 4.6, we characterize optimal stabilization policy under the timeless Ramsey

problem, which allows us to separate the pure stabilization motive from the time-0 problem.

Each of these three steps isolates one important dimension of optimal monetary policy design.

First, characterizing the stationary Ramsey plan allows us to solve for optimal long-run policy, with

which the planner addresses distortions in a stationary equilibrium. Second, characterizing the

timeless Ramsey plan and the timeless penalties that support it allows us to isolate the planner’s

incentives to deviate from the stationary Ramsey plan in the short run due to the time-0 problem.

Finally, by characterizing optimal stabilization policy with the appropriate timeless penalties, we

isolate the planner’s pure stabilization motive, no longer confounded by long-run distortions and

time inconsistency considerations.

4.1 Standard Ramsey Problem and Ramsey Plan

The standard Ramsey problem corresponds to the limit of problem (17) as ψ → 0, i.e., as the

commitment horizon becomes infinite. We state the full problem in Appendix B.1 for convenience.

Definition 3. (Standard Primal Ramsey Problem / Ramsey Plan)

a) The standard primal Ramsey problem solves

min
{φt(a,z), χt(a,z), λt(a,z), µt, θt}

max
{ct(a,z), Vt(a,z), gt(a,z), Nt, πw

t , it}
LSP(g0) (28)

where LSP(g0) denotes the standard primal Lagrangian, given an initial distribution of bond holdings

and idiosyncratic labor productivity g0(a, z):

LSP(g0) = lim
T→∞

L(0, T, g0). (29)

b) A Ramsey plan corresponds to the solution of this problem and comprises i) paths for prices, πw
t ,

aggregates, Nt, individual consumption allocations and value functions, ct(a, z) and Vt(a, z), and
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the cross-sectional distribution, gt(a, z), that satisfy the implementability conditions given paths for

interest rates, it, and shocks, (At, ρt, εt), as well as an initial distribution, g0(a, z); ii) a path of interest

rate policy it; and iii) paths for the multiplier functions, φt(a, z), χt(a, z), λt(a, z), µt, and θt that

solve (28).

Proposition 4 summarizes the optimality conditions that characterize the standard Ramsey plan.

Our derivation relies on a variational approach, formally developed in Appendix B.26

Proposition 4. (Standard Primal Ramsey Problem: Optimality Conditions) The optimality condi-

tions for the standard primal Ramsey problem are given by

∂tφt(a, z) = −A∗t φt(a, z) + ∂aχt(a, z) (30)

ρtλt(a, z) = Ut(a, z) + µt(ct(a, z)− AtzNt) + θt
εt

δ
τt(a, z) + ∂tλt(a, z) +Atλt(a, z) (31)

0 = u′(ct(a, z))− ∂aλt(a, z) + µt + θt
εt

δ

dτt(a, z)
dct(a, z)

− χ̃t(a, z) (32)

0 =
∫∫

z∂aλt(a, z)gt(a, z) da dz + zξHTM
t gt(a, z) da dz− µt −

v′(Nt)

At
(33)

+
∫∫

φt(a, z)
(

zu′(ct(a, z))− v′(Nt)

At

)
da dz + θt

εt

δ

∫∫ 1
At

dτt(a, z)
dNt

gt(a, z) da dz

θ̇t = δπw
t

(
1 +

∫∫
φt(a, z) da dz

)
(34)

0 =
∫∫ (

a∂aλt(a, z)gt(a, z) + aφt(a, z)∂aVt(a, z)
)

da dz + aξHTM
t gt(a, z)da dz (35)

where

ξHTM
t = u′(ct(a, z))− ∂aλt(a, z) + µt + θt

εt

δ

dτt(a, z)
dct(a, z)

and χ̃t(a, z) = −u′′(ct(a, z))
χt(a, z)
gt(a, z)

as well as a set of initial conditions for the multipliers on forward-looking implementability conditions

0 = θ0 (36)

0 = φ0(a, z). (37)

The optimality conditions (30) – (32) hold everywhere in the interior of the idiosyncratic state space. For a

formal treatment of boundary conditions, see Appendices B.2 through B.4

26 In Appendix B.1, we first present a heuristic derivation of Proposition 4 in continuous time for the interior of the
idiosyncratic state space. A formal treatment of boundary conditions follows in Appendices B.2 through B.4.
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Equations (30) through (34) respectively correspond to the optimality conditions for i) the value

function, ii) the cross-sectional distribution, iii) consumption, iv) aggregate labor, and v) wage

inflation. Equation (35) corresponds to the optimality condition for the nominal interest rate.

The optimality conditions for the standard Ramsey problem (Proposition 4) can be seen as

an augmented version of the optimality conditions for policy under discretion (Proposition 1). In

particular, the multipliers χt(a, z), λt(a, z), and µt, as well as ξHTM
t , have the same interpretation

as in the discretion case—see pages 13 and 14. With commitment, the planner can counteract

inflationary bias in the long run by making promises. These promises are encoded in the multipliers

on the two forward-looking implementability conditions: θt for the Phillips curve and φt(a, z) for

households’ Bellman equations. Under discretion, these multipliers vanish. In fact, equations

(31), (32), (33), and (35) correspond exactly to the optimality conditions (19) – (22) for policy under

discretion when θt = 0 and φt(a, z) = 0.

The multiplier associated with the Phillips curve, θt, has the interpretation of a penalty (reward)

associated with increasing inflation when θt > (<) 0. Hence, we refer to θt as an inflation penalty.27

Any perturbation that increases (decreases) the aggregate inflation-relevant labor wedge leads

to deflationary (inflationary) pressure through the Phillips curve (see footnote 9). Changes in

this labor wedge at date t are thus valued both directly and indirectly due to their effect on past

inflation. The inflation penalty θt encodes the cumulative valuation of these resulting changes

in past inflation. It thus appears in all perturbations that affect the aggregate inflation-relevant

labor wedge: (i) The equation for social lifetime value (31) considers an increase in the mass of

households in state (a, z). If the individual inflation-relevant labor wedge is positive (negative) for

these states, τt(a, z) > (<) 0, this perturbation puts negative (positive) pressure on inflation. (ii)

In the social consumption-savings optimality condition (32), increasing consumption generates

inflationary pressure since it reduces individual inflation-relevant labor wedges, dτt(a,z)
dct(a,z) < 0. Finally

(iii) in the aggregate activity condition (33), increasing hours worked also generates inflationary

pressure by reducing individual inflation-relevant labor wedges, dτt(a,z)
dNt

< 0.28

The multipliers associated with households’ Bellman equation, φt(a, z), have the interpretation

of a penalty (reward) associated with an increase in lifetime utility when φt(a, z) < (>) 0. Hence, we

27 As the multiplier on a forward-looking equation, θt encodes the impact on the Lagrangian (welfare) at time 0
from a change in inflation at time t. This is analogous to multipliers on backward-looking equations; for example, the
multiplier on the capital accumulation equation in the neoclassical growth model encodes the present discounted value
of a change in the capital stock. A change in inflation at time t affects inflation at all prior dates s ∈ [0, t) through
the forward-looking Phillips curve. These changes in inflation appear in the time-0 Lagrangian and are valued by the
planner. If the planner were to reoptimize at time t, she would disregard these effects on past inflation. The inflation
penalty θt encodes the associated welfare impact so that, if the planner reoptimizes at time t when confronted with
θt, she will behave consistently with time-0 optimization. In summary, θt captures the cumulative, backward-looking
impact on time-0 welfare resulting from a change in inflation at time t, appropriately discounted to period t.

28 The inflation penalty θt also appears in the definition of ξHTM
t , the social valuation of increasing wealth for

households in state (a, z). As in the social consumption-savings condition, shifting wealth towards and thus increasing
the consumption of hand-to-mouth households leads to inflationary pressure by lowering the aggregate inflation-relevant
labor wedge.
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refer to φt(a, z) as distributional penalties.29 The distributional penalties appear in all perturbations

that affect date-t lifetime values: (i) In the aggregate activity condition (33), increasing hours worked

leads to a change in all households’ flow utility that is captured by the individual labor wedges,

zu′(ct(a, z))− v′(Nt)
At

. (ii) And in the optimality condition for interest rates (35), the distributive

pecuniary effect of a rate increase changes a household’s utility by a∂aVt(a, z).

Relative to the optimality conditions for policy under discretion, Proposition 4 also features

two new equations, (30) and (34). These define the laws of motion for φt(a, z) and θt. Equation (30)

is central to this paper. It takes the form of a Kolmogorov forward equation augmented to account

for births and deaths. This equation shows that the evolution of the distribution of distributional

penalties φt(a, z) must be consistent with the evolution of households across idiosyncratic states,

via A∗. It also accounts for births of penalties, captured by the term ∂aχt(a, z), as we explain in

Section 4.4.

The optimality condition for inflation (34), which defines the law of motion for θt, simplifies to

θ̇t = δπw
t (38)

whenever the distributional penalties add up to zero,
∫∫

φt(a, z) da dz = 0. We have proven that this

is the case at a stationary Ramsey plan (defined below) and strongly conjecture that this condition

holds at all times, which we have verified numerically.

4.2 Optimal Long-Run Policy

We start unpacking the implications of Proposition 4 by characterizing the optimal long-run policy

under commitment. To that end, we define a stationary Ramsey plan, towards which a Ramsey

plan may converge when all shocks converge as t→ ∞.

Definition 4. (Stationary Ramsey Plan) A stationary Ramsey plan, with (At, ρt, εt) = (Ass, ρss, εss)

constant, is given by (i) an inflation rate, πw
ss, aggregate hours, Nss, stationary individual consumption

allocations and value functions, css(a, z) and Vss(a, z), and a stationary cross-sectional distribution, gss(a, z);

(ii) a stationary Ramsey policy, iss; and (iii) a set of stationary multipliers, φss(a, z), λss(a, z), χss(a, z),

µss, and θss, such that the optimality conditions and the implementability conditions for a Ramsey plan are

satisfied.

What are the implications of household heterogeneity for optimal long-run inflation? When policy

29 Like θt, φt(a, z) is a multiplier on a forward-looking implementability condition. Any perturbation that shifts
lifetime values Vt(a, z) at date t affects past lifetime values Vs(a, z), for s ∈ [0, t), through the Bellman equation and,
therefore, past consumption decisions cs(a, z) through the individual consumption-savings condition. The multiplier
φt(a, z) encodes the cumulative, backward-looking social valuation of these indirect effects on past consumption that
result from a change in value Vt(a, z) at date t.

22



is set with discretion, the planner’s redistribution motive substantially exacerbates inflationary bias.

Proposition 5 shows that the stationary Ramsey plan features zero inflation even in the presence of

household heterogeneity. Optimal policy under commitment therefore addresses the inflationary

bias associated with discretion in the long run.30

Proposition 5. (Optimal Long-Run Policy) With commitment, optimal long-run price inflation in both

HANK and RANK is zero. That is, πss = πRA
ss = 0.

Our HANK model features long-run neutrality of monetary policy: In any competitive stationary

equilibrium, the real interest rate and the allocation are pinned down by real forces. The only

choice that the planner has is the split between nominal interest rate and nominal price inflation

for a given real interest rate. Crucially, inflation and the nominal interest rate symmetrically affect

households’ financial income, which itself is proportional to the real interest rate rss = iss − πss.

Therefore, since maintaining non-zero inflation is costly due to nominal rigidities while adjusting

the nominal rate is not, the planner finds it optimal to exclusively use the nominal interest rate in

the stationary Ramsey plan while promising to keep inflation at zero.31 Formally, any stationary

Ramsey plan must feature θ̇ss = 0 since θss is constant. Equation (38) then directly implies that

optimal long-run inflation is zero, πss = πw
ss = 0.

Importantly, the planner can only maintain zero inflation in the long run under commitment.

As we discuss in Section 3, the planner always faces a time inconsistent incentive to overheat

the economy, both to address the markup distortion and to redistribute toward indebted, high

marginal utility households. Under discretion, this incentive is self-defeating as it simply results in

inflationary bias. With commitment, the planner promises to keep inflation at zero in the long run

in the absence of shocks.

4.3 Time Inconsistency, Timeless Penalty, and the Timeless Ramsey Problem

A planning problem is time inconsistent if the optimality conditions pinning down policy, allo-

cation, and prices at some time t depend on the time at which the optimization takes place. The

implementability conditions that constrain the Ramsey problem (28) include two sets of forward-

looking conditions: individual Bellman equations and the New Keynesian Phillips curve. Each of

these conditions is a source of time inconsistency.32 While the standard Ramsey planner chooses

30 Lemma 20 in the Appendix explicitly describes the conditions that characterize a stationary Ramsey plan.
31 The fact that the optimal long-run policy features zero inflation should be understood as a benchmark. When

inflation and the nominal interest rate have a differential impact across households, we may expect an optimal long-run
policy that features non-zero inflation. Other frictions, such as those studied in Chari and Kehoe (1999), Khan et al.
(2003), and Schmitt-Grohé and Uribe (2010), could also imply a non-zero optimal long-run inflation.

32 The conditions under which forward-looking implementability conditions lead to time inconsistency in planning
problems are well understood since Kydland and Prescott (1977).
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policy with commitment from time 0 onwards, time inconsistency still manifests at time 0. This is

often referred to as the “time-0 problem” (Kydland and Prescott, 1980).

Formally, the time-0 problem materializes as follows: The optimality conditions for the

standard Ramsey problem require the initial conditions θ0 = 0 and φ0(a, z) = 0 for all (a, z) because

initial inflation πw
0 and lifetime value V0(a, z) respectively are free. But any stationary Ramsey plan

will generically feature θss 6= 0 and φss(a, z) 6= 0. This follows directly from the stationary version

of equations (33) and (30). Intuitively, the standard Ramsey planner benefits from making promises

for inflation and lifetime values in the long run; these are encoded in θss and φss(a, z). But at time

0, there are no such past promises. Hence, even if we initialize the economy at the allocation that

obtains at the stationary Ramsey plan, i.e., g0(a, z) = gss(a, z), the planner will not set policy to

i0 = iss in the absence of shocks, which would keep the economy at the stationary Ramsey plan.

This would violate the initial conditions of the standard Ramsey problem, θ0 = 0 and φ0(a, z) = 0,

and precisely formalizes the time-0 problem in our setting.

We illustrate the time-0 problem in Figure 1, which plots optimal inflation in the absence

of shocks under different planning problems.33 The solid and dashed red lines illustrate the

inflationary bias associated with policy under discretion. The solid green line plots inflation under

the standard Ramsey plan in the absence of shocks. Inflation converges to zero, thus addressing

inflationary bias in the long run (Proposition 5). However, the time-0 problem implies that the

standard Ramsey plan still features inflationary bias in the short run. As the world starts at time

0, no past promises constrain the planner, and so she finds it optimal to boost inefficiently low

employment due to markups and redistribute towards indebted households, generating inflation

in the short run.

Motivated by these observations, we now present a timeless Ramsey approach to resolve the

time-0 problem. The associated timeless Ramsey plan—the solid blue line in Figure 1—resolves

inflationary bias in both the short run and the long run. To that end, we introduce a particular

time-0 penalty, the timeless penalty. Intuitively, confronting the Ramsey planner with the timeless

penalty makes her internalize the promises she herself would like to make for the future. In

Proposition 6, we show that the timeless penalty formalizes Woodford (1999)’s timeless perspective

in our setting, so that the planner at time 0 behaves as if she had chosen policy with commitment

infinitely long ago.

Definition 4. (Time-0 Penalty) We define the time-0 penalty as

T (φ, θ) =
∫∫

φ(a, z)V0(a, z) da dz︸ ︷︷ ︸
Distributional Penalty

− θπw
0︸︷︷︸

Inflation Penalty

(39)

33 Figure 1 extends Figure 7.1 in Woodford (2003) and Figure 2 in Woodford (2010) to an environment with household
heterogeneity.
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Figure 1. Inflationary Bias in the Short Run and the Long Run

Note. Figure 1 plots optimal inflation in the absence of shocks under different planning problems. We normalize to 1 the
standard inflationary bias associated with monopolistic competition (red, dashed). The redistribution motive a utilitarian
planner faces under discretion exacerbates long-run inflationary bias by a factor of 4 (red solid). Under the standard
Ramsey problem (green), there is no inflationary bias in the long run. Due to the time-0 problem, however, there is
still short-run inflationary bias. Only the timeless Ramsey problem (blue) resolves the time-0 problem and addresses
inflationary bias in both the short run and the long run.

where we refer to φ(a, z) as a (per unit) distributional penalty and θ as a (per unit) inflation penalty.34

Building on Marcet and Marimon (2019), we introduce a penalty at time 0 for each forward-looking

implementability condition that the Ramsey planner faces. We then define the augmented Ramsey

problem in primal form as a modification of the standard Ramsey problem that confronts the planner

with a time-0 penalty. Finally, we define the timeless Ramsey problem as the augmented Ramsey

problem in which the time-0 penalty is chosen to resolve the time-0 problem. That is, a timeless

Ramsey planner has no incentive to deviate from the stationary Ramsey plan at time 0 in the

absence shocks.35

Definition 5.

(a) (Augmented Ramsey Problem) The augmented Ramsey problem in primal form solves

min
{φt(a,z), χt(a,z), λt(a,z), µt, θt}

max
{ct(a,z), Vt(a,z), gt(a,z), Nt, πw

t , it}
LAP(g0, φ, θ), (40)

34 To streamline the exposition, we use the term penalty to refer to i) T (φ, θ); ii) its components
∫∫

φ(a, z)V0(a, z) da dz
and θπw

0 ; and iii) the values of φ(a, z) and θ. The first three terms are total penalties, while the last two correspond to
penalties per unit of lifetime utility and inflation, respectively.

35 In Appendix B.6, we also characterize the dual form of the augmented and timeless Ramsey problems.
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where LAP(g0, φ, θ) denotes the augmented primal Lagrangian, given an initial distribution g0 as well

as initial penalties φ and θ. The augmented primal Lagrangian is defined as

LAP(g0, φ, θ) = LSP(g0) + T (φ, θ) (41)

where LSP(g0) is the standard primal Lagrangian (29) and T (φ, θ) a time-0 penalty (39).

(b) (Timeless Ramsey Problem) The timeless Ramsey problem in primal form is an augmented Ramsey

problem in which the time-0 penalty takes the form T (φ, θ) = T (φss, θss). We refer to T (φss, θss) as

the timeless penalty, and we define the timeless primal Lagrangian as

LTP = LAP(gss, φss, θss). (42)

The Lagrangian of the augmented Ramsey problem LAP(g0, φ, θ) is defined for arbitrary initial

penalties φ and θ. For example, the augmented Ramsey problem nests the standard one when we

set φ(a, z) = 0 and θ = 0, implying LAP(g0, 0, 0) = LSP(g0). It will become clear in the following

that only the timeless Ramsey problem, in which φ(a, z) = φss(a, z) and θ = θss, resolves the time-0

problem. In that case, the timeless penalty encodes precisely the promises that the Ramsey planner

would like to make in the long run, i.e., in the stationary Ramsey plan. Intuitively, the timeless

penalty introduces an artificial cost that, on the margin, exactly offsets the marginal benefit of

time-inconsistent deviations from the stationary Ramsey plan at time 0. Our approach shows

that it is possible to transform the standard Ramsey problem into a timeless problem by simply

augmenting it with the timeless penalty T (φss, θss).36

Formally, a time-0 penalty enforces a new set of initial conditions on the two multipliers

associated with forward-looking implementability conditions. In continuous time, the choice of

initial lifetime values V0(a, z) and inflation πw
0 is free under the standard Ramsey problem, which

gives rise to the initial conditions (36) and (37) of the standard Ramsey plan. Indeed, φ0(a, z) = 0

and θ0 = 0 is precisely an expression of the fact that the standard Ramsey planner is not bound by

past promises on lifetime values and inflation at time 0, even though she would like to bind her

future self by making such promises. By augmenting the Ramsey problem with the time-0 penalty

36 Formally, a planner solving problem (42) sets policy at time 0 as if she had set policy with commitment infinitely
far in the past. The timeless Ramsey plan associated with (42) corresponds exactly to optimal policy from a timeless
perspective (Woodford, 1999). A timeless policy, as defined by Woodford (2010), represents a policy that

“even if not what the policy authority would choose if optimizing afresh at a given date t, [...] it should have been
willing to commit itself to follow from that date t onward if the choice had been made at some indeterminate point in
the past, when its choice would have internalized the consequences of the policy for expectations prior to date t.”
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T (φ, θ), we technically enforce new initial conditions,

φ0(a, z) = φ(a, z) (43)

θ0 = θ, (44)

which in turn constrain the planner’s choice of initial lifetime values and inflation. The optimality

conditions of the augmented Ramsey problem comprise exactly the same equations as in Propo-

sition 4, i.e., equations (30) through (35), except that the initial conditions for the multipliers are

now given by φ0(a, z) = φ(a, z) and θ0 = θ. In economic terms, it is as if the penalties φ(a, z) and θ

enforce artificial past promises. And when we initialize the time-0 penalty at φ = φss and θ = θss, it

is as if the timeless Ramsey planner is confronted with the same promises at time 0 that she herself

would like to make in the long run.

Having introduced the timeless Ramsey problem, we now prove that it resolves the time-0

problem in Proposition 6, which is the main result of this subsection. Anticipating the sequence-

space representation of our model (Section 5), we can interpret all endogenous variables as functions

of the time paths of (i) policy, which we denote by i = {it}, and (ii) exogenous shocks, which we

denote by Z = {At, ρt, εt}, as well as (iii) initial conditions for the distribution g0(a, z) and penalties

(φ(a, z), θ). Given a sequence of shocks, an initial distribution, and initial promises, the planner

then chooses among those competitive equilibria that are implementable by policy. In particular,

we can evaluate the objective LTP at any feasible policy path i. A policy is then locally optimal

when the derivative of LTP with respect to any feasible perturbation of the policy path di is 0.

Proposition 6. (Timeless Ramsey Problem Resolves Time-0 Problem) Optimal policy under the

timeless Lagrangian is time-consistent at the stationary Ramsey plan under the timeless penalty T (φss, θss).

That is,
d
di

LTP
(

gss, φss, θss, iss, Zss

)
= 0. (45)

Equation (45) says that, when we initialize the economy at the stationary Ramsey plan, i.e.,

g0(a, z) = gss(a, z), and set the time-0 penalty using the stationary multipliers, i.e., φ(a, z) = φss(a, z)

and θ = θss, then in the absence of shocks, i.e., Z = Zss, the stationary Ramsey policy is optimal,

i.e., d
di LTP(·) = 0 when we set i = iss. Proposition 6 proves that a timeless Ramsey planner has no

incentive to deviate from the stationary Ramsey plan in the absence of shocks. The timeless Ramsey

problem resolves the time-0 problem and addresses inflationary bias in both the short run and the

long run. The solid blue line in Figure 1 shows that the timeless Ramsey planner sets inflation to 0

in the absence of shocks.

27



Purpose of the timeless Ramsey approach. It should be evident that, from a time-0 perspective,

the standard Ramsey plan attains higher welfare than the timeless Ramsey plan. The timeless

Ramsey problem may thus be viewed as an inferior guide for policy design. However, there are

at least three reasons why the timeless Ramsey approach is valuable. First, Woodford (1999)’s

concerns about the time-0 problem remain valid: From a policymaker’s perspective, access to new

information and advances in modeling often necessitate a reevaluation of the framework used

for policy design. If optimal policy is then recomputed each time under the standard Ramsey

problem, it repeatedly suffers from the time-0 problem, which Woodford (1999) argues is an

impractical guide for policy design. Second, the timeless Ramsey approach allows us to isolate the

planner’s pure stabilization motive in response to business cycle shocks and separate it from the

time inconsistent incentive to deviate from the stationary Ramsey plan at time 0. We develop this

argument in Sections 4.6 and 5. Third, we show in Section 5 that perturbation methods only yield

valid approximations of optimal stabilization policy under the timeless Ramsey problem.

4.4 Properties of the Timeless Inflation and Distributional Penalties

We introduced the timeless penalty in Section 4.3 and showed that it resolves the time-0 problem,

disincentivizing the planner from generating inflation in the short run. In this subsection, we

explore this timeless penalty analytically. We establish two main results. First, we show that the

inflation penalty, θss, which is already present in RANK economies, depends on novel distributional

considerations in HANK. Second, we show that the new distributional penalty that we introduce

in this paper penalizes the welfare gains of indebted, high marginal utility households. The

distributional penalty solves a novel promise-keeping Kolmogorov forward equation.

Timeless inflation penalty. Proposition 7 introduces an analytical characterization of the inflation

penalty that resolves the time-0 problem in HANK. This expression combines the optimality

conditions for consumption and hours worked with the Phillips curve.

Proposition 7. (Timeless Inflation Penalty) The timeless penalty on inflation in both RANK and HANK

economies satisfies

θss =
Ω1

ss + Ω2
ss

− ε
δ

∫∫
z
(

dτss(a,z)
dcss(a,z) +

1
A

dτss(a,z)
dNss

)
gss(a, z) da dz

(46)

28



where Ω1
ss and Ω1

ss are given by

Ω1
ss =

= 0 with appropriate employment subsidy︷ ︸︸ ︷(
1− ε− 1

ε
(1 + τL)

) ∫∫
zu′(css(a, z))gss(a, z) da dz

Ω2
ss =

∫∫ (
zu′(css(a, z))− v′(nss)

A

)
φss(a, z) da dz−

∫∫
zχ̃ss(a, z)gss(a, z) da dz︸ ︷︷ ︸

= 0 in RANK

Ω1
ss is 0 under the appropriate employment subsidy and Ω2

ss is 0 in the RANK limit. Since Ω2
ss is typically

non-zero, distributional considerations shape the inflation penalty in HANK economies.

As we show in the Appendix, the denominator of equation (46) is always positive, so the sign

of the inflation penalty depends on the signs of Ω1
ss and Ω2

ss. In the RANK limit, distributional

considerations disappear and Ω2
ss vanishes. In this case, the inflation penalty inherits the sign of

(1− ε−1
ε (1 + τL)). In RANK, time inconsistency only emerges when employment is inefficiently

low due to markups in a distorted steady state. In fact, with the appropriate employment subsidy,
ε−1

ε (1 + τL) = 1, equation (46) implies that no inflation penalty is required because no time

consistency problem emerges in that case.

These same forces that shape the inflation penalty in RANK also appear in our HANK

economy. However, the inflation penalty in HANK is also shaped by distributional considerations.

Even with the correct employment subsidy to address the markup distortion in steady state, the

time consistency problem on inflation does not disappear. Intuitively, θss impacts the planner’s

desire to perturb aggregate economic activity by penalizing inflation at time 0. When households

are heterogeneous, changes in aggregate economic activity have distributional consequences. In

particular, the first term in Ω2
ss captures the differential impact of an increase in hours worked on

households’ flow utility, while the second term accounts for the differential impact on households’

consumption-savings decisions.

In other words, the two sources of time inconsistency—markups and redistribution—meaningfully

interact now. A corollary of this result is that the choice of an appropriate inflation penalty takes on

a distributional dimension whenever the planner has a utilitarian objective.

Timeless distributional penalty. In a RANK economy, the nominal interest rate is sufficient to

fully correct the representative household’s consumption-savings decision. Formally, we show that

the Ramsey planner in RANK sets φRA
t = 0 at all times—see equation (84) in the Appendix. This

implies that no time consistency problem separately emerges from the Bellman equation.

With heterogeneous households, the policy instrument still corrects households’ decisions, but
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(a) Distributional penalties (b) Consumption-savings multiplier

Figure 2. Timeless Distributional Penalty

Note. The left panel of Figure 2 shows the steady state values of the timeless distributional penalties, φss(a, z), normalized
by the mass of households, gss(a, z). The right panel of Figure 2 shows the steady state values of the multiplier on
households’ consumption-savings optimality condition, χss(a, z), also normalized by the mass of households, gss(a, z).
See Section 5 for the calibration.

only on average, implying
∫∫

φt(a, z) da dz = 0. Unlike in RANK economies, the nominal interest

rate is no longer sufficient to correct the entire cross section of consumption-savings decisions.

The Ramsey planner consequently finds that households privately consume too much or too

little. Under commitment, the planner then finds it valuable to make promises about the future in

order to influence consumption allocations today. These promises—encoded in the time-varying

multiplier φt(a, z)—open the door to time inconsistency. Our next result characterizes the timeless

distributional penalty φss(a, z) that addresses this time consistency problem.37

Proposition 8. (Timeless Distributional Penalty) The timeless distributional penalty φss(a, z) solves

the promise-keeping Kolmogorov forward equation

0 = −A∗ssφss(a, z) + ∂aχss(a, z), (47)

where A∗ss is the Kolmogorov forward operator associated with the stationary cross-sectional distribution.

Proposition 8 shows that the multipliers on households’ Bellman equations are themselves charac-

terized by Kolmogorov forward equations. We refer to equation (30) and its stationary counterpart

(47) as promise-keeping Kolmogorov forward equations because they characterizes the evolution of

37 Chari et al. (2020) study optimal capital taxation with heterogeneous agents. They address the time-0 problem by
augmented the Ramsey problem with a “wealth constraint” that prevents taxing away free rents. Our penalty performs
a similar function but its form derives from the recursive multiplier approach of Marcet and Marimon (2019).
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the planner’s promises on individual lifetime values. These promises, which also have the inter-

pretation of penalties, as explained above, are encoded in the multiplier φss(a, z). The evolution of

distributional penalties in the cross section must be consistent with the law of motion of house-

holds, which is why the Kolmogorov forward operator A∗ss appears in equation (47). Intuitively,

penalties are associated with households in a given state, and so if a household transitions from

one individual state to another, the penalty moves with her.38 If individuals’ optimal consumption-

savings decisions change as they transition between different wealth states, then ∂aχt(a, z) can

be interpreted as capturing “births” and “deaths” of relative promises in the cross section. The

reason why ∂aχt(a, z) enters the promise-keeping Kolmogorov equations is because changes in

lifetime utility for a given state (a, z) impact the consumption of households at a and slightly above

(or below), per the households’ consumption-savings optimality condition. Solving for φt(a, z)

and χt(a, z) jointly and characterizing how they are linked via this promise-keeping Kolmogorov

forward equation is one of the contributions of this paper.39

Figure 2 illustrates the distributional penalty φss(a, z). Panel (a) shows that φss(a, z) < 0 for

indebted households, which is consistent with an interpretation of φss(a, z) as a penalty on redistri-

bution. Intuitively, in order to counteract the time-inconsistent incentive to redistribute towards

high marginal utility households, the planner with commitment sets distributional penalties that

penalize welfare assessments that benefit such households. While it may seem counterintuitive

that a utilitarian planner penalizes high marginal utility, this is the way in which a planner with

commitment fights the inflationary bias present under discretion. Panel (b) of Figure 2 displays

the stationary consumption-savings multiplier, χss(a, z), normalized by the mass of households,

gss(a, z). In this particular calibration, χss(a, z) < 0 for all households, which implies that the

planner, if unconstrained, would like households to consume less. This is consistent with the fact

that µss < 0 at the stationary Ramsey plan of our calibrated model.

4.5 Penalties vs. Targets

Sections 4.3 and 4.4 focus on resolving the time-0 problem that emerges in the standard Ramsey

problem. To that end, we introduce the timeless penalty and study the timeless Ramsey problem

(42). Implementing the resulting Ramsey plan still relies on an infinite sequence of promises,

however, which may be unrealistic in practice. We now explore whether a central bank that sets

policy under discretion can still implement the optimal commitment solution under an appropriate

institutional arrangement or with the appropriate penalties or targets (Clarida et al., 1999).

38 Note that the operator A∗t is mass-preserving, i.e.,
∫∫
A∗t φt(a, z) da dz = 0, which allows us to interpret φt(a, z) as a

distribution (of penalties).
39 We conjecture that promise-keeping Kolmogorov forward equations will appear in other models in which a

continuum of Bellman equations act as constraints. We also conjecture that if households had additional margins of
adjustment besides consumption-savings, new birth and death terms would augment the Kolmogorov equation.
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Time-varying penalties. First, consider again problem (17), where a Ramsey planner sets policy

with commitment over a finite horizon. In Section 3, we identify policy under discretion with

the limit of this problem as the commitment horizon becomes vanishingly small, i.e., as ψ → ∞.

Leveraging the observation that a timeless penalty can resolve the time-0 problem of a standard

Ramsey planner, we now confront each finite-horizon Ramsey planner with a penalty at the time of

transition, just like we confronted the standard Ramsey planner with a timeless penalty at time 0.

Intuitively, this sequence of timeless penalties ensures that each successive finite-horizon planner

behaves as if she had committed to policy in the infinite past. The resulting sequence problem is

given by

W̃0(g0, φ0, θ0) = min
M

max
X

E0

[
L(0, τ1, g0) + T0(φ0, θ0)︸ ︷︷ ︸

Timeless Lagrangian: LTP

+e−
∫ τ1

0 ρsdsW̃τ1(gτ1 , φτ1 , θτ1)

]
, (48)

where M, X, and L(0, T, g0) are defined as in (17). Crucially, the evolution of φt and θt is given by

equations (30) and (34), and we initialize the timeless penalties at φ0(a, z) = φss(a, z) and θ0 = θss.

By modifying the flow payoff in equation (48), we confront each planner with the appropriate

timeless penalty at the time of transition. And in the limit as ψ → ∞, where planners transition

instantaneously, the penalties are also “active” in every instant. In the discrete-time analysis of, e.g.,

Galí (2015), we would say that the Markov planner faces these penalties in every period.

The timeless Ramsey plan can be implemented under discretion as long as the planner (central

bank) faces the appropriate time-varying penalty Tt(φt, θt), which includes an inflation penalty

−θtπ
w
t and a distributional penalty

∫∫
φt(a, z)Vt(a, z) da dz. Intuitively, the difference between the

commitment and the discretion solutions are the multipliers associated with the forward-looking

constraints. By modifying the Markov planner’s flow utility to account for these terms in the form

of time-varying penalties, it is possible to implement the commitment solution under discretion

(Svensson, 1997; Marcet and Marimon, 2019; Clayton and Schaab, 2022).

Inflation targeting. While confronting the discretionary planner (central bank) with the time-

varying penalty Tt(φt, θt) can implement the timeless Ramsey solution, central bank design in

practice is commonly based on targeting frameworks.

Proposition 5 highlights that a strict zero-inflation target implements the Ramsey plan in the

absence of shocks.40 In other words, household heterogeneity in our environment does not alter the

longstanding view that an inflation target can successfully resolve inflationary bias in steady state.

What is surprising is that an implementation of such an inflation target based on penalties requires

40 Formally, a Markov planner will implement the optimal stationary Ramsey plan in the absence of shocks when
confronted either with an infinite penalty for non-zero inflation or with an additional implementability condition
(constraint) that requires πt = 0.
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two distinct penalties in our setting, whereas only the inflation penalty is required in RANK

economies. Both penalties and targets can be used to implement a particular solution because of

their duality relation: Constraints (targets) on optimal policy problems can be transformed into

costs (penalties) in the objective function, and vice versa.41 However, since the planner has a single

aggregate instrument, once a path of aggregate variables (in this case inflation) is used as a target,

the choice of instrument is automatically determined.

In the presence of shocks, our paper demonstrates that flexible inflation targeting is in principle

still the appropriate framework for policy design. This target would be anchored around zero

inflation in our setting. And in response to a shock, the target would prescribe the path of inflation

that is optimal under the timeless Ramsey plan. Hence, an important takeaway of our analysis is

that optimal policy in our HANK economy can also be implemented by a flexible inflation target

around zero inflation, where the flexibility to stabilize business cycle shocks is now governed by

distributional considerations as in our Ramsey problem.

4.6 Optimal Stabilization Policy

Characterizing optimal stabilization policy under the standard Ramsey plan would conflate the

pure stabilization motive of policy with the time-0 problem, i.e., the planner’s time inconsistent

incentive to deviate from the stationary Ramsey plan even in the absence of shocks. A key

motivation for setting up the timeless Ramsey problem is that it isolates the pure stabilization

motive by resolving the time-0 problem. In this final subsection, we study optimal stabilization

policy under commitment, we focus on the timeless Ramsey plan.

In Proposition 9 we characterize a non-linear, exact targeting rule for optimal monetary policy

with commitment in response to demand, productivity, and cost-push shocks.42 By considering

special cases of this targeting rule it is possible to recover i) the discretion targeting rule introduced

in Proposition 2, which allows us to highlight the role of inflation and distributional penalties

counteracting the forces that drive discretionary policy, and ii) the well understood targeting rule

in RANK, which allows us to identify the implications of household heterogeneity for optimal

stabilization.

Proposition 9. (Targeting Rule for Stabilization Policy under Commitment) Optimal monetary

41 A planner could conceivably target instead a particular path of lifetime utilities. This approach, which we do not
explore in our paper, connects our results to the work on recursive contracting, as in Sannikov (2008) and Williams
(2011), among many others.

42 This targeting, as well as the targeting rule under discretion in Proposition 2, can be interpreted as a double
perturbation in which the planner makes all households work an additional hour and consume the output generated,
while also increasing interest rates to neutralize the intertemporal impact of the perturbation.
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stabilization policy is summarized by the targeting rule

0 =

Aggregate Labor Wedge︷ ︸︸ ︷∫∫ (
zu′(ct(a, z))− v′(Nt)

At

)
gt(a, z) da dz−

Redistribution Motive︷ ︸︸ ︷
ΩD

t

∫∫
au′(ct(a, z))gt(a, z) da dz (49)

+
∫∫

(z−ΩD
t a)u′(ct(a, z))φt(a, z) da dz︸ ︷︷ ︸
Distributional Penalty

+ θt
εt

δ

∫∫ ( z
At

dτt(a, z)
dNt

+ (z−ΩD
t a)Mt(a, z)

dτt(a, z)
dct(a, z)

)
gt(a, z) da dz︸ ︷︷ ︸

Inflation Penalty

where ΩD
t is defined in Proposition 2.

The first and second terms in equation (49) respectively correspond to the aggregate labor wedge

and the distributive pecuniary effect of interest rate changes. The third and fourth terms correspond

to the distributional and inflation penalties. We leverage this equation to present four results.

First, note that when φt(a, z) = 0 and θt = 0, equation (49) collapses to the targeting rule under

discretion introduced in Proposition 2. Intuitively, the new terms that shape the targeting rule

under commitment act as penalties for the planner, counteracting the forces that drive discretionary

policy.

Second, the targeting rule (49) also allows us to revisit optimal monetary stabilization policy in

RANK, which it nests. In RANK, φt(a, z) = a = 0, so the targeting rule simply trades off aggregate

stabilization—encoded in the aggregate labor wedge—with an inflation penalty. Suppose we allow

for the appropriate steady state employment subsidy, so that ε−1
ε (1 + τL) = 1. If we consider

demand and TFP shocks, πt = θt = 0 are always feasible, so the targeting rule (49) implies that

the aggregate labor wedge is zero: In response to demand and TFP shocks, the Ramsey planner

in RANK closes both the inflation and output gaps at all times. This is the Divince Coincidence

benchmark (Blanchard and Galí, 2007). In RANK, there is no tradeoff between inflation and output

in the absence of cost-push shocks. In the case of cost-push shocks, Divine Coincidence breaks

down, even in RANK. From the Phillips curve, it follows that at zero inflation, the only way in

which the aggregate inflation-relevant labor wedge is zero, is when the aggregate labor wedge is

non-zero. The planner consequently cannot close the inflation and output gaps at the same time.

Third, in a HANK economy, the targeting rule for aggregate stabilization policy is shaped by

distributional considerations. Hence, even though it is feasible for the planner to close the inflation

and output gaps at the same time in the absence of cost-push shocks, she finds it optimal not to

do so. Divine Coincidence consequently fails even with the appropriate employment subsidy and

in the absence of cost-push shocks. Formally, the aggregate labor wedge that makes equation (49)

hold in response to a shock need not be zero. While pinpointing the source of departure from

Divine Coincidence in general is difficult, we present a quantitative decomposition in Section 5.2.
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We show in Appendix B.10 that the targeting rule (49) admits an alternative representation that

augments the discretionary output gap targeting rule (26) with two penalty wedges. Using this

decomposition, we demonstrate in Section 5.2 that departures from Divine Coincidence in response

to demand shocks are due to changes in the redistribution wedge.

Finally, optimal stabilization policy under the timeless Ramsey plan always features inflation

overshooting. This result applies to both RANK and HANK economies and follows from the fact

that the inflation penalty has initial and terminal conditions θ0 = limT→∞ θT = θss. Its evolution

in response to a shock is characterized by θ̇t = δπw
t . Hence, integrating and using the boundary

conditions, it must be the case that ∫ ∞

0
πw

t dt = 0 (50)

in response to any shock. That is, if inflation is positive on impact in response to a shock, πw
0 > 0, it

must turn negative at some point in the future, and vice versa if πw
0 < 0.

5 Quantitative Analysis in Sequence Space

In this section, we extend the sequence-space approach (Boppart et al., 2018; Auclert et al., 2021)

to Ramsey problems and welfare analysis. This allows us to compute transition dynamics under

optimal policy—under discretion and with commitment—both non-linearly and using perturbation

methods. We extend the fake-news algorithm of (Auclert et al., 2021) to compute optimal policy and

show that the timeless Ramsey approach of Section 4 is critical for the validity of sequence-space

perturbations.43

5.1 Sequence-Space Methods for Optimal Policy in HANK

We work with an abstract sequence-space representation of our model. Competitive equilibrium

can be summarized by an equilibrium map that take as inputs the time paths of aggregates,

H(X, i, Z) = 0, (51)

where i = {it}t≥0 denotes the path of policy, Z = {At, ρt, εt}t≥0 the path of exogenous shocks, and

X the path of macroeconomic aggregates. Given an initial cross-sectional distribution g0(a, z), which

is implicitly encoded inH(·), the equilibrium map (51) characterizes macroeconomic aggregates in

terms of policy i and shocks Z, i.e., X = X(i, Z). The sequence-space representation (51) is as in

43 Our perturbation approach is closest to that of Khan et al. (2003) and Schmitt-Grohé and Uribe (2004a) who also
first characterize the optimality conditions that define a Ramsey plan non-linearly and then approximate these. It is well
understood that, at least in the standard model, alternative valid perturbation methods also include the linear-quadratic
approach (Benigno and Woodford, 2012) and evaluating welfare under a higher-order approximation of the equilibrium
conditions (Schmitt-Grohé and Uribe, 2004b, 2007).
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Auclert et al. (2021), except thatH(·) here also takes the path of policy i as an input, which is set

optimally by the planner. Optimal policy, in turn, is determined as part of a Ramsey plan, whose

sequence-space representation we characterize next.

Proposition 10. (Sequence-Space Representation of Ramsey Plans) Given an initial distribution

g0(a, z), initial penalties φ(a, z) and θ, as well as a path for exogenous shocks Z, a timeless Ramsey plan

comprises aggregate allocations and prices X, optimal policy i, and multipliers M. Its sequence-space

representation is given by

R(X, M, i, Z) = 0, (52)

where we leave implicit the dependence of the Ramsey mapR(·) on g0(a, z), φ(a, z), and θ.

We prove the sequence-space representations of equilibrium (51) and Ramsey plans (52) in Appen-

dices D.1 and D.2.

Our sequence-space representation of Ramsey plans is valid for any initial distribution g0(a, z)

and initial penalties φ(a, z) and θ. Equation (52) therefore recovers the standard Ramsey plan of

Proposition 4 when we set φ(a, z) = 0 for all (a, z) and θ = 0. Similarly, it follows from Proposition

6 that evaluating the Ramsey plan (52) at (gss, φss, θss) resolves the time-0 problem. In that case,

we refer to it as a timeless Ramsey plan. In the following, we always initialize the penalties at

φ(a, z) = φss(a, z) and θ = θss, and focus on characterizing the response of optimal policy, di, to

exogenous shocks, dZ, under the timeless Ramsey plan.

The Ramsey plan representation (52) consists of two sets of equations. The first block is the

system of equations (51), which characterizes aggregate allocations and prices X given policy i

and shocks Z. The second block comprises the first-order optimality conditions of the Ramsey

problem that solve for aggregate multipliers M and policy i. Crucially, the Ramsey equations

that characterize optimal policy are coupled with those that describe the evolution of multipliers.

Unlike the equilibrium mapH(·), which suffices to solve for transition dynamics given policy, the

Ramsey map R(·) takes as inputs the aggregate multipliers M and features the equations that

characterize them.

In this sequence-space representation, we refer to a (timeless) Ramsey plan as the time paths

of aggregates, R = (X, M, i).44 The system of equations (52) characterizes a Ramsey plan as a

44 In Section 4.1, we defined a Ramsey plan as the time paths of both aggregates and individual objects—namely,
individual allocations, the cross-sectional distribution, and individual multipliers. In the sequence-space representation
of our economy, we can express these individual objects as functions of the time paths of aggregates, as we formally
show in Appendices D.1 and D.2. We thus loosely refer to a Ramsey plan in sequence-space form as the time paths of
aggregates (X, M, i) with the understanding that the remaining individual objects can be expressed and easily obtained
as functions of these.
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function of the exogenous shocks, i.e.,

R = R(Z),

implicitly taking as given an initial distribution g0(a, z) as well as initial penalties φ(a, z) and

θ. The sequence-space representation of Ramsey plans in Proposition 10 is not unique. One

minimal representation of our baseline economy, which we use in our numerical implementation, is

X = {Λt, Nt}t≥0, M = {µt, θt}t≥0, and i = {it}t≥0, where Λt is the aggregate labor wedge. In that

case, the Ramsey plan representation (52) becomes a system of five equations: the definition of Λt

as the aggregate labor wedge, the resource constraint (16), as well as the three aggregate optimality

conditions (33), (34), and (35). Together, they solve for the Ramsey plan as a function of shocks,

i.e., X(Z), M(Z), and i(Z), taking as given an initial cross-sectional distribution g0(a, z), as well as

initial penalties φ(a, z) and θ.

5.1.1 Non-Linear Optimal Policy

The sequence-space representation of Ramsey plans in Proposition 10 is a system of non-linear

equations. We can directly solve (52) non-linearly to compute optimal stabilization policy around

the stationary Ramsey plan for any sequence of shocks Z that reverts back to Zss. Computing the

timeless Ramsey plan non-linearly is tractable and fast in our baseline HANK economy. Using an

efficient quasi-Newton algorithm, we can solve (52) non-linearly in less than 10 seconds.45

However, computing non-linear transition paths in more complex HANK economies with

richer cross-sectional heterogeneity can become cumbersome. Local perturbation methods, on

the other hand, are fast and oftentimes very accurate in the context of canonical HANK environ-

ments.46 In the remainder of this section, we develop sequence-space perturbation methods to

approximate optimal policy in a neighborhood around the stationary Ramsey plan. In principle,

we can take either the primal or the dual representation of our Ramsey problem as a starting point

to approximate optimal policy. In Sections 5.1.2 and 5.1.3, we present both approaches and argue

that they have distinct advantages and disadvantages in different contexts.

45 We use the quasi-Newton algorithm developed by Schaab and Zhang (2022) and Schaab (2020) to compute non-
linear transition paths in heterogenous-agent economies. The code is available at https://github.com/schaab-lab/
SparseEcon. Using this solver, computing the non-linear Ramsey plan of our model takes less than 10 seconds on a
personal computer for discretized time grids with 150 nodes, using a 2020 13-inch MacBook Pro with an M1 chip and 16
GB memory.

46 When computing Ramsey plans non-linearly, we use quasi-Newton rather than standard Newton methods. This
means that we compute the Jacobians involved in the algorithm once and subsequently use a recursive approximation.
In practice, the algorithm never has to recompute the Jacobians and converges quickly, precisely because first-order
perturbation solutions are typically very accurate approximations in canonical HANK economies. Therefore, the objects
we need are precisely those we also compute below in Section 5.1.2, i.e.,RR andRZ evaluated around the stationary
Ramsey plan, using a fake-news algorithm. As long as the quasi-Newton algorithm does not require that we recompute
the Jacobian matrix, computing the non-linear solution is just as fast as the fake-news algorithm for the perturbation
approach, requiring the computation of only a single column of the JacobiansRR andRZ .
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5.1.2 Optimal Policy Perturbations in the Primal

To approximate optimal policy in the primal representation of the Ramsey problem, we take as our

starting point the system of equations (52).

Proposition 11. (Optimal Policy Perturbations in the Primal) Consider the primal Ramsey problem

and the associated Ramsey plan, which is characterized by (52) and solvesR(·) = 0. Suppose we initialize

the Ramsey plan at the cross-sectional distribution g0(a, z) = gss(a, z) and with initial timeless penalties

φ(a, z) = φss(a, z) and θ = θss. To first order, optimal stabilization policy is then characterized as part of

the timeless Ramsey plan by

dR = −R−1
R RZdZ (53)

where dZ = Z− Zss is the exogenous shock, dR = (dX, dM, di) denotes the response of the Ramsey plan,

andRR andRZ are Jacobians of the Ramsey plan map.

We prove Proposition 11 in Appendix D.3.

It is critical to note that the validity of the sequence-space perturbation method in Proposition

11 relies on initializing the Ramsey problem with the timeless penalties, so thatR(·) characterizes

a timeless Ramsey plan. With the timeless penalties, dR only captures the planner’s stabilization

motive in response to shocks dZ. Without them, dR conflates the stabilization motive with the

time-0 problem and is consequently no valid solution of optimal stabilization policy to first order.

Our timeless Ramsey approach is therefore the critical foundation that allows us to leverage

perturbation methods to compute optimal stabilization policy.

To approximate Ramsey plans to first order in the primal, we have to compute two first-order

derivative matrices,RR andRZ. These matrices can in turn be constructed from sequence-space

Jacobians, which allows us to leverage the power of sequence-space perturbation methods. In

Appendix D, we extend the fake-news algorithm developed by Auclert et al. (2021) for sequence-

space Jacobians to compute optimal policy via the Ramsey map JacobiansRR andRZ.47

5.1.3 Optimal Policy Perturbations in the Dual

Appendix B.6 formally introduces the dual form of our timeless Ramsey problem. While the previ-

ous subsection directly uses the primal representation of Ramsey plans, an alternative sequence-

47 Auclert et al. (2021) show how to use the equilibrium map (51) to efficiently compute transition dynamics for
a given path of policy to first order. They develop a general model representation of the standard micro block of
competitive equilibria in heterogeneous-agent economies, i.e., the set of equations that characterize the allocations and
behavior of individual agents. We show in Appendix D that computing optimal policy using the sequence-space Ramsey
plan representation (52) requires a second “micro block,” namely the set of individual multiplier equations. We develop
a general sequence-space representation for this multiplier block and show that the same principles underlying Auclert
et al. (2021)’s fake-news algorithm can be used to efficiently compute sequence-space Jacobians for multipliers.
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space perturbation method can be developed by using the dual form as a starting point. We do so

in Appendix D.4.

The key advantage of the dual approach is that multipliers do not explicitly have to be com-

puted as part of the Ramsey plan solution. When the multiplier equations are particularly complex

and computationally intensive, this can be an important advantage. The main disadvantage of

the dual approach is that it relies on second-order derivatives, whereas the primal approach re-

lies on first-order derivatives. In Section D, we therefore introduce sequence-space Hessians as the

natural second-order generalization of sequence-space Jacobians. Finally, Appendix D.4 offers

a detailed discussion on the advantages and disadvantages of the dual approach relative to the

primal approach of Section 5.1.2.

5.2 Optimal Stabilization Policy: Quantitative Analysis

We now compute optimal monetary stabilization policy in response to demand shocks (this section),

as well as TFP (Appendix F.1) and cost-push (Appendix F.2) shocks.

Calibration. Adopting isoelastic preferences, we set the discount rate to a quarterly ρ = 0.02, the

elasticity of intertemporal substitution to γ = 2, and the inverse Frisch elasticity to η = 2. We set the

elasticity of substitution between labor varieties to ε = 10 and the nominal wage adjustment cost

to δ = 100, following standard practice in the wage rigidity literature (Auclert et al., 2020). Finally,

we allow for an employment subsidy (1 + τL) ε−1
ε = 1 that offsets the wage-markup distortion in

stationary equilibrium.

In our HANK model, we model households’ earnings risk as a two-state Markov chain with

zt ∈ {z, z}, where z = 0.8 and z = 1.2. We set the quarterly Poisson transition rate out of both states

to 0.33. Our RANK benchmark can be seen as the limit as z, z→ 1, using as initial condition for the

cross-sectional distribution a Dirac mass at (a, z) = (0, 1).

Finally, we model the demand shock as a mean-reverting AR(1) process. In continuous time,

this implies that ρ̇t = ξρ(ρ − ρt), where ρ denotes the steady-state level. We study a one-time,

unanticipated (“MIT”) shock at time t = 0, initializing the shock at ρ0 = 1.5ρ and calibrating its

persistence to a half-life of one quarter.

Optimal monetary stabilization of demand shocks. Figure 3 plots the optimal transition dynam-

ics under the timeless Ramsey plan in response to a demand shock.

Divine Coincidence obtains in RANK in the face of demand and productivity shocks: the

planner perfectly stabilizes both the output and inflation gaps. This benchmark result requires the

appropriate employment subsidy, which we assume here. To support this desired allocation, the
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Figure 3. Optimal Policy Transition Dynamics: Demand Shock

Note. Transition dynamics after a positive discount rate shock in RANK (red) and HANK (blue) under optimal monetary
stabilization policy. The discount rate shock is initialized at ρ0 = 0.025 and mean-reverts to its steady state value ρ = 0.02,
with a half-life of 1 quarter. Panels (A) through (C) report the dynamics of the output gap, Yt−Ỹt

Ỹt
, natural output, and

the shock, all in percent deviations from the stationary Ramsey plan. Panels (D) through (F) report CPI inflation, wage
inflation, and the optimal interest rate, all in percentage point deviations from the stationary Ramsey plan.

Figure 4. Optimal Policy under Discretion: Demand Shock

Note. Transition dynamics after a positive discount rate shock, comparing optimal policy in HANK with commitment
(blue), i.e., under the timeless Ramsey problem, and under discretion (red). Discount rate shock is initialized at ρ0 = 0.025
and mean-reverts to its steady state value ρ = 0.02, with a half-life of 1 quarter. Panel (A) plots output in percent
deviation from the 0-inflation steady state for commitment (blue) and in percent deviation from the Markov perfect
equilibrium with inflationary bias for discretion (red). Panel (B) plots the underlying shock in percent deviations.

planner raises the interest rate by about 50 basis poins to lean against the 50 basis point discount

rate shock.

In HANK, the planner again leans against the demand shock, stabilizing output and inflation
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gaps, but not as strongly as in RANK. Especially the output gap is allowed to open up meaningfully.

The on-impact output gap response under optimal policy is only dampened by 50% relative to

the Taylor rule case. The inflation gap, on the other hand, is stabilized almost entirely. Unlike in

RANK, the path of interest rates that supports this allocation features a hump, where the planner

only gradually increases the nominal rate. The hump-shaped paths of the output and inflation

gaps in Figure 3 are due to commitment—see our discussion in Section 4.6. In Figure 4, we plot

the relative output paths under discretion (red) and under the timeless Ramsey problem (blue).

Under discretion, the planner takes future policy as given and does not benefit from promising an

over-shooting. With commitment, the planner finds it optimal to promise over-shooting to improve

contemporaneous tradeoffs. This is reflected in the hump-shaped optimal interest rate path in

Figure 3.

To pinpoint the source of departure from Divine Coincidence in HANK, we rely on decompo-

sition (65). The markup wedge does not respond to a demand shock. Similarly, Figure 4 highlights

that the two penalty wedges, which vanish under discretion, contribute little to the optimal on-

impact response of the output gap, which is nearly identical when policy is set under discretion.

Therefore, the departure from Divine Coincidence in response to a demand shock is quantitatively

driven—at least on impact—by the redistribution wedge.

6 Conclusion and Broader Insights

This paper draws three main conclusions for the design of optimal monetary policy in the presence

of heterogeneous households. First, a utilitarian planner under discretion trades off aggregate

stabilization against a novel redistribution motive. This redistribution motive is a new source

of time inconsistency that substantially exacerbates inflationary bias. In HANK, policy under

discretion consequently leads to inflationary bias even with the appropriate employment subsidy

to correct the markup distortion in steady state. Under commitment, the utilitarian planner

recognizes that monetary policy is an inappropriate instrument to address this new source of

perceived suboptimality by promising zero inflation in the long run. Second, two sets of penalties

are necessary for monetary policy to be time consistent: the standard inflation penalty, which

must be augmented by distributional considerations, and new distributional penalties, which

penalize those individuals who benefit from discretionary policy. Abiding by these penalties

allows the planner to achieve zero inflation in the long-run. The commitment solution can still

be implemented by a planner under discretion, as long as she is confronted with the appropriate

penalties, or through an appropriate inflation targeting framework. Third, Divine Coincidence

breaks down, even in the absence of cost-push shocks, and optimal monetary stabilization policy

will account for the distributional impact of policies, trading off aggregate stabilization against
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distributional considerations.

Three broader insights emerge from our study of optimal policy in HANK economies.

1. HANK vs. RANK. Household heterogeneity has stark implications for optimal monetary

policy under discretion, where a new source of time inconsistency exacerbates inflationary

bias. New penalties are required to make monetary policy time consistent. On the other hand,

household heterogeneity in our model does not alter the optimality of 0 inflation in the long

run. And while it has implications for optimal stabilization policy, departures from RANK

are quantitatively small.

2. Joint aggregate and distributional impact of policy. Optimal policy is shaped by its joint

aggregate and distributional impact. In the stylized model of this paper, lowering rates

stimulates the economy and improves redistribution. However, this pattern may be differ-

ent in richer environments. While our approach and the logic of our results will extend to

these cases, the exact conclusions may not, which opens the door to future research. For

instance, lowering interest rates may benefit wealthy, low marginal utility households, plausi-

bly through labor market effects, credit market access, or differential inflation. Alternatively,

bailouts or unconventional monetary policy may stimulate the economy but harm redistribu-

tion by favoring wealthy, low marginal utility households. Through the logic developed in

this paper, a planner will have an incentive to run an underheated economy in both of these

scenarios, inducing deflationary bias under discretion and requiring different inflation and

distributional penalties to implement optimal policy under commitment.

3. Role of mandates. The commitment solution is one possible way of addressing the new

source of inflationary bias identified in this paper. In RANK economies, Rogoff (1985) argues

that increasing the weight on inflation in the central bank’s loss function (mandate) may be

valuable to reduce inflationary bias. In HANK economies, the analog to Rogoff’s solution

is to lower the weight on redistribution in the central bank’s loss function (mandate). We

study the design of central bank mandates when society values distributional considerations

in ongoing and future work. In Dávila and Schaab (2022), we develop a methodology to

decompose the normative considerations that determine the aggregate and redistribution

consequences of welfare assessments in general economies. In Dávila and Schaab (2023), we

leverage that methodology to explore the role of central bank mandates and how they impact

optimal monetary under discretion and commitment.
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Online Appendix (not for publication)

A Additional Model Details and Derivations

A.1 Labor Unions and Wage Rigidity

Each household supplies labor to all of k ∈ [0, 1] unions. We denote a household’s total hours

of work by nt =
∫ 1

0 nk,tdk. Each union pays the household a nominal wage Wk,t. The household

budget constraint therefore corresponds to

ȧt = rtat + zt
1
Pt

∫ 1

0
Wk,tnk,tdk + τt(zt)− ct. (54)

Each union k ∈ [0, 1] transforms hours supplied by households into a differentiated labor service

according to the linear aggregation technology

Nk,t =
∫∫

znk,tgt(a, z) da dz,

where Nk,t is expressed in units of effective labor. Each union also rations labor, so that all house-

holds work the same hours. In particular, this implies Nk,t = nk,t
∫∫

zgt(a, z) da dz = nk,t, after

normalizing cross-sectional average labor productivity to 1.

Labor packer. Unions sell their differentiated labor services to an aggregate labor packer. The

packer operates the CES aggregation technology

Nt =

( ∫ 1

0
N

εt−1
εt

k,t dk
) εt

εt−1

,

where the elasticity of substitution εt is potentially time-varying. We interpret time variation in the

desired wage mark-up of unions as a source of cost-push shocks, following standard practice (see,

e.g., Galí, 2015). The packer sells the aggregate labor bundle to firms at nominal wage rate Wt. The

labor packer’s cost-minimization problem is standard and yields the demand function and wage

index

Nk,t =
(Wk,t

Wt

)−εt Nt (55)

Wt =
( ∫ 1

0
W1−εt

k,t dk
) 1

1−εt (56)
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where Wk,t is the nominal wage rate charged by union k.

Wage rigidity. Nominal wages are sticky in our model. Each union k faces an adjustment cost

to change its wage. Formally, the union takes Wk,t as a state variable and controls how the wage

evolves by setting wage inflation πw
k,t, with

πw
k,t =

Ẇk,t

Wk,t
. (57)

The union’s adjustment cost is directly passed to union members as a quadratic utility cost, so

households’ instantaneous flow utility is formally given by

Ut

(
ct,
{

nk,t, πw
k,t

}
k∈[0,1]

)
= u(ct)− v

( ∫ 1

0
nk,t dk

)
+

δ

2

∫ 1

0
(πw

k,t)
2dk,

where v(·) captures pure disutility from working and δ modulates the strength of the wage

rigidity.48 The representation in the main text, i.e., equation (4), is valid in any equilibrium that

features symmetric unions, which we assume.

We now formalize the union’s wage setting problem to derive a New Keynesian wage Phillips

curve. We assume that the union chooses wages in order to maximize stakeholder value—the sum

of stakeholders’, i.e., union members’, utilities. That is, union k solves

max
πw

k,t

∫ ∞

0
e−
∫ t

0 ρsds
( ∫∫ [

u(ct(a, z; Wk,t))− v
( ∫ 1

0
nk,t dk

)
− δ

2

∫ 1

0
(πw

k,t)
2 dk

]
gt(a, z) da dz

)
dt, (58)

subject to equations (55) and (57). The union further internalizes the effect of its wage policy on its

members’ consumption—hence the explicit dependence of ct on Wk,t in equation (58). However,

since union k is small, it takes as given all macroeconomic aggregates, including the cross-sectional

household distribution.

Solving the union problem. To solve the union’s problem we associate it with the Lagrangian

L =
∫ ∞

0
e−ρt

∫ [
u
(

ct (a, z; Wk,t)

)
− v
( ∫ 1

0

(
Wk,t

Wt

)−ε

Ntdk
)
− δ

2

∫ 1

0

(
πw

k,t

)2

dk
]

gt (a, z) d (a, z) dt

+
∫ ∞

0
e−ρt

[
µtπ

w
k,tWk,t − ρµtWk,t + Wk,tµ̇t

]
dt + µ0Wk,0,

48 There are three natural ways to model wage adjustment costs: as an explicit resource cost that is passed on to
households, as labor productivity distortions, or as a direct utility cost. In the main text, we adopt the utility cost
specification largely because it is most tractable.
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where in the second line we already integrated by parts. Thus, the two first-order conditions are

given by

0 =
∫

u′(ct)
∂ct(a, z; Wk,t)

∂Wk,t
gt (a, z) d (a, z) + εv′(Nt)

Nt

Wt
+ µtπ

w
k,t − ρµt + µ̇t

0 = −δπw
k,t + µtWk,t,

as well as the initial condition µ0 = 0. By the envelope theorem, we have

∂ct(a, z; Wk,t)

∂Wk,t
=

1
Pt
(1 + τL)(1− ε)ztNt.

Defining

Λt =
∫

zu′(ct (a, z))gt (a, z) d (a, z) ,

the first FOC becomes

0 = (1 + τL)(1− ε)wtNtΛt + εv′(Nt)Nt + µtẆt − ρWtµt + Wtµ̇t.

Differentiating the second FOC yields

µtẆt + Wtµ̇t = δπ̇w
t .

Plugging back into the first FOC, we arrive at

0 = (1 + τL)(1− ε)wtNtΛt + εv′(Nt)Nt − ρδπw
t + δπ̇w

t ,

which yields the result after rearranging. In particular, when equilibrium is initialized at a symmet-

ric nominal wage distribution {Wk,0}, then the wage policies that result from the union’s problem

maintain symmetry of equilibrium. That is, wages and labor allocations remain equalized across

unions, with Wk,t = Wt and Nk,t = Nt. In such a symmetric equilibrium, the non-linear New

Keynesian wage Phillips curve is then as in the main text.

A.2 Fiscal Rebates

Given union wage receipts ztWk,tnk,t to a household with labor productivity zt, the government

pays the household a proportional income subsidy τLztWk,tnk,t, which the union internalizes when

setting wages. Running a balanced budget, it pays for these outlays with a lump-sum tax based

on aggregate employment. We assume that both the subsidy and the tax are proportional to a

household’s labor productivity. That is, the net fiscal rebate that a household with idiosyncratic
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labor productivity z receives is zero, with

Ptτt(z) =
∫ 1

0
τLzWk,tnk,tdk− τLzWtNt = 0.

A.3 Natural Output and the Flexible Wage Limit

We define natural output as the output that obtains in the limit of flexible wages, i.e., as δ → 0.

With isoelastic (CRRA) preferences u(c) = 1
1−γ c1−γ and v(n) = 1

1+η n1+η , natural output in HANK

is given by

Ỹt =

(
εt − 1

εt
(1 + τL)A1+η

t

∫∫ zu′(ct(a, z))
u′(Ct)

gt(a, z) da dz
) 1

γ+η

, (59)

where the integral term reflects labor rationing. In the RANK limit, where this integral term

vanishes, natural output is simply given by ỸRA
t =

(
εt−1

εt
(1 + τL)A1+η

t
) 1

γ+η .

As δ → 0, equilibrium requires that 0 = εt−1
εt

(1 + τL)wtΛt − v′(Nt). That is, the augmented

labor wedge is 0 in the flexible wage allocation, and we obtain natural output from this equation.

A.4 Competitive Equilibrium and Implementability

To conclude our discussion of the model details, we now state formally the implementability

conditions for the Ramsey problem in continuous time. As part of our discussion, we also provide

additional details on the generator At and its adjoint A∗t , which we use in the main text. Finally, in

Section A.5, we develop a discretized representation of these implementability conditions, which

we leverage in our proofs below.

A competitive equilibrium of our baseline HANK model can be characterized by three blocks

of equations. First, there is an individual block, explained in the text, which corresponds to

the households’ HJB, their optimality condition for consumption, and the Kolmogorov forward

equation:

ρVt(a, z) = u(ct(a, z))− v(Nt)−
δ

2
(πw

t )
2 + ∂tVt(a, z) +AtVt(a, z)

u′(ct(a, z)) = ∂aVt(a, z)

∂tgt(a, z) = A∗t gt(a, z),

where At is the infinitesimal generator of the process (at, zt). Intuitively, it captures an agent’s

perceived law of motion of the process d(at, zt). It is analogous to a transition matrix in discrete

time, and it is defined by

At ft(a, z) =
(

rta + zwtNt − ct(a, z)
)

∂a ft(a, z) +Az ft(a, z), (60)
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for any function ft(a, z) : R3 → R, where Az is an additively separable component that captures

perceived transition dynamics of earnings risk. We leave the structure of Az fully general in our

derivations, except that we assume it to be independent from policy. Our baseline results currently

do not apply to the case of counter-cyclical earnings risk that responds to monetary policy, for

example, but extending our approach to this more general case is straightforward.

We denote the adjoint of the infinitesimal generator by A∗t . The adjoint is defined by

A∗t ft(a, z) = −∂a

[(
rta + zwtNt − ct(a, z)

)
ft(a, z)

]
+A∗z ft(a, z), (61)

where A∗z is the adjoint of Az.

Second, there is an aggregate block, which includes the New Keynesian wage Phillips curve,

the production technology, the wage equation, the Fisher equation, and and equation that relates

price and wage inflation:

π̇w
t = ρtπ

w
t +

εt

δ

∫∫
nt

(
εt − 1

εt
(1 + τL)wtzu′(ct)− v′(nt)

)
gt(a, z) da dz

Yt = AtNt

wt = At

rt = it − πt

πt = πw
t −

Ȧt

At
.

Finally, we have the market clearing conditions in the goods and bond markets, given by

Yt = Ct =
∫∫

ct (a, z) gt (a, z) da dz

0 = Bt =
∫∫

agt (a, z) da dz.

The following Lemma defines the set of implementability conditions that act as constraints for a

Ramsey planner.

Lemma 12. (Implementability conditions) The set of equations that define an equilibrium can be
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expressed as implementability conditions for a standard primal Ramsey problem as follows:

ρVt(a, z) = u(ct(a, z))− v(Nt)−
δ

2
(πw

t )
2 + ∂tVt(a, z) +AtVt(a, z)

u′(ct(a, z)) = ∂aVt(a, z)

∂tgt(a, z) = A∗t gt(a, z)

0 = AtNt −
∫∫

ct(a, z)gt(a, z) da dz

π̇w
t = ρπw

t +
ε

δ

[
ε− 1

ε
(1 + τL)At

∫∫
zu′(ct(a, z))gt(a, z)dadz− v′(Nt)

]
Nt.

We conclude this subsection by characterizing the operatorMt(a, z), which is an important input in

the targeting rules we present in the main text (and in the proofs below). In particular, the operator

admits the representation

Mt(a, z) = (ρ− rt + ∂act(a, z)− ∂t −At)
−1 ∂act(a, z),

where the term ρ− rt + ∂act(a, z) = ρ− ∂ast(a, z) captures time discounting net of the interest rate

on the assets not consumed.

The terms ∂t and At account for changes in aggregate conditions over time, ∂t, and for the

expected transition of the household across states, At. Finally, ∂act(a, z) is simply the instantaneous

marginal propensity to consume (MPC).

The difference between the private and the social marginal of wealth, Mt(a, z)µt, can be

interpreted as the present discounted value of the contribution of future consumption to aggregate

excess demand induced by an increase in the household’s wealth at time t. Intuitively, a marginal

increase in wealth translates into higher aggregate demand at time t and in the future, depending

on the household’s propensities to consume and save out of wealth. Such spending is socially

beneficial when µt > 0 or costly when µt < 0—an effect that only the planner internalizes. Note

that a planner under discretion accounts for the social impact of future consumption via the path of

future multipliers µt, despite taking future policy and expectations as given.

A.5 Discretized Competitive Equilibrium Conditions

We now develop a discretized representation of competitive equilibrium and the associated im-

plementability conditions for the Ramsey problem. This discretized representation will elucidate

how boundary conditions are treated formally by the Ramsey planner. In particular, we leverage

this representation to explicitly account for households’ borrowing constraint when deriving our
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proofs below.

For any function ct(a, z), we discretize both in the individual state space (a, z) and in time

t. We denote this discretization by cn for n = 0, . . . , N. In particular, cn is a J × 1 vector, so that

ci,n = ctn(ai, zi) associated with grid point i and date tn. We also use notation cn,[2:J], for example, to

denote the (J − 1)× 1 vector consisting of elements 2 through J in cn.

We follow Achdou et al. (2022) and work with a consistent finite-difference discretization

of our continuous-time heterogeneous-agent equations, which of course converge in the limit to

our baseline HANK economy. We follow this approach in the remainder of this appendix. The

following Lemma summarizes the discretized competitive equilibrium conditions of our model,

using a finite-difference discretization given a policy path i = {in}n≥0. The proof follows along the

lines of Achdou et al. (2022) and Schaab and Zhang (2022), and we refer the interested reader to

those papers. This characterization will justify setting up the Ramsey problem using the following

discretized equations as implementability conditions.

Lemma 13. A consistent finite-difference discretization of the implementability conditions of our baseline

HANK model is as follows. For the Hamilton-Jacobi-Bellman equation, we have

ρVn =
Vn+1 − Vn

dt
+ u

(
ina1 − πw

n a1 +
An+1−An

dtAn
a1 + z1AnNn

cn,[2:J]

)
− v(Nn)−

δ

2
(πw

n )
2

+

(
0

ina[2:J] − πw
n a[2:J] +

An+1−An
dtAn

a[2:J] + z[2:J]AnNn − cn,[2:J]

)
· Da

da
Vn + AzVn

For the consumption first-order condition of the household, we simply have

u′(cn,[2:J]) =

(
Da

da
Vn+1

)
[2:J]

For the Kolmogorov forward equation, we have

gn+1 − gn

dt
=(Az)′gn +

D′a
da

[(
0

ina[2:J] − πw
n a[2:J] +

An+1−An
dtAn

a[2:J] + z[2:J]AnNn − cn,[2:J]

)
· gn

]

Finally, for the resource constraint we simply have

AnNn = c′ngndx
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and for the Phillips curve

πw
n+1 − πw

n

dt
= ρπw

n +
ε

δ

[
ε− 1

ε
(1 + τL)An(z · u′(cn))

′gndx− v′(Nn)

]
Nn

and we have already used cn,1 = ina1 − πw
n a1 +

An+1−An
dtAn

a1 + z1AnNn.

In this Lemma, we denote by Da the finite-difference matrix that discretizes the partial derivative

operator ∂a. We also denote by Az the (finite-difference) matrix that discretizes the operator Az

associated with the earnings process. Finally, dx denotes the integration measure of households.

See Schaab and Zhang (2022) for details.

Crucially, the discretized system of equations in the above Lemma properly accounts for

the household borrowing constraint, leveraging results from Achdou et al. (2022). In particular,

they prove that in the simple Huggett economy with two earnings states the only point in the

state space where the borrowing constraint binds is (a, zL). We use this result here to plug in the

borrowing constraint directly at that discretized point. While we have not formally proven that

their representation extends to our HANK economy, we verify its validity numerically ex-post.

And since the stationary equilibrium of our model is almost identical to theirs, there is little reason

to expect any sharp discrepancies.
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B Appendix for Section 4

We invert our presentation of proofs and formal derivations for Sections 3 and 4. In this Appendix,

we start by setting up and characterizing the standard Ramsey problem, which is an instructive

building block for the proofs that follow.

In particular, we state the continuous-time Ramsey problem in Section B.1 and present an

illustrative but heuristic derivation of its first-order conditions. To formally account for boundary

conditions, we then introduce and characterize the discretized standard Ramsey problem in Section

B.2, leveraging the discretized representation of equilibrium from Appendix A.5.49

B.1 Standard Ramsey Problem in Continuous Time

In this section, we restate for convenience the standard Ramsey problem in continuous time

and develop a heuristic derivation of its optimality conditions. We defer a formal treatment of

boundary conditions to Appendix B.2. To adopt more compact notation, we drop time subscripts

and make implicit the dependence of individual variables on states, so that ct(a, z) simply becomes

c. Furthermore, we now reserve subscripts to denote partial derivatives, so that ∂tct(a, z) becomes

ct.

The functional Lagrangian associated with the standard primal Ramsey problem is given by

LSP(g0) =
∫ ∞

0
e−ρt

{ ∫∫ {[
u(c)− v(N)− δ

2
(πw)2

]
g

+ φ

[
− ρV + Vt + u(c)− v(N)− δ

2
(πw)2 +AV

]

+ χ

[
u′(c)−Va

]

+ λ

[
− gt +A∗g

]}
dadz

− µ

[ ∫ ∫
cgdadz− AN

]

+ θ

[
− π̇w + ρπw +

ε

δ

(
ε− 1

ε
(1 + τL)AΛ− v′(N)

)
N
]}

dt

49 In recent work, González et al. (2021) follow a similar approach, first casting the optimal policy problem in
continuous time, and then discretizing the resulting Ramsey plan conditions. The main difference between our paper
and theirs is that they directly take their discretized system of equations to Dynare to obtain a numerical characterization
of the Ramsey plan. We leverage the discretized equations to prove the main results of our paper. Our primary interest
in discretizing the Ramsey plan conditions is to properly take into account the borrowing constraint faced by households,
as well as the distribution mass point that emerges at the borrowing constraint.
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Heuristic derivation. We provide an illustrative but heuristic derivation of the optimality con-

ditions, abstracting from formally taking into account boundary conditions. This derivation is

valuable because it is relatively brief and accessible. The proofs that follow become more complex

only insofar as they formally take into account boundary conditions.

The following auxilliary results will be helpful. Integrating various partial derivatives in the

above Lagrangian by parts, we have

∫ ∞

0

∫∫ [
e−ρtφVt

]
da dz dt =

∫ [
− φ(0, a, z)V(0, a, z) + ρ

∫ ∞

0
e−ρtφVdt−

∫ ∞

0
e−ρtφtVdt

]
da dz

∫ ∞

0

∫∫ [
e−ρtλgt

]
da dz dt =

∫ [
− λ(0, a, z)g(0, a, z) + ρ

∫ ∞

0
e−ρtλgdt−

∫ ∞

0
e−ρtλtgdt

]
da dz

∫ ∞

0

[
e−ρtθπt

]
dt = −θ(0)π(0) + ρ

∫ ∞

0
e−ρtθπdt−

∫ ∞

0
e−ρtθtπdt.

Next, for the adjoint, we have

−
∫ ∞

0
e−ρt

∫∫
λA∗gda dz dt = −

∫ ∞

0
e−ρt

∫∫
(Aλ)gd(a, z)dt,

where we drop boundary terms, which we consider formally in the following subsections. And for

the generator, we have

∫ ∞

0
e−ρt

∫
φAVda dz dt =

∫ ∞

0
e−ρt

∫∫
VA∗φda dz dt.

Finally, for the consumption FOC, we simply have

−
∫ ∞

0
e−ρt

∫∫
χVada dz dt =

∫ ∞

0
e−ρt

∫∫
χaVda dz dt,

where we also drop boundary terms.
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The functional Lagrangian can thus be rewritten as

LSP(g0) =
∫ ∞

0
e−ρt

{ ∫∫ {[
u(c)− µc− v(N)− δ

2
(πw)2

]
g

−Vφt + VA∗φ + φ

[
u(c)− v(N)− δ

2
(πw)2

]
+ χu′(c) + χaV

+ gλt − ρλg + gAλ

}
dadz

+ µAN

+ θtπ
w + θ

ε

δ

(
ε− 1

ε
(1 + τL)AΛ− v′(N)

)
N

}
dt.

We now consider a general functional perturbation around a candidate optimal Ramsey plan, and

parametrize this perturbation by α ∈ R. Since α is a scalar, the maximum principle then implies

that our candidate plan can only be optimal if LSP
α (g0, α) |α=0= 0.

We have

LSP(g0, α) =
∫ ∞

0
e−ρt

{ ∫∫ {[
u(c + αhc)− µ(c + αhc)− v(N + αhN)−

δ

2
(πw + αhπ)

2
]
(g + αhg)

− (V + αhV)φt + (V + αhV)A∗(α)φ

+ φ

[
u(c + αhc)− v(N + αhN)−

δ

2
(πw + αhπ)

2
]

+ χu′(c + αhc) + χa(V + αhV)

+ (g + αhg)λt − ρλ(g + αhg) + (g + αhg)A(α)λ
}

dadz

+ µA(N + αhN) + θt(π
w + αhπ)

+ θ
ε

δ

(
ε− 1

ε
(1 + τL)A

∫∫
u′(c + αhc)(g + αhg)dadz− v′(N + αhN)

)
(N + αhN)

}
dt.

We now differentiate and take the limit α→ 0. Setting the resulting expression to 0, we have the

OA-11



following first-order necessary condition for optimality:

0 =
∫ ∞

0
e−ρt

{ ∫∫ {[
u′(c)hc − µhc − v′(N)hN − δπwhπ

]
g + hg

[
u(c)− µc− v(N)− δ

2
(πw)2

]

− hVφt + hVA∗(0)φ + V
d

dα
A∗(0)φ + φ

[
u′(c)hc − v′(N)hN − δπwhπ

]
+ χu′′(c)hc + χahV

+ hgλt − ρλhg + hgA(0)λ + g
d

dα
A(0)λ

}
dadz

+ µAhN + θthπ

+ θ
ε

δ

(
ε− 1

ε
(1 + τL)A

∫∫
[u′(c)hg + u′′(c)ghc]dadz− v′(N)hN

)
N

+ hNθ
ε

δ

(
ε− 1

ε
(1 + τL)AΛ− v′(N)

)}
dt,

where we have

d
dα
A(0) = (ahr + zhwN + zwhN − hc)∂a

and, again dropping boundary terms,

V
d

dα
A∗(0)φ = φ

d
dα
A(0)V

= φ(ahr + zhwN + zwhN − hc)Va.

Finally, we group terms by hc, hg, etc., and invoke the fundamental lemma of the calculus of

variations. We directly obtain the optimality conditions that characterize the optimal Ramsey plan

of Proposition 4 in the interior of the state space, i.e., abstracting from boundary conditions.

B.2 Discretized Standard Ramsey Problem

A key challenge in solving Ramsey problems with heterogeneous agents is to formally account for

boundary conditions, in particular the borrowing constraint at a. We find it convenient to derive

all proofs that explicitly account for the boundary of the state space in a discretized version of

our model. To that end, we work with the discretized representation of equilibrium developed in

Appendix A.5.

The standard primal Ramsey problem in our baseline HANK model is associated with the
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discretized Lagrangian

LSP(g0) = min
{φn,χn,λn,µn,θn}

max
{Vn,cn,[2:J],gn,πw

n ,Nn,in}

N−1

∑
n=0

e−ρtn

{{

+ u

(
ina1 − πw

n a1 +
An+1−An

dtAn
a1 + z1AnNn

cn,[2:J]

)′
gt − v(Nn)1′gt −

δ

2
(πw

n )
21′gt

+ φ′n

[
− ρVn +

Vn+1 − Vn

dt
+ u

(
ina1 − πw

n a1 +
An+1−An

dtAn
a1 + z1AnNn

cn,[2:J]

)
− v(Nn)−

δ

2
(πw

n )
2

]

+ φ′n AzVn + ∑
i≥2

φi,n

(
inai − πw

n ai +
An+1 − An

dtAn
ai + zi AnNn − cn,i

)Da,[i, :]

da
Vn

+ χ′n,[2:J]

[
u′(cn,[2:J])−

(
Da

da
Vn+1

)
[2:J]

]

− λ′n
gn+1 − gn

dt
+ λ′n(Az)′gn

+ ∑
i≥2

λn,i
D′a,[i, :]

da

[(
0

ina[2:J] − πw
n a[2:J] +

An+1−An
dtAn

a[2:J] + z[2:J]AnNn − cn,[2:J]

)
· gn

]}
dx

+ µn

[
c′ngndx− AnNn

]

+ θn

[
−

πw
n+1 − πw

n

dt
+ ρπw

n +
ε

δ

(
ε− 1

ε
(1 + τL)An(z · u′(cn))

′gndx− v′(Nn)

)
Nn

]}
dt,

where the planner takes as given an initial condition for the cross-sectional distribution, g0.

As in Appendix A.5, we fix from the beginning that unemployed households at the borrowing

constraint always consume their income, that is

cn,1 = ina1 − πw
n a1 +

An+1 − An

dtAn
a1 + z1AnNn

for all n. The planner takes this as given and does not get to consider perturbations in cn,1 for any n.

We want to emphasize at this point how important it is exactly which finite-difference stencils

are used for the discretization. For discretization in the time dimension, for example, the above

Lagrangian assumes a semi-implicit backwards discretization of ∂tVt in the HJB. And it assumes an

explicit forwards discretization of ∂tgt in the KF equation. For the aggregates, it assumes an explicit

forwards discretization for Ȧt and also an explicit forwards discretization for π̇w
t . These assumptions

also correspond to the appropriate stencils we use numerically to implement our results.
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We also want to echo Achdou et al. (2022) at this point, recalling that the correct discretization

stencil for the KF equation in the wealth dimension is given by

(Aa)′g =
1
da

(s · Da)
′g =

1
da

D′a(s · g).

That is, the correct stencil uses the tranpose D′a rather than, as one might have expected, −Da(s · g).

B.3 Auxilliary Results

Before tackling the main proof of this appendix, we state several auxilliary results that will be

helpful below. Most of these results follow trivially by applying well-known properties of matrix

algebra. We consequently provide only some of the proofs explicitly.

Lemma 14. The following matrix algebra tricks will be useful. Let x, y and z be J × 1 vectors and A a J × J

matrix. Transposition satisfies

(Ax)′ = x′A′.

We also have

x′Ay = ∑
i

xi A[i,:]y = ∑
i

xi ∑
j

A[i,j]yj = ∑
j

yj ∑
i

A′[j,i]xi = y′A′x.

We also have

x′(y · A)z = x′(y · (Az)) = (x · y)′Az = (Az)′(x · y) = z′A′(x · y) = z′(y · A)′x.

Taking derivatives, we have

d
dx

x′Ay = Ay

d
dx

y′Ax = (y′A)′ = A′y.
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Lemma 15. In the Lagrangian, the HJB term can be rearranged as follows:

1
da ∑

i≥2
φisiDa,[i,:]V =

1
da ∑

i≥1
φisiDa,[i,:]V

=
1
da

φ′(s · Da)V

=
1
da

V ′(s · Da)
′φ

=
1
da

V ′D′a(s ·φ),

where Da is the upwind finite-difference matrix in the a dimension. We sometimes use s · Da = Aa.

Proof. We have

∑
i≥2

φisiDa,[i, :]V = ∑
i≥2

φisi ∑
j≥1

Da,[i, j]Vj

= ∑
i≥2

φisi ∑
j≥1

D′a,[j, i]Vj

= ∑
j≥1

Vj ∑
i≥2

D′a,[j, i]φisi

= ∑
j≥1

Vj ∑
i≥1

D′a,[j, i]φisi

= ∑
j≥1

VjD′a,[j, :](s ·φ)

= V ′D′a(s ·φ),

where D′a,[j, :] denotes the jth row of the matrix D′a. �

Lemma 16. The correct adjoint operation, i.e., the one we use to define A∗ ≈ A′, is given by

D′a(s ·φ) = (Aa)′φ.
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In particular, we have

λ′(Aa)′g = λ′D′a(s · g)

= (s · g)′Daλ

= g′(s · Da)λ

= (Daλ)′(s · g).

Lemma 17. We can “integrate by parts” the FOC term in the Lagrangian to arrive at

1
da

χ′t(n),[2:J]

(
DaVt(n+1)

)
[2:J]

=
1
da

V ′t(n+1)D
′
a

(
0

χ[2:J],t(n)

)
.

Proof. We have

1
da ∑

i≥2
χi,t(n)Da,[i,:]Vt(n+1) =

1
da ∑

i≥2
χi,t(n) ∑

j≥1
Da,[i,j]Vj,t(n+1)

=
1
da ∑

j≥1
Vj,t(n+1) ∑

i≥2
D′a,[j,i]χi,t(n)

=
1
da ∑

j≥1
Vj,t(n+1)D

′
a,[j,:]

(
0

χ[2:J],t(n)

)

=
1
da

V ′t(n+1)D
′
a

(
0

χ[2:J],t(n)

)
.

It is important to note that we cannot roll the sum ∑i≥2 forward to simply read ∑i≥1. This is only

possible for the terms that include savings, using the fact that s1 = 0. �

Lemma 18. We can “integrate by parts” in the time dimension as follows. For any xn, we have

N−1

∑
n=0

e−ρtn xn+1 = eρdt
N−1

∑
n=0

e−ρtn xn − eρdtx0 + eρdte−ρtN xN .

We prove the following results below. In particular, this implies

N−1

∑
n=0

e−ρtn φ′nVn+1 =
N−1

∑
n=0

e−ρtn eρdtφ′n−1Vn − eρdtφ′−1V0 + eρdte−ρtN φN−1VN ,
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as well as

−
N−1

∑
n=0

e−ρtn λ′n
gn+1 − gn

dt
=

N−1

∑
n=0

e−ρtn
λ′n − eρdtλ′n−1

dt
gn

+
1
dt

eρdtλ′−1g0 −
1
dt

eρdte−ρtN λ′N−1gN ,

and

N−1

∑
n=0

e−ρtn χ′n,[2:J]

(
Da

da
Vn+1

)
[2:J]

=
N−1

∑
n=0

e−ρtn eρdtχ′n−1,[2:J]

(
Da

da
Vn

)
[2:J]

− eρdtχ′−1,[2:J]

(
Da

da
V0

)
[2:J]

+ eρdte−ρtN χ′N−1,[2:J]

(
Da

da
VN

)
[2:J]

.

Finally, we have

−
N−1

∑
n=0

e−ρtn θn
πw

n+1 − πw
n

dt
=

N−1

∑
n=0

e−ρtn
θn − eρdtθn−1

dt
πw

n +
1
dt

eρdtθ−1πw
0 −

1
dt

eρdte−ρtN θN−1πw
N .

Proof. We have

∞

∑
n=0

e−ρt(n)φ′t(n)
1
dt

Vt(n+1) =
∞

∑
n=0

e−ρt(n)eρt(n+1)e−ρt(n+1)φ′t(n)
1
dt

Vt(n+1)

=
∞

∑
n=0

e−ρt(n+1)eρt(n+1)−ρt(n)φ′t(n)
1
dt

Vt(n+1)

=
∞

∑
n=1

e−ρt(n)eρdtφ′t(n−1)
1
dt

Vt(n)

=
∞

∑
n=1

e−ρt(n)eρdtφ′t(n−1)
1
dt

Vt(n) + e−ρt(0)eρdtφ′−1
1
dt

Vt(0) − e−ρt(0)eρdtφ′−1
1
dt

Vt(0)

=
∞

∑
n=0

e−ρt(n)eρdtφ′t(n−1)
1
dt

Vt(n) − e−ρt(0)eρdtφ′−1
1
dt

Vt(0).
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Similarly, we can rearrange

∞

∑
n=0

e−ρt(n)χ′t(n),[2:J]

(
Da

da
Vt(n+1)

)
[2:J]

=
∞

∑
n=0

e−ρt(n)eρt(n+1)e−ρt(n+1)χ′t(n),[2:J]

(
Da

da
Vt(n+1)

)
[2:J]

=
∞

∑
n=0

e−ρt(n+1)eρt(n+1)−ρt(n)χ′t(n),[2:J]

(
Da

da
Vt(n+1)

)
[2:J]

=
∞

∑
n=1

e−ρt(n)eρdtχ′t(n−1),[2:J]

(
Da

da
Vt(n)

)
[2:J]

=
∞

∑
n=0

e−ρt(n)eρdtχ′t(n−1),[2:J]

(
Da

da
Vt(n)

)
[2:J]
− e−ρt(0)eρdtχ′−1,[2:J]

(
Da

da
Vt(0)

)
[2:J]

.

Finally, notice that

eρdtφ′t(n−1)
1
dt

Vt(n) = (1 + ρdt)φ′t(n−1)
1
dt

Vt(n)

= φ′t(n−1)
1
dt

Vt(n) + ρφ′t(n−1)Vt(n).

Lastly,

−
∞

∑
n=0

e−ρt(n)λ′t(n)
gt(n+1) − gt(n)

dt(n)
= −

∞

∑
n=0

e−ρt(n) 1
dt

λ′t(n)gt(n+1) +
∞

∑
n=0

e−ρt(n) 1
dt

λ′t(n)gt(n)

= − 1
dt

∞

∑
n=0

e−ρt(n)eρt(n+1)e−ρt(n+1)λ′t(n)gt(n+1) +
∞

∑
n=0

e−ρt(n) 1
dt

λ′t(n)gt(n)

= − 1
dt

eρdt
∞

∑
n=0

e−ρt(n+1)λ′t(n)gt(n+1) +
∞

∑
n=0

e−ρt(n) 1
dt

λ′t(n)gt(n)

= − 1
dt

eρdt
∞

∑
n=1

e−ρt(n)λ′t(n−1)gt(n) +
∞

∑
n=0

e−ρt(n) 1
dt

λ′t(n)gt(n).

And so we get

= − 1
dt

eρdt
∞

∑
n=1

e−ρt(n)λ′t(n−1)gt(n) +
1
dt

eρdte−ρt(0)λ′t(−1)gt(0) −
1
dt

eρdte−ρt(0)λ′t(−1)gt(0) +
∞

∑
n=0

e−ρt(n) 1
dt

λ′t(n)gt(n)

= − 1
dt

eρdt
∞

∑
n=0

e−ρt(n)λ′t(n−1)gt(n) +
1
dt

eρdte−ρt(0)λ′t(−1)gt(0) +
∞

∑
n=0

e−ρt(n) 1
dt

λ′t(n)gt(n)

=
∞

∑
n=0

e−ρt(n)
(

1
dt

λ′t(n) −
1
dt

eρdtλ′t(n−1)

)
gt(n) +

1
dt

eρdte−ρt(0)λ′t(−1)gt(0)

=
∞

∑
n=0

e−ρt(n)
(λ′t(n) − λ′t(n−1)

dt
− ρλ′t(n−1)

)
gt(n) +

1
dt

eρdte−ρt(0)λ′t(−1)gt(0).
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Finally, we drop the second term on the RHS because gt(0) is fixed as an initial condition and so it

does not respond to d
dθ , which is precisely why the KFE is not a forward-looking constraint. �

Lemma 19. In the continuous time limit as dt→ 0, we have

eρdt ≈ 1 + ρdt.
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B.4 Proof of Proposition 4

We are now ready to present our main proof. We use the auxilliary results above to rewrite the

discretized Lagrangian that corresponds to the standard primal Ramsey problem of Section 4 as

LSP(g0) = min
{φn,χn,λn,µn,θn}

max
{Vn,cn,[2:J],gn,πw

n ,Nn,in}

N−1

∑
n=0

e−ρtn

{{
u

(
ina1 − πw

n a1 +
An+1−An

dtAn
a1 + z1AnNn

cn,[2:J]

)′
gn

+ µn

(
ina1 − πw

n a1 +
An+1−An

dtAn
a1 + z1AnNn

cn,[2:J]

)′
gn − v(Nn)1′gn −

δ

2
(πw

n )
21′gn

−
φ′n − eρdtφ′n−1

dt
Vn + φ′n

[
− ρVn + u

(
ina1 − πw

n a1 +
An+1−An

dtAn
a1 + z1AnNn

cn,[2:J]

)
− v(Nn)−

δ

2
(πw

n )
2

]

+ φ′n AzVn +
1
da

V ′n(φn · Da)
′
(

0

ina[2:J] − πw
n a[2:J] +

An+1−An
dtAn

a[2:J] + z[2:J]AnNn − cn,[2:J]

)

+ χ′n,[2:J]u
′(cn,[2:J])− eρdt 1

da
V ′nD′a

(
0

χn−1,[2:J]

)

+
λ′n − eρdtλ′n−1

dt
gn + λ′n(Az)′gn

+
1
da

(Daλt)
′
[(

0

ina[2:J] − πw
n a[2:J] +

An+1−An
dtAn

a[2:J] + z[2:J]AnNn − cn,[2:J]

)
· gn

]}
dx

− µn AnNn

+
θn − eρdtθn−1

dt
πw

n + θnρπw
n − θn

ε

δ
v′(Nn)Nn

+ θn
ε

δ
Nn

ε− 1
ε

(1 + τL)An(z · gn)
′u′
(

ina1 − πw
n a1 +

An+1−An
dtAn

a1 + z1AnNn

cn,[2:J]

)
dx

}
dt

− eρdtφ′−1V0dx + eρdte−ρtN φN−1VNdx

+ eρdt 1
da

V ′0D′a

(
0

χ−1,[2:J]

)
dxdt− eρdte−ρtN V ′N D′a

(
0

χN−1,[2:J]

)
dxdt

+ eρdtλ′−1g0dx− eρdte−ρtN λ′N−1gNdx

+ eρdtθ−1πw
0 − eρdte−ρtN θN−1πw

N .

In the spirit of Marcet and Marimon (2019), we have reordered the forward-looking constraints—

this corresponds to summation (integration) by parts. The resulting “boundary” terms in the last
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few lines of the above Lagrangian are the key objects at the heart of the time-0 problem, which we

discuss in Section 4.

To conclude our proof of Proposition 4, we now take derivatives and characterize the necessary

first-order conditions. In particular, we do so for n ≥ 1 precisely in order to avoid the boundary

terms that give rise to the time-0 problem. In the continuous time limit as dt→ 0, these terms give

rise to the initial conditions φ0(a, z) = 0 and θ0 = 0, as we explain in our statement of Proposition 4

and the discussion in the main text. This follows straightforwardly from basic calculus of variations

(see e.g. Kamien and Schwartz, 2012). We revisit these boundary terms below when we prove the

timeless property of the timeless Ramsey plans.

Derivative Vn. We have

0 = −
φ′n − eρdtφ′n−1

dt
− ρφn + (Az)′φn +

1
da

(φn · Da)
′sn − eρdt 1

da
D′a

(
0

χn−1,[2:J]

)
.

Using our auxilliary results, we have (φn · Da)′sn = (sn · Da)′φn = (Aa)′φn, and so

0 = −
φ′n − eρdtφ′n−1

dt
− ρφn + A′φn − eρdt 1

da
D′a

(
0

χn−1,[2:J]

)
.

Derivative gn. We have

0 =u(cn) + µncn − v(Nn)1−
δ

2
(πw

n )
21 +

λ′n − eρdtλ′n−1

dt
+ (λ′n(Az)′)′

+
d

dgn

[
1
da

(Daλn)
′[sn · gn]

]
+ θnNt

ε

δ

ε− 1
ε

(1 + τL)Anz · u′(cn).

Now we work out the remaining derivative,

d
dgn

[
1
da

(Daλn)
′[sn · gn]

]
=

1
da

d
dgn

[(
s′n · (Daλn)

′
)

gn

]

=
1
da

d
dgn

[
g′n
(

sn · (Daλn)
)]

=
1
da

d
dgn

[
g′n
(
(sn · Da)λn

)]
=

1
da

(sn · Da)λn

= Aaλn.
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Thus, we have

0 =u(cn) + µncn − v(Nn)1−
δ

2
(πw

n )
21 +

λ′n − eρdtλ′n−1

dt
+ Aλn + θnNt

ε

δ

ε− 1
ε

(1 + τL)Anz · u′(cn).

Derivative cn,[2:J]. We now take the derivative with respect to cn,i for i ≥ 2. We have

0 =u′(cn,i)gn,i + µngn,i + u′(cn,i)φn,i + u′′(cn,i)χn,i + θnNn
ε

δ

ε− 1
ε

(1 + τL)Anziu′′(cn,i)gn,i

+
d

dcn,i

[
1
da

s′n(φn · Da)Vn

]
+

d
dcn,i

[
1
da

s′n · (Daλn)
′gn

]
.

Working out the remaining derivatives, we have

d
dcn,i

[
1
da

s′n(φn · Da)Vn

]
=

1
da

(
(φn · Da)Vn

)
[i]

dsn,i

dcn,i

= − 1
da

(
(φn · Da)Vn

)
[i]

= − 1
da

φn,i

(
DaVn

)
[i]

= − 1
da

φn,iDa,[i,:]Vn.

And similarly,

d
dcn,i

[
1
da

s′n · (Daλn)
′gn

]
=

d
dcn,i

[
1
da

g′n

(
sn · (Daλn)

)]
=

dsn,it

dcn,i

1
da

gn,i(Daλn)[i]

= − 1
da

gn,iDa,[i,:]λn.

Thus, we have

0 =u′(cn,i)gn,i + µngn,i + u′(cn,i)φn,i + u′′(cn,i)χn,i + θnNn
ε

δ

ε− 1
ε

(1 + τL)Anziu′′(cn,i)gn,i

− 1
da

φn,iDa,[i,:]Vn −
1
da

gn,iDa,[i,:]λn.
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Derivative πw
n . We have

0 =

[
− u′(cn,1)gn,1a1 − µngn,1a1 − δπw

n 1′gn − φn,1u′(cn,1)a1 − δπw
n φ′n1

]
dx

− θn
ε

δ

ε− 1
ε

(1 + τL)AnNnz1u′′(cn,1)gn,1a1dx

+

[
−∑

i≥2
φi,nai

Da,[i,:]

da
Vn + ∑

i≥2
λn,i

D′a,[i,:]

da

[(
0

−a[2:J]

)
· gn

]
dx

+
θn − eρdtθn−1

dt
+ ρθn.

Alternatively, we have

d
dπw

n

1
da

(Daλn)
′[sn · gn] =

d
dπw

n

1
da

(
sn · Daλn

)′
gn

=
d

dπw
n

1
da

g′n

(
sn · Daλn

)

=
1
da

g′n

(
dsn

dπw
n
· Daλn

)

=
1
da

g′n

((
0

−a[2:J]

)
· Daλn

)

= ∑
i≥1

gn,i

((
0

−a[2:J]

)
· Da

da
λn

)
[i]

= −∑
i≥2

gn,iai
Da,[i,:]

da
λn.

Thus, we have

0 =

[
− u′(cn,1)gn,1a1 − µngn,1a1 − δπw

n 1′gn − φn,1u′(cn,1)a1 − δπw
n φ′n1

]
dx

− θn
ε

δ

ε− 1
ε

(1 + τL)AnNnz1u′′(cn,1)gn,1a1dx

−∑
i≥2

φi,nai
Da,[i,:]

da
Vndx−∑

i≥2
gn,iai

Da,[i,:]

da
λndx +

θn − eρdtθn−1

dt
+ ρθn.
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Derivative in. The nominal interest rate derivative is very easy because it’s parallel to wage

inflation, except in the Phillips curve. That is, we have

0 =u′(cn,1)gn,1a1 + µngn,1a1 + φn,1u′(cn,1)a1 + ∑
i≥2

φi,nai
Da,[i,:]

da
Vn + ∑

i≥2
gn,iai

Da,[i,:]

da
λn

+ θn
ε

δ

ε− 1
ε

(1 + τL)AnNnz1u′′(cn,1)gn,1a1.

Derivative Nn. Finally, we take the derivative for aggregate labor. This yields

0 =

[
u′(cn,1)gn,1z1An + µngn,1z1An + φn,1u′(cn,1)z1An + ∑

i≥2
φi,nzi An

Da,[i,:]

da
Vn + ∑

i≥2
gn,izi An

Da,[i,:]

da
λn

]
dx

+ θn
ε

δ

ε− 1
ε

(1 + τL)AnNnz1u′′(cn,1)gn,1z1Andx

− v′(Nn)1′gndx− v′(Nn)φ
′
n1dx

− µn An + θn
ε

δ

(
ε− 1

ε
(1 + τL)An(z · u′(cn))

′gndx− v′(Nn)

)
− ε

δ
θnv′′(Nn)Nn.

These derivations conclude our proof. In particular, the first-order conditions we have now derived

are the exact, discretized analogs of the conditions we present in Proposition 4.

B.5 Stationary Ramsey Plan and Proof of Proposition 5

We now formally state the discretized characterization of the stationary Ramsey plan. We use the

fact that, in any stationary equilibrium, we simply have

u′(ci) =
1
da

Da,[i,:]V ,

for i ≥ 2.

Lemma 20. (Discretized Stationary Ramsey Plan) A consistent discretization of the stationary Ramsey

plan, with Ass = 1, is given by the following equations. For the value function, we have

0 = −1− eρdt

dt
φ− ρφ + A′φ− eρdt 1

da
D′a

(
0

χ[2:J]

)
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and for the distribution

0 =
1− eρdt

dt
λ + Aλ + u(c) + µc− v(N)− δ

2
(πw)2 + θN

ε

δ

ε− 1
ε

(1 + τL)z · u′(c).

For consumption, for i ≥ 2, we have

−u′′(ci)χi =

[
u′(ci) + µ + θN

ε

δ

ε− 1
ε

(1 + τL)ziu′′(ci)−
1
da

Da,[i,:]λ

]
gi.

The optimality condition for monetary policy, i.e., the nominal interest rate, is given by

0 =

(
u′(c1) + µ− 1

da
Da,[1,:]λ + θ

ε

δ

ε− 1
ε

(1 + τL)Nz1u′′(c1)

)
g1a1 + ∑

i≥1
φiaiu′(ci) + ∑

i≥1
giai

Da,[i,:]

da
λ.

We see here nicely how we need a boundary correction at the borrowing constraint. For inflation, we have

0 = −δπw − δπwφ′1dx +
1− eρdt

dt
θ + ρθ

where we used the optimality condition for monetary policy to drop terms. Finally, the optimality condition

for aggregate labor, i.e., aggregate economic activity, is given by

0 =

[(
u′(c1) + µ− 1

da
Da,[1,:]λ + θ

ε

δ

ε− 1
ε

(1 + τL)Nz1u′′(c1)

)
g1z1 + ∑

i≥1
φiziu′(ci) + ∑

i≥1
gizi

Da,[i,:]

da
λ

]
dx

− v′(N)− v′(N)φ′1dx− µ + θ
ε

δ

(
ε− 1

ε
(1 + τL)(z · u′(c))′gdx− v′(N)

)
− ε

δ
θv′′(N)N.

This representation follows from setting all equilibrium objects to constants, e.g., θn = θ. This

Lemma states necessary conditions that any stationary Ramsey plan must satisfy. It does not

speak to convergence to a stationary Ramsey plan. Crucially, this discretized representation of the

Ramsey plan provides a formal treatment of boundary conditions. We see exactly how the planner

takes into account the borrowing constraint that households face. And we see exactly where the

corresponding boundary terms enter the optimality conditions and targeting rules for optimal

monetary policy.

From the stationary counterpart of equation (30), it immediately follows that there is a key

necessary condition for the existence of a stationary Ramsey plan, given by
∫∫

∂aχss(a, z) da dz = 0.

We highlight this condition because it has an important economic interpretation in the context of

equation (30). It implies that the “births” and “deaths” of distributional penalties must average out

to zero in a stationary Ramsey plan. In additional derivations available upon request, we show

that this condition is satisfied in our baseline HANK model. This result has the interpretation that
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a planner does not want to over- or under-promise in the aggregate in terms of lifetime utilities.

Proof of Proposition 5. Note that in any stationary equilibrium we must have φ′1dx = 1, which

we show below. Now notice that

1− eρdt

dt
θ + ρθ → 1− 1− ρdt

dt
θ + ρθ = 0

in the limit as dt→ 0. Therefore, we must have πw = π = 0 at the stationary Ramsey plan.

B.6 The Timeless Ramsey Problem in Dual Form

The timeless Ramsey problem also admits a dual representation, which we introduce next. The

distinction between the primal and dual problems lies in the treatment of the constraints that

a planner faces. In the primal approach, the planner optimizes over allocations, prices, and

instruments given a set of constraints or implementability conditions. In the dual approach, the

planner explicitly optimizes over the policy instrument, in this case, interest rates, using the

implementability conditions to characterize the comparative statics of endogenous variables to

policy.50 The primal and dual representations of the timeless Ramsey problem have their distinct

advantages and we leverage both in our analysis.

Definition. (Timeless Dual Ramsey Problem) A timeless dual Ramsey problem solves

max
{it}

LTD(gss, φss, θss),

where LTD(gss, φss, θss) denotes the timeless dual Lagrangian, given an initial distribution gss as well as

initial promises φss and θss. The Lagrangian is defined as

LTD(gss, φss, θss) =
∫ ∞

0
e−ρt

∫∫ [
u(ct(a, z))− v(Nt)−

δ

2
(πw

t )
2
]

gt(a, z) da dz dt + T (φss, θss), (62)

where all endogenous variables are understood as functions of the policy path {it}.

Proposition 21. (Timeless Ramsey Problem Resolves Time-0 Problem under Primal and Dual)

Optimal policy under the timeless primal and dual Lagrangians resolves the time-0 problem. That is,

d
di

LTD
(

gss, φss, θss, iss, Zss

)
=

d
di

LTP
(

gss, φss, θss, iss, Zss

)
= 0. (63)

50 In simple terms, a useful analogy may be to interpret the dual approach as substituting constraints into the objective
of an optimization problem, and the primal approach as accounting for constraints as additional terms in a Lagrangian.
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Proposition 21 is a slightly more general variant of Proposition 6 in the main text. In the main text,

we exclusively discuss the primal form of the Ramsey problem. In this Appendix, we leverage the

duality between primal and dual because some results and proofs are easier to derive in one or the

other. Proposition 21 establishes that both the primal and dual timeless Ramsey problems resolve

the time-0 problem. We now prove this result.

B.7 Proof of Proposition 6

Our goal is to show that

dLTP(gss, φss, θss, iss, Zss)

di
= F

(
gss, φss, θss, iss, Zss

)
= 0. (64)

We proceed as follows: First, instead of working with the timeless primal Lagrangian, we leverage

the observation that d
di LTP = 0 if and only if the analogous perturbation for the timeless dual

Lagrangian is 0, i.e., d
di LTD = 0. We make this point in our discussion of the dual approach below,

noting the generic duality between primal and dual representations of the Ramsey problem. Second,

we will prove that this perturbation is 0 for a given d
dik

, i.e., for a one-time perturbation in the

interest rate at time k. We can then simply “stack” up to arrive at any perturbation d
di .

For our baseline HANK model, dLTD

dik
takes the form

0 =
d

dik

{
∞

∑
n=0

e−ρt

{
u

(
ina1 − πw

n a1 +
An+1−An

dtAn
a1 + z1AnNn

cn,[2:J]

)′
gn − v(Nn)1′gn −

δ

2
(πw

n )
21′gn

}
dxdt

+
1
dt

eρdtφ′V0dx− 1
dt

eρdtθπw
0︸ ︷︷ ︸

Timeless Penalties

}∣∣∣∣
gss,φss,θss,iss,Zss

for all k ≥ 0. We start by evaluating the derivative for any arbitrary set of inputs to F(·). This yields

0 =
∞

∑
n=0

e−ρt

{[
u(cn)− v(Nn)−

δ

2
(πw

n )
2
]′ dgt

dik
+ (gn · u′(cn))

′ dcn

dik
− (v′(Nn)1 + δπw

n 1)′gn
dNn

dik

}
dt

+
1
dt

eρdtφ′
dV0

dik
− 1

dt
eρdtθ

dπw
0

dik

1
dx

,

where we note that we always have dc1,n
dik

= 0 because the planner is constrained by the same

boundary condition that the household faces when considering policy perturbations.

Our proof strategy will be to add five sets of auxilliary terms to this equation, each of which

evaluates to 0, and then use these additional terms to rearrange. In particular, the expressions we

add correspond to the discretized competitive equilibrium conditions. And our goal will be to then
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evaluate the corresponding expression at the stationary equilibrium, group terms, and show that

everything evaluates to 0.

Equation 1. We have

0 =
∞

∑
n=0

e−ρtn φ′
[
− ρVn +

Vn+1 − Vn

dt
+ u(cn)− v(Nn)−

δ

2
(πw

n )
2 + AzVn +

1
da

(sn · DaVn)

]
,

where we use φ = φss. We now use auxilliary results and derivations from before to rewrite this

equation as

0 =
∞

∑
n=0

e−ρtn φ′
[

u(cn)− v(Nn)−
δ

2
(πw

n )
2 + AzVn +

1
da

(sn · DaVn)

]
− eρdtφ′

1
dt

V0.

Differentiating, we obtain

0 =
∞

∑
n=0

e−ρtn

[
(φ · u′(cn))

dcn

dik
−φ′1

(
v′(Nt)

dNn

dik
+ δπw

n
dπw

n
dik

)

+ φ′Az dVn

dik
+

1
da

(φ · DaVn)
′ dsn

dik
+

1
da

φ′sn · Da
dVn

dik

]
− eρdtφ′

1
dt

dV0

dik
.

This is the first auxilliary equation that we will add to our desired expression.

Equation 2. We obtain the second auxilliary condition by simply differentiating the consumption

first-order condition. We rewrite the equation as

0 =
∞

∑
n=0

e−ρtn

[
χ′[2:J]u

′′(cn,[2:J])− eρdt 1
da

V ′nD′a

(
0

χ[2:J]

)]
+ eρdt 1

da
V ′0D′a

(
0

χ[2:J]

)
,

where we use χ = χss, and then differentiate to obtain

0 =
∞

∑
n=0

e−ρtn

[(
χ[2:J] · u′′(cn,[2:J])

)′ dcn,[2:J]

dik
− eρdt 1

da

[
D′a

(
0

χ[2:J]

)]′
dVn

dik

]
+ eρdt 1

da

[
D′a

(
0

χ[2:J]

)]′
dV0

dik
.

Equation 3. For our third auxilliary equation, we differentiate the discretized Kolmogorov forward

equation. From before, we have

0 =
∞

∑
n=0

e−ρtn

[
− ρλ′gn + λ′(Az)′gn −

1
da

(sn · gn)
′D′aλ

]
+

1
dt

eρdtλ′g0.
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Differentiating with respect to ik, we obtain

0 = =
∞

∑
n=0

e−ρtn

[
− ρλ′

dgn

dik
+ λ′(Az)′

dgn

dik
+ (gn · Daλ)′

dsn

dik
+ (sn · Daλ)′

dgn

dik

]
+

1
dt

eρdtλ′
dg0

dik
,

where we again use λ = λss.

Equation 4. We have the aggregate resource constraint with

0 =
∞

∑
n=0

e−ρtn µ

[
1

dx
AnNn − c′ngn

]
,

where we use µ = µss. Differentiating, we have

0 =
∞

∑
n=0

e−ρtn µss

[
1

dx
An

dNn

dik
− c′n

dgn

dik
− g′n

dcn

dik

]
.

Equation 5. And finally, we use the Phillips curve, which we rewrite using previous results as

0 =
∞

∑
n=0

e−ρtn θss
ε

δ

(
ε− 1

ε
(1 + τL)An(z · u′(cn))

′gndx− v′(Nn)

)
Nn +

1
dt

eρdtθπw
0 .

Differentiating, we obtain

0 =
∞

∑
n=0

e−ρtn θss
ε

δ

[(
ε− 1

ε
(1 + τL)An

(
(z · u′(cn))

′ dgn

dik
+ (z · u′′(cn) · gn)

′ dcn

dik

)
dx− v′′(Nn)

dNn

dik

)
Nn

+

(
ε− 1

ε
(1 + τL)An(z · u′(cn))

′gndx− v′(Nn)

)
dNn

dik
+

1
dt

eρdtθ
dπw

0
dik

.

Evaluate at stationary Ramsey plan. Crucially, each of our five auxilliary equations must nec-

essarily also hold when evaluated around the stationary Ramsey plan. The key step now, is to

evaluate each of the first-order derivatives we taken at the stationary Ramsey plan.

Putting everything together. Having evaluated all derivatives around the stationary Ramsey

plan, we add the five auxilliary equations we have derived to the expression for dLTD

dik
which we
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started out with, where we now also evaluate the latter at the stationary Ramsey plan. This yields

0 =
∞

∑
n=0

e−ρt

{[
u(c)− v(N)− δ

2
(πw)2

]′ dgt

dik
+ (g · u′(c))′ dcn

dik
− (v′(N)1 + δπw1)′g

dNn

dik

+ (φ · u′(c))dcn

dik
−φ′1

(
v′(N)

dNn

dik
+ δπw

n
dπw

n
dik

)
+ φ′Az dVn

dik
+

1
da

(φ · DaV)′
dsn

dik
+

1
da

φ′s · Da
dVn

dik

+

(
χ[2:J] · u′′(c[2:J])

)′ dcn,[2:J]

dik
− eρdt 1

da

[
D′a

(
0

χ[2:J]

)]′
dVn

dik

− ρλ′
dgn

dik
+ λ′(Az)′

dgn

dik
+ (g · Daλ)′

dsn

dik
+ (s · Daλ)′

dgn

dik

+ µ
1

dx
A

dNn

dik
− µc′

dgn

dik
− µg′

dcn

dik

+ θ
ε

δ

(
ε− 1

ε
(1 + τL)A

(
(z · u′(c))′ dgn

dik
+ (z · u′′(c) · g)′ dcn

dik

)
dx− v′′(N)

dNn

dik

)
Nn

+ θ
ε

δ

(
ε− 1

ε
(1 + τL)A(z · u′(c))′gdx− v′(N)

)
dNn

dik

}
dt

+ eρdtφ′
dV0

dik
− eρdtθ

dπw
0

dik

1
dx

− eρdtφ′
dV0

dik
+ eρdtλ′

dg0

dik
+ eρdtθ

dπw
0

dik

1
dx

+ dteρdt 1
da

[
D′a

(
0

χ[2:J]

)]′
dV0

dik
,

where every term that does not have a time step subscript n is understood to have been evaluated

at the stationary Ramsey plan.

Our proof is now almost complete. First, note how the timeless penalties exactly offset the

“boundary terms” that resulted from rearranging the forward looking implementability conditions.

In particular, notice that dg0
dik

= 0 and the term in the very last line goes to 0 as dt→ 0. The remaining

boundary (or initial condition) terms exactly cancel out.

Second, we plug in for

dsn

dik
=

drn

dik
a + zw

dNn

dik
+ zN

dwn

dik
− dcn

dik

when evaluated at the stationary Ramsey plan.
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Third and finally, we group all terms by derivatives. After this last step, we see that the grouped

expressions correspond exactly to the optimality conditions that define the stationary Ramsey plan.

Consequently, they must be 0. This concludes the proof: We started with an expression for dLTD

dθk
,

and added five auxilliary expressions, each of which itself evaluated to 0. Then we evaluated the

resulting expression around the stationary Ramsey plan and showed that it was 0. Consequently,

we have shown that
dLTD

dik
= 0

when evaluated at the stationary Ramsey plan. And since k was arbitrary, we have our desired result

for any policy perturbation around the stationary Ramsey plan. We have thus shown that Ramsey

policy according to the timeless dual Lagrangian LTD—and consequently also the timeless primal

Lagrangian LTP—indeed resolves the time-0 problem. This proof demonstrates that our timeless

Ramsey approach formalizes Woodford (1999)’s timeless perspective in our HANK economy.

B.8 Proof of Proposition 7

From equation (33), we have that

0 =
∫∫

z∂aλt (a, z) gt (a, z) dadz + zξHTM
t gt (a, z) dadz− µt −

v′ (Nt)

At

+
∫∫

φt (a, z)
(

zu′ (ct (a, z))− v′ (Nt)

At

)
gt (a, z) dadz + θt

εt

δ

1
At

∫∫
z

dτt (a, z)
dnt (a, z)

gt (a, z) dadz.

Combining equation (32) and the definition of ξHTM
t , we have

0 =
∫∫

zu′ (ct (a, z)) gt (a, z) dadz−
∫∫

z∂aλt (a, z) gt (a, z) dadz +
∫∫

zµtgt (a, z) dadz

+ θt
εt

δ

∫∫
z

dτL
t (a, z)

dct (a, z)
gt (a, z) dadz−

∫∫
zχ̃t (a, z) gt (a, z) dadz− zξHTM

t gt (a, z) ,

where
∫∫

zµtgt(a, z) da dz = µt.

Combining both of these equations, we obtain

0 =
∫∫ (

zu′ (ct (a, z))− v′ (nt (a, z))
At

)(
1 +

φt (a, z)
gt (a, z)

)
gt (a, z) dadz

+ θt
εt

δ

∫∫
z
(

dτL
t (a, z)

dct (a, z)
+

1
At

dτL
t (a, z)

dnt (a, z)

)
gt (a, z) dadz−

∫∫
zχ̃t (a, z) gt (a, z) dadz.

Solving for θss after imposing that all variables have reached the steady state immediately recovers

equation (46) in the text.
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B.9 Proof of Proposition 8

The stationary version of the promise-keeping Kolmogorov forward equation (47) follows trivially

from the time-varying equation (30), setting ∂tφt(a, z) = 0 and evaluating the RHS at the stationary

Ramsey plan.

B.10 Proof of Proposition 9

The optimality conditions of the Ramsey problem imply that

∫∫
aχ̃t (a, z) gt (a, z) dadz =

∫∫
au′ (ct (a, z)) gt (a, z) dadz + θt

εt

δ

∫∫
a

dτL
t (a, z)

dct (a, z)
gt (a, z) dadz

−
∫∫

a∂aλt (a, z) gt (a, z) dadz− aξHTM
t gt (a, z)

and

∫∫
zχ̃t (a, z) gt (a, z) dadz =µt +

∫∫
zu′ (ct (a, z)) gt (a, z) dadz + θt

εt

δ

∫∫
z

dτL
t (a, z)

dct (a, z)
gt (a, z) dadz

−
∫∫

z∂aλt (a, z) gt (a, z) dadz− zξHTM
t gt (a, z)

Combining these equations with FOCs (33) and (35), we can write, respectively

∫∫
zχ̃t (a, z) gt (a, z) dadz =

∫∫ (
zu′ (ct (a, z))− v′ (nt (a, z))

At

)(
1 +

φt (a, z)
gt (a, z)

)
gt (a, z) dadz

+ θt
εt

δ

∫∫
z
(

dτt (a, z)
dct (a, z)

+
1
At

dτt (a, z)
dnt (a, z)

)
gt (a, z) dadz

and

∫∫
aχ̃t (a, z) gt (a, z) dadz =

∫∫
a
(

1 +
φt (a, z)
gt (a, z)

)
u′ (ct (a, z)) gt (a, z) dadz

+ θt
εt

δ

∫∫
a

dτt (a, z)
dct (a, z)

gt (a, z) dadz

Finally, expressing χ̃t (a, z) as χ̃t (a, z) = (1−Mt (a, z))
(

µt + θt
εt
δ

dτt(a,z)
dct(a,z)

)
, we can write

µt =

∫∫ (
zu′ (ct (a, z))− v′(nt(a,z))

At

) (
1 + φt(a,z)

gt(a,z)

)
gt (a, z) dadz + θt

εt
δ

∫∫
z
(

1
At

dτt(a,z)
dnt(a,z) +Mt (a, z) dτt(a,z)

dct(a,z)

)
gt (a, z) dadz∫∫

z (1−Mt (a, z)) gt (a, z) dadz
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and

µt =

∫∫
a
(

1 + φt(a,z)
gt(a,z)

)
u′ (ct (a, z)) gt (a, z) dadz + θt

εt
δ

∫∫
aMt (a, z) dτt(a,z)

dct(a,z) gt (a, z) dadz∫∫
a (1−Mt (a, z)) gt (a, z) dadz

Equation (49) follows from combining these two conditions after collecting terms. The logic behind

these perturbations is identical to the discretion case, explained in detail in the Proof of Proposition

2.

Output gap targeting rule under isoelastic preferences. Under isoelastic preferences, the target-

ing rule admits the alternative representation

Yt = Ỹt ×
(

εt

εt − 1
1

1 + τL

) 1
γ+η

×
{

1−ΩD
t

∫∫
au′(ct(a, z))gt(a, z) da dz∫∫
zu′(ct(a, z))gt(a, z) da dz

(65)

+

∫∫
(z−ΩD

t )u
′(ct(a, z))φt(a, z) da dz∫∫

zu′(ct(a, z))gt(a, z) da dz

+ θt
εt

δ

∫∫ ( z
At

dτt(a,z)
dNt

+ (z−ΩD
t a)Mt(a, z) dτt(a,z)

dct(a,z)

)
gt(a, z) da dz∫∫

zu′(ct(a, z))gt(a, z) da dz

} 1
γ+η

in terms of output gaps, where Ỹt is natural output in HANK.
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C Appendix for Section 3

C.1 Proof of Proposition 1

Having introduced the discretization of the implementability conditions and the Ramsey problem,

it is now straightforward to derive the optimality conditions for policy under discretion. We again

discretize the planning problem in both individual state variables (a, z) and in time. In particular,

we discretize the time dimension over a finite horizon, t ∈ [0, T], where T can be arbitrarily large,

using N discrete time steps, which we denote by n ∈ {1, . . . , N}. With a step size dt = T
N−1 , we

have tn = dt(n− 1). We assume that a planner under discretion controls policy at time step s and

takes as given policy from s + 1 onwards.

The planning problem under discretion at time s is associated with the Lagrangian

LD(gs) = min
φs,χs,λs,µs,ϑs

max
Vs,cs,[2:J],gs+1,πw

s ,Ns,is

N−1

∑
n=s

e−ρtn

{{

+ u

(
ina1 − πw

n a1 +
An+1−An

dtAn
a1 + z1AnNn

cn,[2:J]

)′
gt − v(Nn)1′gt −

δ

2
(πw

n )
21′gt

+ φ′n

[
− ρVn +

Vn+1 − Vn

dt
+ u

(
ina1 − πw

n a1 +
An+1−An

dtAn
a1 + z1AnNn

cn,[2:J]

)
− v(Nn)−

δ

2
(πw

n )
2

]

+ φ′n AzVn + ∑
i≥2

φi,n

(
inai − πw

n ai +
An+1 − An

dtAn
ai + zi AnNn − cn,i

)Da,[i, :]

da
Vn

+ χ′n,[2:J]

[
u′(cn,[2:J])−

(
Da

da
Vn+1

)
[2:J]

]

− λ′n
gn+1 − gn

dt
+ λ′n(Az)′gn

+ ∑
i≥2

λn,i
D′a,[i, :]

da

[(
0

ina[2:J] − πw
n a[2:J] +

An+1−An
dtAn

a[2:J] + z[2:J]AnNn − cn,[2:J]

)
· gn

]}
dx

+ µn

[
c′ngndx− AnNn

]

+ θn

[
−

πw
n+1 − πw

n

dt
+ ρπw

n +
ε

δ

(
ε− 1

ε
(1 + τL)An(z · u′(cn))

′gndx− v′(Nn)

)
Nn

]}
dt,

where the superscript D denotes the planning problem under discretion. The planner takes as

given an initial condition for the cross-sectional distribution, gs.

Unlike in the Ramsey problem with commitment, we only sum (integrate) by parts the state
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variables of the problem, and not those terms associated with forward-looking constraints. That is,

we use

−
N−1

∑
n=s

e−ρtn λ′n
gn+1 − gn

dt
=

N−1

∑
n=s

e−ρtn
λ′n − eρdtλ′n−1

dt
gn

+
1
dt

eρdtλ′s−1gs −
1
dt

eρdte−ρtN λ′N−1gN

and rewrite the Lagrangian as

LD(gs) = min
φs,χs,λs,µs,ϑs

max
Vs,cs,[2:J],gs+1,πw

s ,Ns,is

N−1

∑
n=s

e−ρtn

{{

+ u

(
ina1 − πw

n a1 +
An+1−An

dtAn
a1 + z1AnNn

cn,[2:J]

)′
gt − v(Nn)1′gt −

δ

2
(πw

n )
21′gt

+ φ′n

[
− ρVn +

Vn+1 − Vn

dt
+ u

(
ina1 − πw

n a1 +
An+1−An

dtAn
a1 + z1AnNn

cn,[2:J]

)
− v(Nn)−

δ

2
(πw

n )
2

]

+ φ′n AzVn + ∑
i≥2

φi,n

(
inai − πw

n ai +
An+1 − An

dtAn
ai + zi AnNn − cn,i

)Da,[i, :]

da
Vn

+ χ′n,[2:J]

[
u′(cn,[2:J])−

(
Da

da
Vn+1

)
[2:J]

]

+ e−ρtn
λ′n − eρdtλ′n−1

dt
gn + λ′n(Az)′gn

+ ∑
i≥2

λn,i
D′a,[i, :]

da

[(
0

ina[2:J] − πw
n a[2:J] +

An+1−An
dtAn

a[2:J] + z[2:J]AnNn − cn,[2:J]

)
· gn

]}
dx

+ µn

[
c′ngndx− AnNn

]

+ θn

[
−

πw
n+1 − πw

n

dt
+ ρπw

n +
ε

δ

(
ε− 1

ε
(1 + τL)An(z · u′(cn))

′gndx− v′(Nn)

)
Nn

]}
dt

+ eρdtλ′s−1gsdx− eρdte−ρtN λ′N−1gNdx.

Crucially, the Markov planner at time step s does realize that her policy decisions affect the

evolution of state variables, i.e., the distribution gs+1 that the “future planner” at time step s + 1

takes as her initial condition. She does not internalize, however, that her policy decisions also

determine the terminal conditions on forward-looking equations, i.e., inflation and lifetime values,
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that “past planners” take as given.

We now characterize the first-order optimality conditions associated with the planning prob-

lem under discretion.

Derivative for Vs. We have

0 = −ρφs −
1
dt

φs + (Az)′φs +
1
da

(φsDa)
′ss − eρdt D′a

da

(
0

χs−1,[2:J]

)

or simply

0 = −ρφs −
1
dt

φs + A′φs − eρdt D′a
da

(
0

χs−1,[2:J]

)
.

Consider the last term in this equation. The household’s consumption FOC says that consumption

today is a function of “expected” future value, which therefore uses Vs+1. The planner under

discretion takes the future value Vs+1 as given. And the planner is constrained by the competitive

equilibrium condition that households make consumption decisions purely in terms of Vs+1. By the

household’s first-order condition, then, cs is pinned down as a function of Vs+1.

We now see from this that, in the continuous-time limit with dt→ 0, we must have

φs = 0.

This is the proper boundary condition for the formal continuous-time problem under discretion.

Moreover, from the consumption FOC in the Lagrangian, we also have

0 =
D′a
da

(
0

χs−1,[2:J]

)

for all s.

Derivative for gs+1. We have

0 =u(cs+1) + µs+1cs+1 − v(Ns+1)1−
δ

2
(πw

s+1)
21 +

λ′s+1 − eρdtλ′s
dt

+ (λ′s+1(Az)′)′

+
d

dgs+1

[
1
da

(Daλs+1)
′[ss+1 · gs+1]

]
+ θs+1Ns+1

ε

δ

ε− 1
ε

(1 + τL)As+1z · u′(cs+1).

Now we work out the remaining derivative,

d
dgs+1

[
1
da

(Daλs+1)
′[ss+1 · gs+1]

]
= Aaλs+1.
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Thus, we have

0 =u(cs+1) + µs+1cs+1 − v(Ns+1)1−
δ

2
(πw

s+1)
21 +

λ′s+1 − eρdtλ′s
dt

+ Aλs+1 + θs+1Ns+1
ε

δ

ε− 1
ε

(1 + τL)As+1z · u′(cs+1).

Derivative cs,[2:J]. Notice that the planner under commitment also just solves a static problem for

consumption at every time step. In other words, the choice of consumption today doesn’t “bind”

the planner tomorrow in any way under commitment. Therefore, we again have

0 =u′(cs,i)gs,i + µsgs,i + u′(cs,i)φs,i + u′′(cs,i)χs,i + θsNs
ε

δ

ε− 1
ε

(1 + τL)Asziu′′(cs,i)gs,i

− 1
da

φs,iDa,[i,:]Vs −
1
da

gs,iDa,[i,:]λs.

Derivative πw
n . We have

0 =

[
− u′(cs,1)gs,1a1 − µsgs,1a1 − δπw

s 1′gs − φs,1u′(cs,1)a1 − δπw
s φ′s1

]
dx

− θs
ε

δ

ε− 1
ε

(1 + τL)AsNsz1u′′(cs,1)gs,1a1dx

+

[
−∑

i≥2
φi,sai

Da,[i,:]

da
Vs + ∑

i≥2
λs,i

D′a,[i,:]

da

[(
0

−a[2:J]

)
· gs

]
dx

+
1
dt

θs.

Thus, we have

0 =

[
− u′(cs,1)gs,1a1 − µsgs,1a1 − δπw

s 1′gs − φs,1u′(cs,1)a1 − δπw
s φ′s1

]
dx

− θs
ε

δ

ε− 1
ε

(1 + τL)AsNsz1u′′(cs,1)gs,1a1dx

−∑
i≥2

φi,sai
Da,[i,:]

da
Vsdx−∑

i≥2
gs,iai

Da,[i,:]

da
λsdx +

1
dt

θs.

Derivative in. The nominal interest rate derivative is parallel to that for wage inflation, except in

the Phillips curve. In particular, the choice of the nominal interest rate is again a fundamentally
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static problem, even in the case with commitment. We have

0 =u′(cs,1)gs,1a1 + µsgs,1a1 + φs,1u′(cs,1)a1 + ∑
i≥2

φi,sai
Da,[i,:]

da
Vs + ∑

i≥2
gs,iai

Da,[i,:]

da
λs

+ θs
ε

δ

ε− 1
ε

(1 + τL)AsNsz1u′′(cs,1)gs,1a1.

Derivative Nn. Finally, we take the derivative for aggregate labor. This is again a static problem.

We have

0 =

[
u′(cs,1)gs,1z1As + µsgs,1z1As + φs,1u′(cs,1)z1As + ∑

i≥2
φi,szi As

Da,[i,:]

da
Vs + ∑

i≥2
gs,izi As

Da,[i,:]

da
λs

]
dx

+ θs
ε

δ

ε− 1
ε

(1 + τL)AsNsz1u′′(cs,1)gs,1z1Asdx

− v′(Ns)1′gsdx− v′(Ns)φ
′
s1dx

− µs As + θs
ε

δ

(
ε− 1

ε
(1 + τL)As(z · u′(cs))

′gsdx− v′(Ns)

)
− ε

δ
θsv′′(Ns)Ns.

We now summarize the resulting optimality conditions for the problem under discretion. We state

these optimality conditions here for the fully discretized problem, which we have worked with

thus far. For the main text, we bring these equations back to the continuous case.

We see immediately that

θs = 0

φs = 0

because the planner does not respect promises from the past. These two conditions signify the lack

of commitment. The optimality condition for the cross-sectional distribution still characterizes the

evolution of the social lifetime value. Using θs = 0, we have

0 =u(cs+1) + µs+1cs+1 − v(Ns+1)1−
δ

2
(πw

s+1)
21 +

λ′s+1 − eρdtλ′s
dt

+ Aλs+1.

The optimality condition for consumption becomes

χ̃s = u′(cs) + µs − λa,s,
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where χ̃s = −χs
u′′(cs)

gs
. The optimality condition for monetary policy now becomes

0 =

[
u′(cs,1) + µs

]
gs,1a1 + ∑

i≥2
gs,iai

Da,[i,:]

da
λs

And finally, the optimality condition for aggregate economic activity becomes

0 =

[
u′(cs,1)gs,1z1As + µsgs,1z1As + ∑

i≥2
gs,izi As

Da,[i,:]

da
λs

]
dx− v′(Ns)− µs As.

C.2 Proof of Proposition 2

Proving Proposition 2 amounts to a judicious combination of the optimality conditions for policy

under discretion (Proposition 1). In particular, we introduce two useful policy perturbations that

are purposefully designed so that they have a neutral impact on aggregate excess demand. The

first perturbation combines equations (20) and (21), yielding an aggregate activity condition. This

perturbation entails making households work an extra hour while forcing them to consume the

proceeds of any additional income. At an optimum, the marginal value of this perturbation for a

planner must satisfy

∫∫ (
zu′(ct(a, z))− v′(Nt)

At

)
gt(a, z) da dz︸ ︷︷ ︸

Aggregate Labor Wedge

−
∫∫

zχ̃t(a, z)gt(a, z) da dz = 0.

The aggregate labor wedge captures the social marginal benefit of increasing aggregate activity.

And if the planner had the ability to control households consumption-savings decisions (i.e., if

χt(a, z) = 0), the aggregate activity condition shows that a planner would set the labor wedge

to zero. However, the planner must account for the fact that increasing consumption impacts

households’ savings decisions, which counterbalacnes the desire to set the aggregate labor wedge

to zero.51

The second perturbation combines equations (20) and (22) and yields an interest rate condition.

This perturbation entails a unit increase in interest rates while making households directly consume

the resulting pecuniary gains. At an optimum, the marginal value of this perturbation for a planner

51 The aggregate activity condition also connects µt directly to the aggregate labor wedge when policy is set with
discretion. When substituting in for χ̃t(a, z) from equation (20), we obtain a condition that defines µt as a weighted sum
of future labor wedges:

µt =

∫∫ (
zu′ (ct (a, z))− v′(Nt)

At

)
gt (a, z) da dz∫∫

z (1−Mt (a, z)) gt (a, z) da dz
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must satisfy ∫∫
au′(ct(a, z))gt(a, z) da dz︸ ︷︷ ︸

Distributive Pecuniary Effect

−
∫∫

aχ̃t(a, z)gt(a, z) da dz = 0.

In this case, the social marginal benefit of increasing interest rates is captured by its distributive

pecuniary effect, which is negative.

The planner understands that a change in rates simply redistributes resources across savers

and borrowers, since distributive pecuniary effects are always zero-sum in aggregate in dollar terms.

However, since borrowers typically have a higher marginal utility of consumption than savers, a

utilitarian planner perceives that an increase in rates decreases social welfare through this channel.

This desire to redistribute towards high marginal utility households by reducing interest rates—

a motive that is absent in representative-agent economies—is a central determinant of optimal

monetary policy in our environment. As in the case of the aggregate activity perturbation, the

planner must account for the fact that change interest rates impacts households’ savings decisions.

While both policy perturbations are neutral in terms of aggregate excess demand, they are

not neutral intertemporally in terms of their impact on households’ savings decisions. However,

we can scale and combine both perturbations to neutralize the intertemporal effect, obtaining the

targeting rule of Proposition 2. Formally, we use the fact that we can write χt(a, z) as

χ̃t (a, z) = (1−Mt (a, z)) µt. (66)

Hence, by substituting for χt(a, z) in both the aggregate activity condition and the interest rate

condition, and equalizing µt, we recover equation (25) in the text. This targeting rule shows that,

under discretion, a utilitarian planner in a heterogeneous-agent environment trades off aggregate

stabilization against redistribution.

Equation (25) shows that the welfare impact of a perturbation that jointly increases hours

worked by all households and reduces the interest rate by ΩD
t basis points—forcing households to

consume the resulting proceeds—must be zero at an optimum.52 Equation (25) implies that, at an

optimum, the planner sets policy trading off aggregate stabilization and redistribution motives.

Derivation of output gap targeting rule for isoelastic preferences. Under isoelastic (CRRA)

preferences, we can represent the targeting rule of Proposition 2 in terms of output gaps. We use

∫∫ zu′(ct(a, z))
u′(Ct)

gt(a, z) da dz−Yγ+η
t A−(1+η)

t = ΩD
t

∫∫ au′(ct(a, z))
u′(Ct)

gt(a, z) da dz.

52 And since the net present value MPC,Mt, is bounded between 0 and 1, we have ΩD
t > 0.
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Using natural output definitions

ỸRA
t =

(
εt − 1

εt
(1 + τL)A1+η

t

) 1
γ+η

ỸHA
t =

(
εt − 1

εt
(1 + τL)A1+η

t

∫∫ zu′(ct(a, z))
u′(Ct)

gt(a, z) da dz
) 1

γ+η

we rearrange and obtain

εt − 1
εt

(1+ τL)Yγ+η
t =

εt − 1
εt

(1+ τL)A1+η
t

( ∫∫ zu′(ct(a, z))
u′(Ct)

gt(a, z) da dz−ΩD
t

∫∫ au′(ct(a, z))
u′(Ct)

gt(a, z) da dz
)

or simply

Yt = Ỹt ×
(

εt

εt − 1
1

1 + τL

) 1
γ+η

︸ ︷︷ ︸
Cost-Push Wedge

×
(

1−ΩD
t

∫∫ au′(ct(a,z))
u′(Ct)

gt(a, z) da dz∫∫ zu′(ct(a,z))
u′(Ct)

gt(a, z) da dz

) 1
γ+η

︸ ︷︷ ︸
Redistribution

C.3 Proof of Proposition 3

Our expression for inflationary bias follows by plugging in the targeting rule of Proposition 2,

rewritten as an expression for the aggregate labor wedge, into the Phillips curve (6). Setting π̇w
ss = 0,

this yields

πw
ss = −

ε

δ
AssNss

∫∫ (
ε− 1

ε
(1 + τL)zu′(css(a, z))− v′(Nss)

Ass

)
gss(a, z) da dz.

We now separate terms into a markup component and a redistribution component, analogous to

Proposition 2,

πw
ss = −

ε

δ
AssNss

∫∫ (
ε− 1

ε
(1 + τL)zu′(css(a, z))− zu′(css(a, z)) + ΩD

ssau′(css(a, z))
)

gss(a, z) da dz

or simply

πw
ss =

ε

δ
AssNss

[(
1− ε− 1

ε
(1+ τL)

) ∫∫
zu′(css(a, z))gss(a, z) da dz−ΩD

ss

∫∫
au′(css(a, z))gss(a, z) da dz

]
,

which concludes the proof.
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D Optimal Policy and Ramsey Plans in Sequence Space

In this Appendix, we discuss how to operationalize our method and compute optimal policy

numerically. Following much of the recent literature on computational methods in heterogeneous-

agent economies, we work with a sequence-space representation of our model. In the interest of

accessibility, we follow the notation and conventions of Auclert et al. (2021) as closely as possible,

extending their work on sequence-space Jacobians to Ramsey problems and welfare analysis. While

they work in discrete time, we show below that continuous-time heterogeneous-agent models

are nested by the same general model representation they propose. To establish this relationship,

we first discretize our model following the same steps that would also be required for numerical

implementation.

Discretization. We first discretize the equations that characterize competitive equilibrium and

optimal policy in both time and space. We use a finite-difference discretization scheme building on

Achdou et al. (2022).53 In particular, we discretize the time dimension over a finite horizon, t ∈ [0, T]

where T can be arbitrarily large, using N discrete time steps, which we denote by n = 1, . . . , N. With

a step size dt = T
N−1 , we have tn = dt(n− 1). We similarly discretize the idiosyncratic state space

over (a, z) using J grid points. Using bold-faced notation, we denote the discretized consumption

policy function of the household at time tn as the J× 1 vector cn, where the ith element corresponds

to ctn(ai, zi).

D.1 Sequence-Space Representation of Equilibrium

After discretizing our model, the resulting equations satisfy the general model representation of

heterogeneous-agent economies presented in Auclert et al. (2021). To facilitate comparison, we

follow their notation in this Appendix. We consider a general representation of a heterogeneous-

agent problem as a mapping from time paths of aggregate inputs (X, i, Z) to time paths of aggregate

outputs Y . We use bold-faced notation here to indicate time paths, with i = {in}N
n=1. It will be

useful to explicitly distinguish between the time paths for policy i and the exogenous shock Z on

the one hand, and the time paths for other aggregate inputs X on the other hand. To simplify the

exposition, we assume that there is only one aggregate input variable other than policy and the

shock, so that Xn ∈ R.

Denoting the discretized cross-sectional distribution by the J × 1 vector gn, our main focus

will be on outcome variables that take the form Yn = y′ngn, where yn is a J× 1 vector that represents

53 For a detailed description of the discretization procedure, see Achdou et al. (2022) or Schaab and Zhang (2022).
We also leverage the adaptive sparse grid method developed by Schaab and Zhang (2022) and Schaab (2020) to solve
dynamic programming problems in continuous time.
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an individual outcome.54 For example, aggregate consumption takes the form Cn = c′ng. Given an

initial distribution g0, aggregate outcomes Y then solve the system of equations

Vn = ν(Vn+1, Xn, in, Zn) (67)

gn+1 = Λ(Vn+1, Xn, in, Zn)gn (68)

Yn = y(Vn+1, Xn, in, Zn)
′gn. (69)

The implementability conditions of our baseline HANK economy can be expressed in terms

of the time paths of macroeconomic aggregates as well as those of aggregate outcomes Y . Using

the above representation, aggregate outcomes Y can in turn be expressed in terms of the time paths

of aggregate allocations and prices X, policy i, and shocks Z. In summary, equilibria given policy

and shocks can be expressed in terms of the equilibrium mapH(X, i, Z) = 0.

D.2 Sequence-Space Representation of Ramsey Plans

We now show how to express the Ramsey plan optimality conditions, which characterize the

multipliers and optimal policy, in a general model representation akin to equations (67) through

(69). In general, Ramsey plans in heterogeneous-agent economies feature three types of multipliers:

aggregate multipliers, individual forward-looking multipliers, and individual backward-looking

multipliers. In our baseline environment, the aggregate multipliers are θt and µt, the individual

forward-looking multiplier is λt(a, z), and the (system of) individual backward-looking multipliers

is φt(a, z) and χt(a, z).

The Ramsey plan representation (52) summarizes the optimality conditions of the timeless

Ramsey plan in sequence-space form. In particular, the Ramsey mapR(·) takes the time paths of

aggregate multipliers M as explicit inputs. Our goal now is to show that the optimality conditions

of the timeless Ramsey plan can be written in terms of R = (X, M, i) and Z.

Forward-looking individual multipliers take the form

λn = f (λn+1, Vn, Xn, Mn, in, Zn), (70)

which is analogous to equation (67), which characterizes individual forward-looking behavior. For

example, it is straightforward to verify that equation (31) satisfies this form: it expresses today’s

multiplier λn(a, z) in terms of today’s aggregate multipliers, individual allocations, aggregate

allocations and prices, as well as the future multiplier λn+1(a, z).

Analogously to equation (67), the recursive structure of forward-looking individual multipliers

54 We normalize the discretized distribution representation so that gn sums to 1, i.e., 1′gn = 1, where 1 is a J × 1
vector of 1s.
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allows us to efficiently compute their first-order derivatives. We summarize this observation in the

following Lemma.

Lemma 22. For any k ≥ 1, we have

∂λn

∂ik
=

0 if n > k
∂λn−s
∂ik−s

else for s < n

and likewise for first-order partial derivatives in Xk, Mn, and Zn.

Lemma 22 represents an extension of Auclert et al. (2021)’s fake-news result to the multipliers that

emerge from Ramsey problems. The unifying insight here is that, just like competitive equilibrium

in heterogeneous-agent economies comprises a forward-backward system of dynamic equations, so

do Ramsey plans. In other words, equation (31), which defines the social lifetime value λt(a, z) still

satisfies a (Hamilton-Jacobi-) Bellman equation. The “fake-news property” identified by Auclert

et al. (2021) applies to any backward equation, including those satisfied by multipliers.

Backward-looking individual multipliers typically correspond to promises that the Ramsey

planner makes to individuals. They are characterized by a particular kind of Kolmogorov for-

ward equation. In particular, promise-keeping Kolmogorov forward equations feature a forcing

term that captures the “births” and “deaths” of promises, captured by ∂aχt(a, z) in equation (30).

Consequently, backward-looking multipliers can be represented as

φn+1 = Λ(Vn+1, Xn, in, Zn)φn + b(φn, λn, Vn, gn, Xn, Mn, in, Zn). (71)

The same arguments developed by Auclert et al. (2021) for efficiently computing sequence-space

derivatives of the cross-sectional distribution also apply to multipliers that satisfy (Kolmogorov)

forward equations.

The multiplier representations (70) and (71), together with equations (67) through (69) and

the equilibrium map (51), let us conclude that timeless Ramsey plans admit the sequence-space

representation (52).

D.3 Sequence-Space Perturbations in the Primal: Proof of Proposition 11

Denote the Ramsey plan by R = (X, M, i). Using a first-order Taylor expansion around the

stationary Ramsey plan, we have

R(R, Z) ≈ R(Rss, Zss) +RR(Rss, Zss)dR +RZ(Rss, Zss)dZ.

OA-44



Notice that we haveR(R, Z) = 0 by the definition of R as a Ramsey plan, i.e., as solvingR(·) = 0

for a given Z as in (52).

We now show that R(Rss, Zss) = 0 as well, assuming, as we do in Proposition 11, that the

Ramsey problem is initialized at (g0, φ, θ) = (gss, φss, θss). The Ramsey plan mapR(·) is a system

of equations that comprises two sets of conditions, those for competitive equilibrium as well as the

first-order conditions associated with the timeless Ramsey problem in the primal representation. By

definition, the stationary Ramsey plan comprises a feasible competitive equilibrium. Consequently,

when evaluated at (R, Z) = (Rss, Zss), those conditions in R(·) associated with competitive

equilibrium are 0.

That leaves the first-order conditions associated with the timeless primal Ramsey problem.

It follows from Proposition 6 that the timeless primal Ramsey problem is time-consistent, so that

the planner does not want to deviate from the stationary Ramsey plan when Z = Zss. It also

follows from our duality proof for the primal and dual representations that d
di LTP(θss, Zss) = 0 also

implies that each of the associated first-order conditions of the timeless primal problem are 0 when

evaluated at (Rss, Zss). Putting these observations together impliesR(Rss, Zss) = 0.

We are then simply left with

0 ≈ RR(Rss, Zss)dR +RZ(Rss, Zss)dZ.

Rearranging and invertingRR yields the desired result.

D.4 Sequence-Space Perturbations in the Dual

In this section, we develop a sequence-space perturbation approach to solve optimal stabiliza-

tion policy in the dual. We take as our starting point not equation (52) but a sequence-space

representation of the timeless dual Lagrangian, which we now introduce.

The timeless dual Lagrangian defined in Appendix B.6 takes as its inputs (i) the time paths of

allocations and prices, (ii) an initial distribution, and (iii) initial timeless penalties. Unlike in the

primal form, it does not explicitly feature the time paths of multipliers. For a given path of policy i

and shocks Z, we can directly use the equilibrium map (51) to solve out for allocations and prices,

i.e., X = X(i, Z). A sequence-space representation of the timeless dual Lagrangian is then given by

LTD(X(i, Z), i, Z), (72)

where we again leave implicit the dependence of LTD(·) on g0(a, z) as well as φ(a, z) and θ.

The timeless dual Lagrangian (72) implies the local efficiency criterion for optimal policy

F (i, Z) =
d
di

LTD(X(i, Z), i, Z) = 0, (73)
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where F (·) implicitly takes as given an initial distribution as well as initial promises. Equation (73)

represents the planner’s necessary first-order optimality condition in sequence-space form. We can

use it to directly characterize optimal policy in the dual in terms of exogenous shocks, i.e.,

i = i(Z).

Importantly, given policy i, the timeless penalty (φ, θ) does not affect competitive equilibrium,

summarized by (51). It only influences the planner’s assessment of optimal policy.

Proposition 23. (Optimal Policy Perturbations in the Dual) Consider the dual Ramsey problem, under

which a locally efficient policy is characterized by F (·) = 0. Suppose we initialize the Ramsey problem at the

stationary Ramsey plan, with g0(a, z) = gss(a, z), and with initial timeless penalties φ(a, z) = φss(a, z)

and θ = θss. To first order, optimal stabilization policy is then characterized by

di = −F−1
i FZdZ, (74)

where dZ = Z − Zss is the exogenous shock, and where Fi and FZ denote Hessians of the timeless dual

Lagrangian.

We prove Proposition 23 at the end of this subsection.

In the dual, approximating optimal policy using sequence-space perturbation methods re-

quires computing second-order total derivatives of the timeless dual Lagrangian. These are in turn

given by the Jacobians of the planner’s first-order condition, i.e., Fi and FZ. The recent literature on

perturbation methods in heterogeneous-agent economies has shown that sequence-space Jacobians,

i.e., first-order derivatives of model objects in sequence-space representation, are sufficient to

characterize transition dynamics to first order. Similarly, we have shown in Section 5.1.2 that com-

puting optimal policy and Ramsey plans in the primal also only requires sequence-space Jacobians.

Computing optimal policy and welfare in the dual representation of our Ramsey problem requires

a second-order analysis, however.

To that end, we introduce sequence-space Hessians as the natural, second-order generalization

of sequence-space Jacobians. In Appendix D.5, we formally define sequence-space Hessians, and

we show both how to efficiently compute and leverage them to characterize optimal policy in

the dual. We extend the methodology developed by Auclert et al. (2021) to problems that require

second-order derivatives, i.e., sequence-space Hessians. While we focus on their use in the context

of computing Ramsey plans in the dual, we argue that sequence-space Hessians are useful more

broadly whenever a second-order analysis is required.
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Advantages and disadvantages of primal and dual formulations. Our approach allows for a

representation of Ramsey problems in either the primal or the dual form, and we show how to

characterize and compute optimal policy in both cases. We conclude this section with a discussion

of the advantages and disadvantages of both approaches.

The primal form and, in particular, the associated Ramsey plan representation (52) are more

conducive to computing optimal policy non-linearly. Computing the Ramsey plan in the primal

requires solving a system of non-linear equations. Fully optimized quasi-Newton methods and

other non-linear equation solvers can be leveraged for this task.

In the primal approach, however, we have to compute multipliers and their transition dynam-

ics. In the Ramsey plan representation (52), multipliers M enter as an explicit argument. It is not

generically possible to characterize Ramsey plans in the spirit of (52) without multipliers. The dual

approach, on the other hand, takes as its starting point the timeless dual Lagrangian, which does

not explicitly depend on multipliers. Consequently, it is not necessary to compute the time paths of

multipliers to characterize optimal policy in the dual.

The relative disadvantage of the dual approach, however, is that a first-order approximation

of optimal policy requires second-order total derivatives of the timeless dual Lagrangian. Unlike

in the primal approach, which only requires computing sequence-space Jacobians, in the dual we

have to compute sequence-space Hessians. Computationally, this is a more complex task both in

terms of compute time and memory demands. In summary, therefore, the main tradeoff between

the primal and dual approaches is that the former requires computing the time paths of multipliers,

while the latter requires sequence-space Hessians instead of only Jacobians.

Another advantage of the dual representation is that it provides an easily implementable local

efficiency criterion. In particular, assessing whether a policy i is locally efficient in the dual only

requires computing first-order derivatives of the timeless dual Lagrangian, which is possible in

terms of sequence-space Jacobians. Unlike in the primal, however, efficiency assessments in the

dual do not require computing the derivatives of multipliers. In practice, even if optimal policy is

computed in the primal, verifying local efficiency in the dual is a cheap but helpful exercise.

Lastly, sequence-space Hessians and, more broadly, second-order sequence-space perturbation

methods likely have many useful applications beyond computing Ramsey plans in the dual. We

therefore view our treatment of sequence-space Hessians as a standalone contribution of this paper.

Proof of Proposition 23. We proceed as follows. A first-order Taylor approximation of F(·) (in i

and Z) around the stationary Ramsey plan yields

F(gss, φss, θss, i, Z) =F(gss, φss, θss, iss, Zss)

+ Fi(gss, φss, θss, iss, Zss)(i− iss) + FZ(gss, φss, θss, iss, Zss)(Z− Zss).
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First, we must have

F(gss, φss, θss, i, Z) = 0

by construction because this is our definition for optimal policy i(Z). Second, we also have

F(gss, φss, θss, iss, Zss) = 0,

which is the main result of Section 4.3 and whose proof is in Appendix B.7. Denoting di = i− iss

and dZ = Z− Zss, we thus have

0 = Fidi + FZdZ,

where the Jacobians of F(·) are evaluated at the stationary Ramsey plan.

D.5 Sequence-Space Hessians

To compute optimal policy in the dual using Proposition 23, we effectively need to differentiate

LTD(·) twice. In particular, F(·) = d
di LTD features first-order derivative terms, which can be cast as

sequence-space Jacobians (Auclert et al., 2021). Therefore, computing the total derivatives d
di F(·)

and d
dZ F(·), which are used in equation (74) to characterize optimal policy di, we require second-

order derivatives. Consequently, computing optimal stabilization policy using our approach

requires that we compute both first- and second-order total derivatives of all objects that feature in

the timeless dual Lagrangian.

In a sequence-space representation of our model, these objects are all functions of the time

paths of aggregate inputs, i.e., (X, i, Z), where X = X(i, Z). Moreover, the timeless dual Lagrangian

itself can be represented in terms of aggregate outcomes Y , using the general model representation

above. Consequently, computing the matrices d
di F and d

dZ F requires taking total derivatives of

specific aggregate outcomes Y .

We define sequence-space Hessians as the matrices of mixed partial derivatives of model objects

that can be represented as functions of aggregate sequences around the stationary Ramsey plan. We

discuss these mixed partial derivative matrices in detail in Section D.5.1. Subsequently, in Section

D.5.2, we show how to build up the second-order total derivatives of the timeless dual Lagrangian,

i.e., d
di F and d

dZ F, from sequence-space Hessians.

D.5.1 A Fake-News Algorithm to Compute Sequence-Space Hessians

We now extend the fake-news algorithm of Auclert et al. (2021) to compute sequence-space Hessians,

i.e., the matrices of mixed partial derivatives ∂2

∂ik∂il
Yn in a sequence-space representation of the

model. The results we present below hold for any mixed partial derivative of Yn(X, i, Z), but to

ease notation we focus specifically on the mixed derivative ∂2

∂ik∂il
for some given k, l ∈ {1, . . . , N}.
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Using equation (69), we can rewrite the mixed derivative of aggregate outcome Yn at time tn

as

∂2Yn

∂ik∂il
=

∂

∂il

(
y′n

∂gn

∂ik
+ g′n

∂yn

∂ik

)
= y′n

∂2gn

∂ik∂il
+

∂gn

∂ik

′ ∂yn

∂il
+ g′n

∂2yn

∂ik∂il
+

∂yn

∂ik

′ ∂gn

∂il

This derivation underscores that we generally need both the first-order and second-order mixed par-

tial derivatives of individual outcomes yn and the distribution gn to compute aggregate sequence-

space Hessians ∂2Y . Our method leverages several useful properties of these first- and second-order

derivatives. In the following, we prove key properties of the second-order mixed derivatives ∂2

∂ik∂il
yn

and ∂2

∂ik∂il
gn, and we refer the reader to Auclert et al. (2021) for the properties of the first-order

partial derivatives.

First, notice that mixed partial derivatives are symmetric, or interchangeable, by the standard

continuity argument. That is

∂2yn

∂ik∂il
=

∂2yn

∂il∂ik
and

∂2gn

∂ik∂il
=

∂2gn

∂il∂ik
.

Second, the recursive structure of the system (67) - (69) gives rise to the following key property

of mixed partial derivatives in sequence space.

Lemma 24. We have

∂2yn

∂ik∂il
=

0 if n > min{k, l}
∂2yn−s

∂ik−s∂il−s
else for s < n

Leveraging these first two properties of mixed derivatives of individual outcomes in sequence

space, we can construct sequence-space Hessian matrices using the following shortcut: Instead of

computing all N2 numerical derivatives, we simply compute

∂2yn

∂ik∂iN

for 1 ≤ k ≤ N, which requires only N numerical derivative evaluations.55

Third, we exploit the fact that the transition matrix Λ, which describes the law of motion of

the cross-sectional distribution in equation (69), has a particular structure in continuous time. In

particular, we have

Λ(Vn+1, Xn, in, Zn) = 1 + dtA(Vn+1, Xn, in, Zn)
′,

where A is the J × J matrix that discretizes the HJB operator A, and A′, its transpose, is the analog

55 For other mixed derivatives, such as ∂2yn
∂ik∂Zl

, we require 2N evaluations, i.e., both ∂2yn
∂ik∂ZN

and ∂2yn
∂iN ∂Zl

.
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for the adjoint A∗. In our baseline HANK model, the discretized transition matrix takes the form

An = sn · Da + Az (75)

where Az is given exogenously, and its derivatives with respect to θk, Xk and Zk are therefore 0. The

matrix Da discretizes the partial derivative ∂a, and it is also invariant to perturbations in aggregate

inputs as long as the step size used for the numerical derivative is fine enough. In particular,

the key insight here is that taking derivatives of the general transition matrix Λ in equation (69)

simply amounts to differentiating sn in equation (75).56 We record this observation in the following

Lemma.

Lemma 25. The first- and second-order mixed partial derivatives of the transition matrix Λn in our setting

are given by
∂Λn

∂ik
= dt

∂sn

∂ik
· Da and

∂2Λn

∂ik∂il
= dt

∂2sn

∂ik∂il
· Da.

Fourth, we characterize the properties of the mixed derivatives of the cross-sectional distribu-

tion. We assume for simplicity that the economy is initialized at the cross-sectional distribution

that corresponds to the stationary Ramsey plan, that is, g1 = gss, where we recall that n starts at 1

and t1 = 0. The initial distribution is given exogenously and does not adjust on impact. That is,
∂2g1
∂ik∂il

= 0. Using equation (69) and Lemma 25, the response of the cross-sectional distribution at

time step n = 2 is thus
∂2g2

∂ik∂il
=

∂2Λ1

∂ik∂il
gss = dt

(
∂2s1

∂ik∂il
· Da

)
gss

We now exploit the recursive structure of equation (69) to derive two alternative expressions for

the mixed derivatives ∂2gn
∂ik∂il

, for n ≥ 3. We summarize in the next Lemma.

Lemma 26. The mixed partial derivatives of the cross-sectional distribution gn at time steps n ≥ 3 can be

computed recursively using

∂2gn

∂ik∂il
=Λss

∂2gn−1

∂ik∂il
+

∂2g2

∂ik−(n−2)∂il−(n−2)
1min{k−(n−2),l−(n−2)}≥1

+ dt
(

∂s1

∂il−(n−2)
· Da

)
∂gn−1

∂ik
1l−(n−2)≥1 + dt

(
∂s1

∂ik−(n−2)
· Da

)
∂gn−1

∂il
1k−(n−2)≥1

56 Notice that equation (75) is specific to our baseline model and consequently breaks with the spirit of gener-
ality otherwise adopted in this section. However, an equation like (75) will generally hold in any continuous-time
heterogeneous-agent model. We think there is some value to highlighting how to leverage this equation when con-
structing sequence-space Jacobians and Hessians, and we therefore use equation (75) in the following while otherwise
maintaining our general notation.
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or non-recursively using

∂2gn

∂ik∂il
=

R1

∑
r=1

(Λss)
n−r−1 ∂2g2

∂ik∂il

+ dt
R2

∑
r=1

(Λss)
n−r−2

(
∂s1

∂ik−r
· Da

)
∂g1+r

∂il
+ dt

R3

∑
r=1

(Λss)
n−r−2

(
∂s1

∂il−r
· Da

)
∂g1+r

∂ik

where R1 = min{k, l, n− 1}, R2 = min{k− 1, n− 2}, and R3 = min{l − 1, n− 2}.

Fifth and finally, we discuss how to efficiently compute a given mixed partial derivative

numerically. The most popular finite-difference stencil to compute second-order mixed derivatives

is given by
∂2yn

∂ik∂il
=

y++
n − y+−

n − y−+n + y−−n
4h2 (76)

where y++
n = yn(. . . , ik + h, . . . , il + h, . . .), y+−

n = yn(. . . , ik + h, . . . , il − h, . . .), y−+n = yn(. . . , ik −
h, . . . , il + h, . . .), and y−−n = yn(. . . , ik − h, . . . , il − h, . . .). This stencil requires 4 function evalua-

tions for every mixed derivative and is therefore very costly.

An alternative and, in our case, substantially more efficient stencil is

∂2yn

∂ik∂il
=

y++
n − y+·

n − y·+
n + 2yn − y−·n − y·−

n + y−−n
2h2 (77)

where y+·
n = yn(. . . , ik + h, . . . , il , . . .), y·+

n = yn(. . . , ik, . . . , il + h, . . .), y−·n = yn(. . . , ik− h, . . . , il , . . .),

and y·−
n = yn(. . . , ik, . . . , il − h, . . .). Stencil (77) requires only 2 new function evaluations compared

to stencil (76)’s 4. The additional terms yn, y+·
n , and y·+

n are already available from constructing the

first-order sequence-space Jacobians. And the terms y−·n and y·−
n can be computed very cheaply

using the standard fake-news algorithm for first-order derivatives.

Comparison to fake-news algorithm of Auclert et al. (2021). In their seminal contribution,

Auclert et al. (2021) develop a highly efficient algorithm to compute sequence-space Jacobians,

showing that computing a single column of the Jacobian suffices to derive all other columns from

it. For sequence-space Hessians, on the other hand, we need to evaluate one “block” of the Hessian,

which requires N numerical derivatives, and is consequently substantially more expensive than

computing a sequence-space Jacobian.

Why does the Hessian matrix have a higher information requirement? For Jacobians, Auclert

et al. (2021) show that we only require a single piece of information to evaluate the impact of shocks

on household behavior: How far in the future is the shock, i.e., what is the distance from the present

to the shock. For Hessians, on the other hand, we need two pieces of information: How far in the

future is the (later of the two) shock(s), and, in addition, what is the relative distance between the
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two shocks. We therefore cannot obtain all required information with a single numerical derivative

as in the case of the Jacobian.

Nonetheless, our fake-news algorithm for sequence-space Hessians represents a substantial

improvement over computing the Hessian matrices directly, which would require the evaluation of

N2 numerical derivatives.

D.5.2 Total Derivatives and General Equilibrium

Our perturbation approach to optimal stabilization policy in the dual requires the two total deriva-

tives d
di F and d

dZ F. In particular, the [k, l]th entry of the N × N matrix Fθ is given by

(Fi)[k,l] =
N

∑
n=1

e−ρtn
d2Un

dikdil
dt + (φss)

′ d2V1

dikdil
+ θss

d2πw
1

dikdil
, (78)

where Un = (u(cn)− v(Nn)− δ
2 (π

w
n )

2)′gn. The first term in equation (78) thus captures the present

discounted sum of future aggregate social welfare flows, and the second and third terms capture

the timeless penalties.

So far, we have discussed how to construct the first- and second-order partial derivatives of

the economic variables that comprise F. To compute total derivatives, we start with a discussion of

general equilibrium.

General equilibrium. General equilibrium considerations in our model can be summarized in

terms of the equilibrium map (51), which is a system of N equation, assuming for now that Xn ∈ R.

Given paths for policy i and the exogenous shock Z, we can solve equation (51) for X = X(i, Z).

To compute the total derivative Fi, i.e., the response in the planner’s first-order condition to a

perturbation in the policy path, we must take into account both the direct effect of the policy via its

partial derivative and the indirect general equilibrium effects. We use the first-order derivatives

Xik = −H−1
X Hik . Likewise, the mixed partial derivatives are given by

Xikil = −H−1
X Hikil + H−1

X HXil H
−1
X Hik . (79)

Total derivatives. We now summarize how total derivatives of Yn relate to the partial derivatives

we have discussed so far. For notational convenience, we drop the n subscript and instead use

subscripts to denote partial derivatives. Recall that Y depends on the time paths of all aggregate

inputs, Y(X, i, Z).
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Lemma 27. The total derivatives of Y are given by

d2Y
dikdil

=
(

YX1X Xil . . . YXN X Xil

)
Xik + YXil Xik + YX Xikil + YikX Xil + Yikil (80)

where subscripts denote partial derivatives, and likewise for the total derivatives d2Y
dikdZl

.

The total derivatives for V1 and πw
1 take the same form and can be computed via their second-order

partial derivatives together with the general equilibrium maps, i.e., the partial derivatives of X. We

now have all the objects we need to implement our perturbation approach in the dual and compute

optimal stabilization policy numerically.

D.5.3 Algorithm to Compute Optimal Policy in the Dual

We summarize in Algorithm 1 our fake-news algorithm to compute sequence-space Hessians and,

with them, optimal stabilization policy to first order in the dual representation of the timeless

Ramsey problem.

Algorithm 1 Optimal Stabilization Policy using Sequence-Space Hessians

1: Compute stationary Ramsey plan

2: Compute sequence-space Jacobians around the stationary Ramsey plan using fake-news algo-
rithm of Auclert et al. (2021)

3: Compute N numerical mixed partial derivatives, and . use stencil (77)
a: construct policy Hessians . use Lemma 24
b: construct distribution Hessians . use Lemmas 25 and 26

4: Use Hessians to compute mixed derivatives of H and X . use equations (51) and (79)

5: Compute total derivatives for Fi and FZ . use equations (78) and (80)

6: Compute optimal stabilization policy as di = −F−1
i FZdZ

D.5.4 Accuracy and Performance

We test the accuracy of our method in Appendix F.3. We show there that the numerical solution

of optimal policy in RANK using our perturbation method based on sequence-space Hessians is

highly accurate. In RANK, we can compute optimal policy analytically. We compare this exact

analytical solution to the first-order approximation of optimal policy given by di = −F−1
i FZdZ.

For demand shocks, we show that the difference in optimal CPI inflation, for example, is on the

order of 10−6. In the case of TFP shocks, the remaining discrepancy is slightly larger, with the two

optimal interest rate paths differing by about 1 basis point.
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E RANK with Wage Rigidity

In this Appendix, we present a self-contained treatment of optimal monetary policy in the RANK

limit of our model. The RANK limit obtains when i) households’ idiosyncratic labor productivity

converges to a constant value, that is, zt → z for all t, and ii) the economy is initialized with a

cross-sectional distribution of bond holdings and productivities that is degenerate at a = 0 and

z = z, that is, gRA
0 (a, z) = δ(a = 0, z = z), where δ(·) denotes a two-dimensional Dirac delta

function.

It is well known that the Ramsey problem in the standard New Keynesian model can be

represented with a single implementability condition, the Phillips curve. The goal of this Appendix

is to parallel our derivations for HANK and facilitate comparison where possible. We therefore

represent the Ramsey problem in terms of the same set of implementability conditions we use in

the main text. The following Lemma summarizes these for the RANK limit.

Lemma 28. The implementability conditions that a Ramsey planner faces in RANK can be summarized as

Ċt =
1
γ

(
it − πw

t +
Ȧt

At
− ρt

)
Ct

Ct = AtNt

π̇w
t = ρtπ

w
t +

εt

δ

[
(1 + τL)

εt − 1
εt

Atu′(Ct)− v′(Nt)

]
Nt.

E.1 Standard Ramsey Problem

We associate the standard Ramsey problem in primal form with the following Lagrangian, where

we drop time subscripts for convenience,

L =
∫ ∞

0
e−ρt

{
1

1− γ
C1−γ − v(N)− δ

2
(πw)2

+ φ

[
1
γ

(
i− πw +

Ȧ
A
− ρ

)
C− Ċ

]

+ µ

[
AN − C

]

+ ϑ

[
ρπw +

ε

δ

(
(1 + τL)

ε− 1
ε

Au′(C)− v′(N)

)
N − π̇w

]}
dt

OA-54



Crucially, both C0 and πw
0 are free from the planner’s perspective.

Proposition 29. The first-order conditions for optimal monetary policy in RANK are given by

0 = C−γ − µ + φ
1
γ

(
i− πw +

Ȧ
A
− ρ

)
− ρφ + φ̇ + θ

ε

δ
(1 + τL)

ε− 1
ε

Au′′(C)N (81)

0 = −δπw − φ
1
γ

C + ϑρ− ρϑ + ϑ̇ (82)

0 = −v′(N) + µA + ϑ
ε

δ

(
(1 + τL)

ε− 1
ε

Au′(C)− v′(N)

)
− θ

ε

δ
v′′(N)N (83)

0 = φ
1
γ

C, (84)

with initial conditions

0 = φ0

0 = ϑ0.

We see that we must have φ = 0 for all t. This allows us to simplify the first-order conditions and arrive at

0 = C−γ − µ + θ
ε

δ
(1 + τL)

ε− 1
ε

Au′′(C)N

θ̇ = −δπw

0 = −v′(N) + µA + θ
ε

δ
(1 + τL)

ε− 1
ε

Au′(C)− θ
ε

δ
v′(N)− θ

ε

δ
v′′(N)N

with initial condition θ0 = 0. The stationary Ramsey plan satisfies

πw
ss = 0

iss = ρ

Nss =

[
(1 + τL)

ε− 1
ε

] 1
γ+η

Css = Nss

θss =
1− (1 + τL) ε−1

ε

(γ + η) ε
δ (1 + τL) ε−1

ε

µss =
γ

γ + η
(Nss)

η +
η

γ + η
(Css)

−γ.
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We see that θss = 0 if and only if an appropriate employment subsidy is in place, so that (1 + τL) ε−1
ε = 1.

Proof of Proposition 29. We now integrate by parts and consider a general functional perturbation,

yielding

L =
∫ ∞

0
e−ρt

{
1

1− γ
(C + αhC)

1−γ − v(N + αhN)−
δ

2
(πw + αhπ)

2

+ φ

[
1
γ

(
i + αhi − πw − αhπ +

Ȧ
A
− ρ

)
(C + αhC)

]

+ µ

[
A(N + αhN)− C− αhC

]

+ θ

[
ρ(πw + αhπ) +

ε

δ

(
(1 + τL)

ε− 1
ε

Au′(C + αhC)− v′(N + αhN)

)
(N + αhN)

]

− ρφ(C + αhC) + (C + αhC)φ̇− ρθ(πw + αhπ) + (πw + αhπ)θ̇

}
dt

+ φ0(C0 + αhC,0) + ϑ0(π
w
0 + αhπ,0)

Working out the Gateaux derivatives and employing the fundamental lemma of the calculus of

variations, we arrive at the following

0 =
∫ ∞

0
e−ρt

{
C−γhC − v′(N)hN − δπwhπ

+ φ

[
1
γ

(
hi − hπ

)
C +

1
γ

(
i− πw +

Ȧ
A
− ρ

)
hC

]

+ µ

[
AhN − hC

]

+ θ

[
ρhπ +

ε

δ

(
(1 + τL)

ε− 1
ε

Au′′(C)hC − v′′(N)hN

)
N

+
ε

δ

(
(1 + τL)

ε− 1
ε

Au′(C)− v′(N)

)
hN

]

− ρφhC + hCφ̇− ρθhπ + hπ θ̇

}
dt + φ0hC,0 + θ0hπ,0
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Grouping terms,

0 =
∫ ∞

0
e−ρt

{[
C−γ − µ + φ

1
γ

(
i− πw +

Ȧ
A
− ρ

)
− ρφ + φ̇ + θ

ε

δ
(1 + τL)

ε− 1
ε

Au′′(C)N

]
hC

+

[
− δπw − φ

1
γ

C + θρ− ρθ + ϑ̇

]
hπ

+

[
− v′(N) + µA + ϑ

ε

δ

(
(1 + τL)

ε− 1
ε

Au′(C)− v′(N)

)
− θ

ε

δ
v′′(N)N

]
hN

+

[
φ

1
γ

C

]
hi

}
dt + φ0hC,0 + θ0hπ,0

The fundamental lemma of the calculus of variations yields the desired result. Since C0 and π0 are

both free, it follows that optimality requires φ0 = θ0 = 0. Finally, it follows directly from 0 = 1
γ φtCt

that we must have φt = 0 for all t.

E.2 Timeless Ramsey Problem

In the following, we leverage our timeless Ramsey approach to give a novel, non-linear characteri-

zation of optimal monetary policy in RANK. We associate the timeless Ramsey problem in the dual

with the Lagrangian

LTD(θ) =
∫ ∞

0
e−ρt

{
1

1− γ
C1−γ

t − v(Nt)−
δ

2
(πw

t )
2

}
dt −θπw

0︸ ︷︷ ︸
Inflation Penalty

Lemma 30. The timeless dual Ramsey problem in RANK is time consistent. In the absence of shocks, the

Ramsey planner has no incentive to deviate from the stationary Ramsey plan. That is,

d
di

LTD(θ)

∣∣∣∣
ss

= 0.

Proof. Suppose we differentiate

d
di

LTD(θ) =
∫ ∞

0
e−ρt

{
C−γ

t
d
di
− Nη

t
dNt

di
− δπw

t
dπw

t
di

}
dt− θ

dπw
0

di
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Next, we evaluate at the stationary Ramsey plan. This yields

d
di

LTD(θ) =
∫ ∞

0
e−ρt

{
C−γ dCt

di
− Nη dNt

di

}
dt− θ

dπw
0

di

=
∫ ∞

0
e−ρt

{
C−γ

[
dCt

di
− (1 + τL)

ε− 1
ε

dNt

di

]}
dt− θ

dπw
0

di

Next, from Ct = AtNt, we have when evaluated at the stationary Ramsey plan that

dCt

di
= A

dNt

di
.

Thus,

d
di

LTD(θ) =
∫ ∞

0
e−ρt

{
C−γ dCt

di
− Nη dNt

di

}
dt− θ

dπw
0

di

= C−γ

[
1− (1 + τL)

ε− 1
ε

] ∫ ∞

0
e−ρt dCt

di
dt− θ

dπw
0

di
.

Next, we use the Phillips curve. With limT→∞ πw
T = 0, we have in integral form

π̇w
t = ρπw

t +
ε

δ

[
(1 + τL)

ε− 1
ε

Atu′(Ct)− v′(Nt)

]
Nt

πw
t = −

∫ ∞

t
e−ρ(s−t) ε

δ

[
(1 + τL)

ε− 1
ε

Asu′(Cs)− v′(Ns)

]
Ns

Thus, we have

dπw
0

di
= −

∫ ∞

0
e−ρ(s−0) ε

δ

[
(1 + τL)

ε− 1
ε

(1− γ)C−γ dCs

di
− (1 + η)Nη dNs

di

]
ds

= −ε

δ

[
(1 + τL)

ε− 1
ε

(1− γ)C−γ − (1 + η)Nη

] ∫ ∞

0
e−ρt dCt

di
dt

=
ε

δ
(1 + τL)

ε− 1
ε

C−γ(γ + η)
∫ ∞

0
e−ρt dCt

di
dt
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Thus, we have

d
di

LTD(θ) =

Marginal benefit from time-inconsistent deviations︷ ︸︸ ︷
C−γ

[
1− (1 + τL)

ε− 1
ε

] ∫ ∞

0
e−ρt dCt

di
dt

−θ
ε

δ
(1 + τL)

ε− 1
ε

C−γ(γ + η)
∫ ∞

0
e−ρt dCt

di
dt︸ ︷︷ ︸

Marginal cost of time-inconsistent deviations under timeless penalty

Finally, we now have

0 = C−γ

[
1− (1 + τL)

ε− 1
ε

]
− θ

ε

δ
(1 + τL)

ε− 1
ε

C−γ(γ + η)

=

[
1− (1 + τL)

ε− 1
ε

]
−

1− (1 + τL) ε−1
ε

(γ + η) ε
δ (1 + τL) ε−1

ε

ε

δ
(1 + τL)

ε− 1
ε

(γ + η)

=

[
1− (1 + τL)

ε− 1
ε

]
−
[

1− (1 + τL)
ε− 1

ε

]
,

which concludes the proof.

�

Our constructive proof of Lemma 30 characterizes clearly the marginal benefit from time-inconsistent

deviations from the stationary Ramsey plan. And it also shows clearly how the timeless penalty,

the marginal cost of deviations, exactly offsets the marginal benefit. Importantly, we see here in

closed-form what the economic determinants are of the marginal benefit and the timeless penalty.

E.3 Retracing Classical RANK Results

We are now ready to use our apparatus to retrace the classical analysis of optimal monetary

stabilization policy in RANK. In this subsection, we restate several of the classical results in an

exact, non-linear form. In much of the standard RANK literature, e.g., Clarida et al. (1999), optimal

policy analysis drops the IS equation as an implementability condition and then proceeds to derive

targeting rules for inflation and output (gaps). In the following, our goal is to retrace this classical

analysis in our setting. We leverage the results we derive here in Section 4.6 of the main text to

compare optimal policy and targeting rules across RANK and HANK.

Following Galí (2015), we define the natural level of output, denoted Ỹt, as the equilibrium level

of output under flexible prices. From the Phillips curve, which is in our setting given by

Ỹt =

[
(1 + τL)

εt − 1
εt

A1+η
t

] 1
γ+η

. (85)
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Going back to the Phillips curve and using the resource constraint with Yt = AtNt = Ct, we have

π̇w
t = ρtπ

w
t +

εt

δ

[
Ỹγ+η

t −Yγ+η
t

]
Y1−γ

t A−1−η
t (86)

which is our sole remaining implementability condition and features all three shocks: At, εt, and ρt.

The planner’s Ramsey problem can now be associated with the Lagrangian

L =
∫ ∞

0
e−
∫ t

0 ρsds

{
u(Yt)− v

(
Yt

At

)
− δ

2
(πw

t )
2

+ θt

[
ρtπ

w +
εt

δ

(
(1 + τL)

εt − 1
εt

Atu′(Yt)− v′
(

Yt

At

))
Yt

At
− π̇w

t

]}
dt

We now state the main result of this appendix: a non-linear targeting rule for optimal monetary

policy in RANK under demand, TFP, and cost-push shocks.

Proposition 31. (Optimal Policy Targeting Rules / Divine Coincidence in RANK)

a) (Targeting Rule) Optimal monetary policy in RANK is fully characterized by the non-linear targeting rule

Yt = Ỹt

(
1

1+τL
εt

εt−1 +
εt
δ θt(1− γ)

1 + εt
δ θt(1 + η)

) 1
γ+η

(87)

b) (Divine Coincidence) Suppose there are no cost-push shocks, i.e., εt = ε, and we implement an employment

subsidy so that (1 + τL) ε−1
ε = 1. We have

Yt = Ỹt

(
1 + ε

δ θt(1− γ)

1 + ε
δ θt(1 + η)

) 1
γ+η

. (88)

A solution to the non-linear Ramsey plan is then given by Yt = Ỹt, θt = 0, and πw
t = 0.

Proof. Crucially, both Y0 and πw
0 are free from the planner’s perspective. We start by integrating by
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parts, yielding

L =
∫ ∞

0
e−
∫ t

0 ρsds

{
u(Yt)− v

(
Yt

At

)
− δ

2
(πw

t )
2

+ θt

[
ρtπ

w +
εt

δ

(
(1 + τL)

εt − 1
εt

Atu′(Yt)− v′
(

Yt

At

))
Yt

At

]

− ρtθtπ
w
t + πw

t θ̇t

]}
dt + θ0πw

0

The two first-order conditions are then given by

0 =u′(Yt)− v′
(

Yt

At

)
1
At

+
εt

δ
θt

[
(1 + τL)

εt − 1
εt

Atu′′(Yt)− v′′
(

Yt

At

)
1
At

]
Yt

At

+
εt

δ
θt

(
(1 + τL)

εt − 1
εt

Atu′(Yt)− v′
(

Yt

At

))
1
At

for output and ϑ̇t = δπw
t for the multiplier.

We now simplify the first condition, which will take the form of a targeting rule, as discussed

in much of the classical optimal policy analysis in RANK. With isoelastic preferences, we have

0 =Y−γ
t −Yη

t A−η−1
t +

εt

δ
θt

(
(1 + τL)

εt − 1
εt

(1− γ)Y−γ
t − (1 + η)Yη

t A−η−1
t

)
Further rearranging yields

0 =A1+η
t −Yγ+η

t +
εt

δ
θt(1 + τL)

εt − 1
εt

(1− γ)A1+η
t − εt

δ
ϑt(1 + η)Yγ+η

t

or simply

[
1 +

εt

δ
ϑt(1 + η)

] 1
γ+η

Yt =

[(
1

1 + τL
εt

εt − 1
+

εt

δ
θt(1− γ)

)
(1 + τL)

εt − 1
εt

A1+η
t

] 1
γ+η

Using the definition of natural output, we therefore have

[
1 +

εt

δ
θt(1 + η)

] 1
γ+η

Yt =

(
1

1 + τL
εt

εt − 1
+

εt

δ
θt(1− γ)

) 1
γ+η

Ỹt

which concludes the proof.

�
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Importantly, the targeting rule of Proposition 31 echoes the result of the standard New Keynesian

framework, that Divine Coincidence obtains unless there are cost-push shocks. In the presence of

only productivity and demand shocks, the planner perceives no tradeoff between inflation and

output.
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Figure 5. Optimal Policy Transition Dynamics: TFP Shock

Note. Transition dynamics after a positive TFP shock in both RANK (red) and HANK (blue) models under optimal
monetary stabilization policy. Initial shock is 1% of steady state TFP and mean-reverts with a half-life of 1 quarter. Panels
(A) through (C) report the dynamics of the output gap, Yt−Ỹt

Ỹt
, natural output, and the shock, all in percent deviations

from the stationary Ramsey plan. Panels (D) through (F) report CPI inflation, wage inflation, and the optimal interest
rate, all in percentage point deviations from the stationary Ramsey plan.

F Quantitative Analysis: Additional Results and Robustness

F.1 Productivity Shocks

We next turn to optimal stabilization policy in response to a TFP shock. Figure 5 reports the

transition dynamics of the economy under optimal policy, while Figure 9 in Appendix F.4 reports

those under a Taylor rule for comparison.

In both model benchmarks, natural output increases in response to a positive productivity

shock. Natural output increases less than one-for-one, primarily due to diminishing marginal utility

from consumption and convex disutility from labor. In HANK, natural output increases slightly

less than in RANK as a result of union wage bargaining, which now features a distributional

consideration.

Optimal stabilization policy in HANK follows the same principles as in RANK, with minor

quantitative departures. The planner largely stabilizes both output and (wage) inflation gaps, but

not fully. The planner allows both to become briefly negative on impact, before becoming positive

and overshooting, yielding a hump-shaped response. The wage inflation gap on impact is small,

reaching only −0.02%, and consequently not meaningfully different from 0. Compared to the

response of wage inflation under a Taylor rule, where the wage inflation gap opens up to 0.4%

under the same shock, this deviation from the Divine Coincidence benchmark of RANK should be
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Figure 6. Optimal Policy Transition Dynamics: Cost-Push Shock

Note. Transition dynamics after a positive cost-push shock in both RANK (red) and HANK (blue) models under optimal
monetary stabilization policy. The cost-push shock is modeled as an increase in labor union’s desired wage mark-up.
The shock is initialized at ε0 = 11 and mean-reverts to its steady state value ε = 10, with a half-life of 1 quarter. Panels
(A) through (C) report the dynamics of the output gap, Yt−Ỹt

Ỹt
, natural output, and the shock, all in percent deviations

from the stationary Ramsey plan. Panels (D) through (F) report CPI inflation, wage inflation, and the optimal interest
rate, all in percentage point deviations from the stationary Ramsey plan.

viewed as minimal. Similarly, while optimal policy stabilizes the output gap substantially relative

to policy under the Taylor rule, the planner allows a small negative output gap to open up. The

on-impact negative output gap under optimal policy is less than 20% of the size of the output gap

under the Taylor rule.

F.2 Cost-Push Shocks

Finally, we consider a cost-push shock under which the desired wage mark-up of labor unions

changes and natural output increases by 0.25%. We report the transition dynamics under optimal

policy in Figure 6, and also report the analogous transition dynamics under a Taylor rule in Figure

11 in Appendix F for comparison.

In RANK, Divine Coincidence fails in the presence of cost-push shocks and the planner now

faces a tradeoff between inflation and output. Optimal stabilization policy is accommodative,

lowering the nominal interest rate, but a small negative output gap still opens up.

In HANK, natural output again increase but slightly less due to distributional concerns in

union bargaining. Monetary policy eases substantially less than in RANK, allowing a sizable

negative output gap to open up. However, there is still substantial stabilization relative to the

Taylor rule case. Especially inflation is again stabilized substantially.
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Figure 7. Transition Dynamics with Optimal Policy: Perturbation vs. Exact Solution
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Note. Impulse responses to positive TFP under optimal monetary policy in RANK. The Figure compares the exact
analytical solution of optimal policy (yellow) against our numerical perturbation approach using sequence-space
Hessians (blue).

F.3 Accuracy

In this section, we report a series of numerical tests to benchmark the accuracy of our perturbation

method using sequence-space Hessians. In Figure 7, we compute the transition dynamics under

optimal policy in RANK in response to a TFP shock using both our perturbation method and the

exact analytical solution. The Figure underscores that our first-order perturbation method is highly

accurate in the case of the baseline RANK model. The remaining error in the two solutions amounts

to 0.01% in the output gap or, conversely, 1bps in the optimal interest rate response.

Likewise, Figure 8 reports the analogous comparison exercise for optimal policy in response

to a demand shock in RANK. Here, the numerical error is even smaller. The discrepancy in optimal

CPI inflation, for example, is on the order of 10−6.

F.4 Transition Dynamics without Optimal Policy

In this section, we present impulse response plots that display the transition dynamics of both

RANK and HANK economies in response to TFP, demand, and cost-push shocks without optimal

policy interventions. We model monetary policy instead as following a Taylor rule, with

it = rss + λππt, (89)

where we calibrate λπ = 1.5.
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Figure 8. Transition Dynamics with Optimal Policy: Perturbation vs. Exact Solution
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Note. Impulse responses to positive demand under optimal monetary policy in RANK. The Figure compares the
exact analytical solution of optimal policy (yellow) against our numerical perturbation approach using sequence-space
Hessians (blue).

Figure 9. Transition Dynamics under Taylor Rule: TFP Shock

Note. Impulse responses to positive cost-push shock in both RANK (yellow) and HANK (blue) models. The nominal
interest rate follows the Taylor rule (89) and is not set optimally. The cost-push shock is modeled as an increase in labor
union’s desired wage mark-up. The shock is initialized at ε0 = 11 and mean-reverts to its steady state value ε = 10, with
a half-life of 2 quarters.
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Figure 10. Transition Dynamics under Taylor Rule: Demand Shock

Note. Impulse responses to positive cost-push shock in both RANK (yellow) and HANK (blue) models. The nominal
interest rate follows the Taylor rule (89) and is not set optimally. The cost-push shock is modeled as an increase in labor
union’s desired wage mark-up. The shock is initialized at ε0 = 11 and mean-reverts to its steady state value ε = 10, with
a half-life of 2 quarters.

Figure 11. Transition Dynamics under Taylor Rule: Cost-Push Shock

Note. Impulse responses to positive cost-push shock in both RANK (yellow) and HANK (blue) models. The nominal
interest rate follows the Taylor rule (89) and is not set optimally. The cost-push shock is modeled as an increase in labor
union’s desired wage mark-up. The shock is initialized at ε0 = 11 and mean-reverts to its steady state value ε = 10, with
a half-life of 2 quarters.
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