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1 Introduction

Understanding how to make interpersonal welfare comparisons across individuals who are
not concurrently alive is far from trivial and particularly important for addressing pressing
global challenges, such as climate change, public debt, and social security sustainability.
However, existing work on these questions typically sidesteps making interpersonal welfare
comparisons across individuals from different generations. The alternative is to rely on the
Pareto criterion, which while widely accepted is often inconclusive.

In this paper, we study how welfarist planners — those who use a social welfare function
— make welfare assessments in demographically-rich economies.1 We introduce our results
in a single-good perfect foresight economy with a flexible demographic structure in which
individuals have arbitrary birth and death dates. Several of our results rely on the notion
of demographic disconnect, which describes economies with no date in which all individuals
are concurrently alive.

Interpersonal Welfare Comparisons. We first must determine the units in which it is
possible to make interpersonal welfare comparisons across individuals, because individual
utilities are ordinal and interpersonal comparisons based on utils are meaningless. Our
first main contribution is to identify the unique class of units in which it is possible to
make interpersonal comparisons in demographically disconnected economies: those based on
perpetual consumption. Comparisons of welfare gains across individuals must be made
in terms of a claim that every individual — alive and yet-to-be-born — values. And
claims based on perpetual consumption, that is, consumption at all dates, are the only
ones that all individuals from all generations value. This result contrasts with conventional,
demographically connected economies, in which there are many more units in which
interpersonal comparisons can be made.

Feasible Kaldor-Hicks Improvements. Our second main contribution is to show that
there exist feasible perturbations of Pareto efficient allocations in demographically discon-
nected economies in which the sum of individual willingness-to-pay for the perturbation
(Kaldor-Hicks efficiency gains) is strictly positive. This arguably paradoxical result con-
trasts once again with conventional, demographically connected economies, in which no fea-
sible perturbation of Pareto efficient allocations can generate Kaldor-Hicks efficiency gains.

1We use the expression demographically-rich economies to refer to economies in which individuals are
born and die.
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If there exists a perturbation that feature Kaldor-Hicks efficiency gains, the conventional
logic — based on the compensation principle — calls for reshuffling resources from winners
to losers so that a Pareto improvement is achieved. However, we show that in demograph-
ically disconnected economies the transfers that would be necessary to actually implement
the compensation principle are not feasible since they would hit non-negativity constraints.

Reallocating consumption towards individuals with higher valuations for consumption
at particular dates is a source of efficiency gains in dynamic economies with heterogeneous
individuals: we refer to these gains as intertemporal-sharing gains. In conventional, non-
demographically-rich economies, the only reason why individuals’ valuations for consumption
are not equalized is because they face financing frictions, i.e., because markets are incomplete.
However, in demographically rich economies, a second reason may lead to differences in
valuations even when all possible financial markets are open: demographic differences.
Intuitively, any two individuals may value consumption at different dates relative to
perpetual consumption — already established to be only valid unit for intertemporal
comparisons — differently simply because their different lifespans impact their valuation
for permanent consumption, even when they share the value for consumption at all dates in
which both are concurrently alive.

Incomplete Markets vs. Demographics. Our third main contribution is to show
that intertemporal-sharing efficiency gains can be further decomposed into i) intertemporal-
market-sharing, a term that captures how perturbations reallocate consumption towards
individuals with different valuations for consumption across dates due to market incom-
pleteness and ii) intertemporal-demographic-sharing, a term that captures how perturbations
reallocate consumption towards individuals with different valuations for consumption across
dates due to demographic differences.

Applications. In the remainder of the paper, we use our results to derive new insights in
three workhorse intergenerational models. To highlight that none of our conclusions hinge on
having an infinity of periods — an issue widely studied in overlapping generation economies
— all three applications feature a finite horizon.

Our first application conducts a welfare assessment of intergenerational transfers in
the simplest OLG economy: the two-date-life version of Samuelson (1958)’s endowment
economy. In particular, we focus on a policy that implements young-to-old transfers across
all generations starting from the unique competitive equilibrium, which is Pareto efficient.
This is a policy that has been widely studied and that provides the foundation of the study
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of social security and money. As a first step, we show that utilitarian planners put higher
weight on the gains of individuals who i) live longer, ii) have lower share of consumption
(are poorer), iii) are born later if the planner is a discounted utilitarian planner, and iv)
are born later (earlier) if the economy features growth and individual preferences have an
elasticity of intertemporal substitution less than one. We also show that individuals and
the planner initially assign a higher value to the consumption of the old relative to the
young at any given date since the former are poorer. This difference in valuation — solely
given by the demographic structure and the pattern of endowments since in this economy
financial markets do not operate between generations — motivate the desire for the planner
to implement transfers from young-to-old individuals.

The study of the welfare consequences of implementing young-to-old transfers across all
generations yields several results. First, we show that a young-to-old transfer generates
welfare gains for all generations, with the exception of the final young generation at the
terminal date. This occurs because the initial old generation simply consumes more, while all
other generations have smoother consumption paths. These transfers are initially associated
with an efficiency gain, solely due to intertemporal-sharing, in turn only due to intertemporal-
demographic-sharing. That is, consistent with our main results, we establish that young-to-
old transfers generate Kaldor-Hicks efficiency gains starting from a competitive equilibrium
allocation, which is Pareto efficient. Also consistent with our theoretical results, these
Kaldor-Hicks gains cannot be transformed into Pareto improvement since there is no feasible
way of transferring the gain from the initial old generation to terminal young generation.

Our second application studies the desirability of capital taxation in the classic Diamond
(1965) model, which is the simplest environment used to understand over- and under-
accumulation of capital in OLG economies. In low-capital-share economies, we show that
the efficiency maximizing capital tax is strictly positive. In this case, an increase in the
capital tax increases aggregate consumption at all dates, with the exception of the last one,
contributing positively to efficiency gains via the its aggregate efficiency component, which
capture the net present value of the change in aggregate consumption. This gain overcomes
the intertemporal-sharing losses induced by a capital tax which increases the consumption
of the young, who start with a higher consumption. In high-capital-share economies, the
efficiency maximizing capital tax is negative (a subsidy). In this case, an increase in the
capital tax reduces aggregate consumption at all dates, with the exception of the first one,
contributing negatively to efficiency gains via the its aggregate efficiency component. This
gain overcomes intertemporal-sharing gains from increasing the consumption of the young,
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who initially consume less than the old.
A central takeaway from our second application is that there may be Kaldor-Hicks

efficiency gains from reducing the aggregate capital stock in low-capital share economies.
Our results illustrate once again Proposition 2, but in a production economy, showing how
it is possible to find efficiency gains associated with the allocation of capital at a Pareto
efficient allocation of a demographically disconnected. More broadly, our results can be used
to formalize notions of over- and under-accumulation of capital in Pareto efficient economies,
addressing in a precise sense the challenge laid out by Abel et al. (1989) in their conclusion.2

Our third application conducts a welfare assessment of transfers between middle-aged and
old individuals in the simplest OLG economy in which individuals use financial markets to
smooth consumption: the three-date-life version of Samuelson (1958)’s endowment economy.
Starting from a status quo with no financial markets, we consider a perturbation that
transfers resources from middle-aged to old, partially playing the role of a missing financial
market for savings.

This application allows us to illustrate the intertemporal-sharing decomposition intro-
duced in Proposition 3, distinguishing between the intertemporal-sharing efficiency gains
that arise due to the fact that markets are incomplete and the fact that individuals are
demographically different. While this transfer initially generates intertemporal-sharing wel-
fare gains, these are due to the markets component and a markets-demographic component,
whereas the contribution of the demographic intertemporal-sharing component is negative.

Related Literature. Our analysis contributes to the literature that follows classic studies
of efficiency in overlapping generation (OLG) economies, such as Samuelson (1958) and
Diamond (1965) the two models in which we base our applications. These ideas have
made their way to most macroeconomics textbooks, including Blanchard and Fischer (1989),
De La Croix and Michel (2002), Romer (2006), and Acemoglu (2009), among others. Spear
and Young (2023) presents a historical account of the development of these ideas.

A central normative result of the OLG literature has been the suboptimality of
competitive equilibria, which has spurred large amounts of research. Geanakoplos (1989)

2Abel et al. (1989) conclude their study of Pareto efficiency in OLG economies with the following
observation:

“The most important direction for future research is the evaluation of alternative dynamic paths
using stronger criteria than the dynamic efficiency criterion. Our criterion is the dynamic
analogue of the standard Pareto criterion. (...) The use of social welfare functions would
make possible the evaluation of alternative social decision rules for determining the level of
investment.”
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highlights that this inefficiency result necessitates i) a double infinity of individuals and
goods, and ii) the overlapping nature of individual lives. Our focus on i) understanding the
sources of welfare gains for welfarist planners and ii) characterizing properties of the planning
problem, are largely orthogonal to the question of suboptimality of competitive equilibria.
To highlight the differences, we focus on economies with a terminal date, which eliminates
the pathological properties of competitive equilibria associated with the double infinity.

We are not the first to identify particular demographic features that are important in
OLG economies. For instance, Weil (1989) highlights that the arrival into the economy of
new individuals (dynasties) not linked to older cohorts is necessary to generate asset bubbles,
dynamic inefficiency, and violations of Ricardian equivalence. While the continuous arrival
of new individuals makes an economy demographically disconnected, we are not aware of
any existing work presenting the notion of demographically disconnected economies that we
introduce in this paper.

A separate body of work explores the properties of intergenerational social welfare
functions or other welfare criteria, including for instance, the work by Calvo and Obstfeld
(1988) and Eden (2023), among others. Our approach takes the social objective as given,
but our emphasis on making interpersonal comparisons in a common a unit (the lifetime
welfare numeraire) leads us to establish that the unique feasible (class of) lifetime welfare
numeraire(s) must be based on perpetual consumption. A different approach is followed
by Aguiar, Amador and Arellano (2023), who characterize Robust Pareto Improvements
(RPI) in OLG economies, ensuring that the budget set of any agent is guaranteed to be
weakly expanded at any state and time. An advantage of the RPI criteria is that it ensures
a Pareto improvement regardless of how agents trade off consumption intertemporally or
across uncertain states. Our results are complementary to these, in the sense that our result
are most useful to consider perturbations that are not Pareto improvements.

While, simply to keep the paper focused, we have abstracted from explicitly dealing
with population growth, the importance of population growth for welfare gains has been
emphasized by Jones and Klenow (2016) and Adhami et al. (2024), among others. We hope
that the results of this paper spur future work on these important issues.

2 Environment

Demographics. We consider a perfect foresight economy populated by a countable
number of individuals, indexed by i ∈ I = {1, . . . , I}, where 1 ≤ I ≤ ∞. There are
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t ∈ {0, . . . , T} dates, where T ≤ ∞, in which an individual i (potentially) consumes a single
good. Each individual i is associated with a date of birth τ i

b ∈ {−∞, . . . , T} — where a
negative date of birth means that the individual is already alive at date 0 — and a date of
death τ i

d ∈ {1, . . . , T}. While much of the existing work on demographically-rich economies
emphasizes the T = ∞ case, our results apply when T is finite or infinite. To more easily
contrast our results to existing work, we focus on the finite T case.

Preferences. An individual i derives utility from consumption, with a lifetime utility
representation given by

(Preferences) V i =
T∑

t=τ i
b

(
βi

)t−τ ib ui
t

(
ci

t

)
, (1)

where βi ∈ [0, 1) denotes individual i’s discount factor, and ui
t (·) and ci

t respectively
correspond to individual i’s instantaneous utility and consumption at date t. Whenever
individual i is not alive, ui

t (ci
t) = 0. Whenever individual i is alive, ui

t (ci
t) is well behaved,

so that ∂uit(·)
∂cit

> 0 and an Inada condition applies. We refer to the unit of V i as individual i

utils.

Social Welfare Function. Whenever we study welfare assessments, we do so for welfarist
planners, that is, planners with a social welfare function given by

(Social Welfare Function) W = W
(
V 1, . . . , V i, . . . , V I

)
, (2)

where individual lifetime utilities V i are defined in (1). We assume that ∂W
∂V i > 0, ∀i, which

means that the planner values both alive and yet-to-be-born individuals at date 0. We refer
to the units of W as social utils.

Defining social welfare functions when there are multiple generations is analogous to
doing so in static environments or environments with infinitely lived agents — this is noted,
for instance, in Blanchard and Fischer (1989). However, at times, it may be necessary to
restrict the form of W (·) to ensure that W is finite.3 The welfarist approach is widely
used because it is Paretian, that is, it concludes that every Pareto-improving perturbation

3The most common intergenerational social welfare functions are i) the discounted utilitarian social welfare
function, in which the lifetime utility of future generations is exponentially discounted at a time-invariant
rate, and ii) the undiscounted utilitarian social welfare function, in which all individuals are given the same
utility weight. We use both in our applications.
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is desirable, and because nonwelfarist approaches violate the Pareto principle (Kaplow and
Shavell, 2001).

Remarks on the Environment. To simplify the exposition, we study a perfect foresight
environment with a single consumption good and a continuum of individuals in the body
of the paper. In the Online Appendix, we show how to accommodate demographic and
non-demographic uncertainty and multiple consumption goods and factors. In particular,
considering demographic uncertainty is useful to model random death environments, as
in Yaari (1965) and Blanchard (1985). It is straightforward to generalize the results to
economies with a continuum of individuals, dates, and histories.

Demographic Disconnect. Throughout the paper, we rely on the notion of demograph-
ically disconnected economies, which we introduce here.

Definition. (Demographic Disconnect) An economy is demographically disconnected if there
is no date in which all individuals are concurrently alive.

The key property of demographically disconnected economies is that there is no single
date at which all individuals have positive value for consumption. This property has
a significant implications for welfare assessments and planning solutions. Demographic
disconnect is a realistic assumption and a widespread feature in demographically-rich
economies. Demographically disconnected economies must feature individuals born after
date 0; if all individuals were alive at date 0 — even if they died gradually — the economy
would be demographically connected at date 0. However, births are necessary but not
sufficient to generate demographic disconnect.

It is useful to illustrate the notion of demographic disconnect with an example that
compares two two-date (T = 1) economies with different demographic structures. Table 1
illustrates this example.

Example 1. (Illustrating Demographic Disconnect) In Economy A, there are two individuals:
a first individual who is alive at dates 0 and 1 and a second individual, who is exclusively alive
at date 0. Given our definition, Economy A is not demographically disconnected, because
both individuals are alive at date 0. Economy B is identical to economy A, but for the
fact that there is a third individual who is exclusively alive at date 1. The presence of this
third individual makes Economy B demographically disconnected. At dates 0 and 1 there
are two concurrently alive individuals, but there is no date in which all three individuals are
concurrently alive.
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Table 1: Illustrating Demographically Disconnected Economies

Economy A Economy B
t = 0 t = 1 t = 0 t = 1

i = 1 ✓ ✓ ✓ ✓
i = 2 ✓ × ✓ ×
i = 3 × ✓

Note: Economy A has two individuals: i = 1 and i = 2. Economy B has three individuals, i = 1, i = 2, and
i = 3. Checks (✓) represent dates in which an individual is alive, while crosses (×) represent dates in which
an individual is not alive. Economy A is demographically connected since all individuals are concurrently
alive at date 0. Economy B is demographically disconnected since there is no date in which all individuals
are concurrently alive: individual i = 2 is not alive at date 1 and individual i = 3 is not alive at date 0.

It is worth making two remarks on the notion of demographic disconnect.

Remark 1. (Preference Disconnect) It is possible to construct static economies with multiple
consumption goods that look formally similar to demographically disconnected economies
by making specific assumptions on individual preferences for different consumption goods.
In Section C.3 of the Online Appendix, we describe this analogy and refer to this
phenomenon as “preference disconnect”. Despite the formal analogy, real-world economies
are demographically disconnected as long as individuals are not altruistic — see next remark.
At the same time, real-world economies are preference connected, e.g., every individual has
positive value for some good, say, water. This justifies our focus on demographic disconnect.

Remark 2. (Role of Intergenerational Altruism) Our definition of demographic disconnect
assumes that all individuals are self-interested and do not incorporate the preferences of
future generations in their own. Intergenerational altruism can transform demographically
disconnected economies into demographically connected economies. Individuals who are
altruistic towards future generations have positive value for consumption after their death.
Hence, demographic disconnect in economies with intergenerational altruism requires that
there is no date in which all individuals have positive value for consumption, either privately
or altruistically.

3 Intergenerational Welfare Assessments

3.1 Lifetime Welfare Numeraire

Our goal is to understand why a planner finds a perturbation desirable in demographically-
rich economies. Formally, a perturbation is a smooth change in ci

t as a function of a
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perturbation parameter θ ∈ [0, 1], so derivatives such as dcit
dθ

are well-defined. A perturbation
may capture changes in technologies, endowments, policies, or any other primitive of a fully
specified model. It can also capture changes in feasible allocations directly chosen by a
planner.

A welfarist planner finds a perturbation dθ desirable (undesirable) if

dW

dθ
=

∑
i

∂W
∂V i

dV i

dθ
> (<) 0. (3)

It follows directly from (3) that dW
dθ

> 0 whenever a perturbation is a Pareto improvement.4

However, understanding how a welfarist planner makes tradeoffs in meaningful units across
individuals is not straightforward, because direct comparisons based on utils are meaningless
and because individuals have different lifespans.

Meaningful comparisons across individuals require a common unit in which to express
individual welfare gains: we refer to this unit as the lifetime welfare numeraire. The only
requirement for a lifetime welfare numeraire to be valid is that all individuals — alive and
yet-to-be-born — must have a positive value for it. In demographically connected economies
there is an abundance of possible lifetime welfare numeraires: for instance, consumption
at any single date or consumption at a subset of different dates are valid lifetime welfare
numeraires in those economies. However, in demographically disconnected economies there
is a single class of units in which it is possible to make interpersonal welfare comparisons:
those based on perpetual consumption, that is, consumption at all dates. Identifying this
class is the first main result of the paper, which we formalize in Proposition 1.

Proposition 1. (Unique Class of Valid Lifetime Welfare Numeraires) Only lifetime welfare
numeraires based on perpetual consumption are always valid in demographically disconnected
economies.

In economies in which there is no date in which all individuals are concurrently alive, it is only
possible to make interpersonal comparisons across all individuals in terms of consumption at
all dates, that is, perpetual consumption. By construction, all individuals — alive and yet-
to-be-born — have positive value for bundles of consumption at all dates, which makes any of
these bundles a valid lifetime welfare numeraire to make interpersonal welfare comparisons.

Within this class of numeraires based on perpetual consumption, there are two natural
choices: unit perpetual consumption, the bundle that pays one unit of the consumption

4Formally, a perturbation is strictly (weakly) Pareto-improving when dV i

dθ > (≥) 0, ∀i.
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good at each date, and aggregate perpetual consumption, the bundle that pays aggregate
consumption at each date.5 Because some of our applications feature positive growth, we
adopt aggregate perpetual consumption as the lifetime welfare numeraire in the body of the
paper, and discuss and justify this choice in more detail in the Appendix.

Hence, with aggregate perpetual consumption as lifetime welfare numeraire, we can
express dW

dθ
as follows:

dW

dθ
=

∑
i

∂W
∂V i

λi
dV i

dθ

λi
, where λi =

∑
t

(
βi

)t ∂ui
t

∂ci
t

ct, (4)

and where aggregate consumption is given by ct = ∑
i ci

t. The normalizing factor λi denotes
the marginal increase in utility associated with a proportional increase in aggregate perpetual
consumption. In equation (4),

dV i

dθ

λi
denotes the lifetime welfare gains of the perturbation for

individual i, expressed in units of the chose lifetime welfare numeraire. That is,
dV i

dθ

λi
can be

interpreted as individual i’s willingness to pay for the perturbation expressed in units of a
proportional increase of aggregate perpetual consumption. Formally, Proposition 1 ensures
that λi > 0, ∀i, for the lifetime welfare numeraire chosen.

Lemma 1 allows us to express welfare assessments in terms of normalized lifetime and
date welfare gains and normalized individual and dynamic weights. This result allows us to
write express welfare changes in common units, which in turn is useful to understand the
sources of welfare gains. In terms of notation, variables with a λ superscript are expressed
in the appropriate numeraire.

Lemma 1. (Normalized Welfare Gains and Normalized Weights) A normalized welfare
assessment for a welfarist planner can be represented as

dW λ

dθ
=

dW
dθ

1
I

∑
i

∂W
∂V i

∑
t (βi)t ∂uit

∂cit
ct

=
∑

i

ωi dV i|λ

dθ
, (5)

where dV i|λ

dθ
=

dV i

dθ

λi
and dV

i|λ
t

dθ
respectively denote lifetime, and date welfare gains, given by

dV i|λ

dθ
=

∑
t

ωi
t

dV
i|λ

t

dθ
(Normalized Lifetime Welfare Gains) (6)

dV
i|λ

t

dθ
= 1

ct

dci
t

dθ
= χi

t,c

d ln ci
t

dθ
, (Normalized Date Welfare Gains) (7)

5In economies without growth, there is no distinction between both choices.

11



where χi
t,c = cit

ct
denotes individual i’s consumption share, and where ωi and ωi

t respectively
denote normalized individual and dynamic stochastic weights, given by

ωi =
∂W
∂V i

∑
t (βi)t ∂uit

∂cit
ct

1
I

∑
i

∂W
∂V i

∑
t (βi)t ∂uit

∂cit
ct

(Normalized Individual Weight) (8)

ωi
t =

(βi)t ∂uit
∂cit

ct∑
t (βi)t ∂uit

∂cit
ct

. (Normalized Dynamic Weight) (9)

This result is the counterpart to Lemma 1 in Dávila and Schaab (2024) with two differences.
First, aggregate perpetual consumption is now the lifetime welfare numeraire. In this case,
as shown in Proposition 1, only lifetime welfare numeraires based on perpetual consumption
are valid. Second, we use aggregate consumption as date welfare numeraire.

The normalized individual weight ωi defines how a welfarist planner trades off lifetime
welfare gains across individuals in terms of proportional changes to aggregate consumption.
The normalized dynamic weight ωi

t defines a marginal rate of substitution for individual
i between a consumption change proportional to aggregate consumption at date t and
a perpetual consumption change proportional to aggregate consumption.6 Note that
normalized individual weights average to one in the cross-section, so 1

I

∑
i ωi = 1, and that

normalized dynamic weights add up to one when aggregated over time, defining a normalized
discount factor, so ∑

i ωi
t = 1, ∀i.

Lemma 1 is useful, because it shows that every welfare assessment can be interpreted as
a weighted sum across all individuals, with weights given by ωi, of the discounted values —
using ωi

t as normalized discount factors — of dV
i|λ
t

dθ
, which play the role of date-individual-

specific payoffs. Because we have used numeraires based on aggregate consumption, dV
i|λ
t

dθ

correspond to the change in individual consumption relative to aggregate consumption. This
in turn can be written as the product of the proportional change in individual i’s consumption
at a given date d ln cit

dθ
with the individual’s consumption share χi

t,c.
6For instance, if ωi = 1.3, a welfarist planner finds the welfare gain associated with a proportional increase

in aggregate perpetual consumption distributed to individual i equivalent to the welfare gain associated with a
1.3 times proportional increase in aggregate perpetual consumption distributed equally across all individuals.
For instance, if ωit = 0.1, a welfarist planner finds the welfare gain associated with a proportional increase in
aggregate consumption distributed to individual i at date t equivalent to a 0.1 times proportional increase
in aggregate perpetual consumption at all times distributed to that individual.
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3.2 Efficiency vs. Redistribution

After expressing welfare assessments in comparable units, Lemma 2 derives Dávila and
Schaab (2024)’s efficiency/redistribution decomposition in our environment. This is the
unique decomposition in which a normalized welfare assessment can be expressed as Kaldor-
Hicks efficiency and its complement.

Lemma 2. (Efficiency/Redistribution Decomposition) A normalized welfare assessment for
a welfarist planner can be decomposed into efficiency and redistribution components, ΞE and
ΞRD, as follows:

dW λ

dθ
=

∑
i

ωi dV i|λ

dθ
=

∑
i

dV i|λ

dθ︸ ︷︷ ︸
ΞE (Efficiency)

+CovΣ
i

[
ωi,

dV i|λ

dθ

]
︸ ︷︷ ︸
ΞRD (Redistribution)

, (10)

where CovΣ
i [·, ·] = I · Covi [·, ·] denotes a cross-sectional covariance-sum among individuals.

The efficiency component ΞE corresponds to Kaldor-Hicks efficiency, that is, it is the
unweighted sum of individual willingness-to-pay for the perturbation in units of the lifetime
welfare numeraire. Hence, perturbations in which ΞE > 0 can be turned into Pareto
improvements if transfers of the lifetime welfare numeraire are feasible and costless. The
redistribution component ΞRD captures the equity concerns embedded in a particular social
welfare function: ΞRD is positive when the individuals relatively favored in a perturbation
are those relatively preferred by the planner, that is, have a higher ωi.

A perturbation in which ΞE < 0 cannot yield a Pareto improvement since there must
be at least one individual who is worse off. If ΞE > 0 instead, a Pareto improvement with
transfers would be possible if transfers of the lifetime welfare numeraire were feasible and
costless. However, such transfers may not be feasible, as we explain next and we illustrate
in our applications. Hence, ΞE > 0 is only a necessary condition for a perturbation to
potentially become a Pareto improvement.

Regardless of whether economies are demographically connected or disconnected, the
efficiency-redistribution decomposition in Lemma 2 satisfies several desirable properties. In
particular, the efficiency component defined in (10) is invariant to i) the choice of social
welfare function and ii) preference-preserving utility transformations.
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3.3 Planning Solution in Demographically Disconnected Economies

No feasible perturbation from a Pareto efficient allocation can feature Kaldor-Hicks efficiency
gains (ΞE > 0) in single-good economies with infinitely-lived agents.7 In those economies,
every Pareto efficient allocation can be interpreted as the solution to a planning problem
supported by Pareto weights that ensure that ωi is equalized across all individuals for every
lifetime welfare numeraire. This occurs because the planner can freely transfer consumption
at the margin across individuals at all dates. Hence, since the solution to the planning
problem requires that dWλ

dθ
≤ 0 for any feasible perturbation, and Pareto weights can be

chosen so that ωi is equalized across individuals ensuring that ΞRD = 0, then ΞE ≤ 0 for
every feasible perturbation.

Proposition 2, the second main result of the paper, shows that the logic just explained
need not apply in demographically-rich economies.

Proposition 2. (Feasible Perturbations from Pareto Efficient Allocations with Kaldor-Hicks
Efficiency Gains)

a) (Demographically Disconnected Economies) There exist feasible perturbations from
Pareto efficient allocations in demographically disconnected economies that feature
Kaldor-Hicks efficiency gains (ΞE > 0).

b) (Demographically Connected Economies) There exist feasible perturbations from Pareto
efficient allocations in demographically connected economies that feature Kaldor-Hicks
efficiency gains (ΞE > 0) only when the lifetime welfare numeraire is based on
consumption at dates in which not all individuals are concurrently alive.

In order to explain Proposition 2, it is useful to characterize the set of Pareto efficient
allocations by solving the Pareto problem. Formally, the Pareto problem characterizes the
set of Pareto efficient allocations by varying the set of Pareto weights αi > 0 and computing
the solution to

max
{χit}

∑
i

αiV i,

7This result is valid for any lifetime welfare numeraire and solely assumes that individual preferences are
well-behaved and feature Inada conditions. Whenever we refer to Pareto efficient allocations, we take as the
set of feasible allocations those defined by resources constraints and (possibly) production and accumulation
technologies. In other words, we refer to allocations that solve the Pareto problem, as defined in, for instance,
Ljungqvist and Sargent (2018). It is possible to find perturbations of constrained Pareto efficient allocations
that feature ΞE > 0.
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where χi
t = cit

ct
denotes individual i’s consumption share at date t with ct = ∑

i ci
t > 0 denoting

aggregate consumption and V i is defined in (1); subject to aggregate resource constraints
for consumption, given by ∑

i

χi
t = 1, ∀t, (11)

and individual non-negativity constraints for consumption at each date, given by

χi
t ≥ 0, ∀i, t. (12)

While in general the planning problem may include other constraints, such as production
technologies, accumulation technologies, or other resource constraints, it is sufficient to
consider the constraints in (11) and (12) to establish our result.

Denoting by ηt > 0 the (normalized) Lagrange multiplier in the aggregate resource
constraint for consumption at date t, the solution to the planning problem must satisfy

ωiωi
t = ηt > 0 if ci

t > 0, and ωiωi
t < ηt if ci

t = 0, (13)

where ωi and ωi
t are defined in (8) and (9). Intuitively, a planner optimally reallocates

consumption to equalize the social marginal value of consumption across all individuals alive
at a given date. Aggregating the optimality conditions pertaining individual i in those
periods in which i is alive allows us to obtain an explicit characterization of ωi:

ωi
∑

t

ωi
t︸ ︷︷ ︸

=1

= ωi =
∑

t

ηtI
[
ωi

t > 0
]

, (14)

where I [·] denotes the indicator function. From (14), it follows that normalized individual
weights ωi are equalized across individuals at Pareto efficient allocations of economies with
infinitely-lived agents — since the indicators equal 1 at all dates — but are not equalized
in demographically disconnected economies. As shown in the Appendix, a similar argument
applies to demographically connected economies in which the lifetime welfare numeraire is
based on consumption at dates in which not all individuals are concurrently alive.8 Once ωi’s
are not equalized across individuals, then it follows from (13) that dynamic weights ωi

t are
also not equalized across individuals at date t.9 This means that reallocating consumption

8Proposition 2b) implies that choosing lifetime numeraires based on consumption at dates in which all
individuals are concurrently alive (demographically connected dates) is a good idea, insofar as it makes the
properties of the planning problem similar to those in the standard infinitely-lived model.

9Note that ωiωit = ηt implies that individuals with high normalized individual weights ωi must have
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from alive individuals with low to high dynamic weights at a particular date is a feasible
perturbation that features Kaldor-Hicks efficiency gains, ΞE > 0, concluding the argument.

The fact that the solution of the planning problem features normalized individual weights
ωi that are not equalized across individuals implies that a planner has a pecking-order over
which individual should receive a unit of the lifetime welfare numeraire, as we state in
Remark 3. In economies with infinitely lived agents no pecking-order exists, and a planner
is indifferent about which individual should receive a marginal unit of the lifetime welfare
numeraire.

Remark 3. (Individual pecking-order at Pareto efficient allocations) At the allocation that
solves the planning problem for particular Pareto weights, the planner has a pecking-order
over which individual should receive a marginal unit of the lifetime welfare numeraire to
maximize welfare in demographically disconnected economies or demographically connected
economies in which the lifetime welfare numeraire is based on consumption at dates in which
not all individuals are concurrently alive.

It may seem surprising that there are feasible perturbations to Pareto efficient allocations
that increase the sum of individual willingness-to-pay. After all, when solving the planning
problem, the planner can apparently transfer resources across all individuals at all times,
without restrictions. Why doesn’t the planner implement such perturbations? When non-
negativity constraints are binding for an individual at some date t — as they are at all dates
whenever individuals are not alive since it is optimal for them to have zero consumption — the
planner cannot further reduce the consumption of that individual. Hence, even though there
may exist feasible perturbations that feature strictly positive Kaldor-Hicks efficiency gains,
it is not possible to transform such gains into a feasible Pareto improvement, because the
needed compensating transfers would violate the non-negativity constraints on consumption
for some individual. We highlight this fact in Remark 4.

Remark 4. (Infeasible compensating transfers) The transfers that would be necessary to
implement the compensating transfers that would turn the perturbations with ΞE > 0
identified in Proposition 2 into a Pareto improvement with transfers are not feasible.

Summing up, the results of this section imply that while finding perturbations with
Kaldor-Hicks efficiency gains ΞE > 0 in economies with infinitely lived agents ensures
that an allocation is not Pareto efficient, this need not be the case in demographically-
rich economies. Our applications will illustrate this phenomena in both endowment and
production economies.
relatively low dynamic weights ωit at date t, and vice versa.
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3.4 Intertemporal-Sharing Decomposition: Markets vs. Demo-
graphics

The efficiency component of a normalized welfare assessment presented in Lemma 1 can be
decomposed into an an aggregate efficiency component, which corresponds to the discounted
sum — using a common discount factor ωt — of aggregate normalized date welfare gains∑

i
dV

i|λ
t

dθ
and an intertemporal-sharing component, which captures the differential impact of

a perturbation towards individuals with different valuations ωi
t over consumption at different

dates.10 The decomposition in Lemma 3 is the unique decomposition in which the efficiency
component can be expressed as the discounted sum — using an aggregate time discount
factor — of aggregate date welfare gains, ΞAE, and its complement, ΞIS.

Lemma 3. (Aggregate Efficiency/Intertemporal-Sharing Decomposition) The efficiency
component of a normalized welfare assessment can be decomposed into aggregate efficiency
and intertemporal-sharing components, ΞAE and ΞIS, as follows:

ΞE =
∑

i

∑
t

ωi
t

dV
i|λ

t

dθ
=

∑
t

ωt

∑
i

dV
i|λ

t

dθ︸ ︷︷ ︸
ΞAE (Aggregate Efficiency)

+
∑

t

CovΣ
i|ωit>0

ωi
t,

dV
i|λ

t

dθ


︸ ︷︷ ︸

ΞIS (Intertemporal-Sharing)

, (15)

where the averages of normalized dynamic weights ωt = 1
It

∑
i ωi

t define aggregate time
discount factors, where It = ∑

i I {i | ωi
t > 0}, and where CovΣ

i|ωit>0 [·, ·] = I · CovΣ
i|ωit>0 [·, ·]

denotes a cross-sectional covariance-sum among individuals alive at date t.

In economies with infinitely-lived individuals, Dávila and Schaab (2024) show that ΞIS = 0
if all individuals can frictionlessly borrow and save. This occurs because ωi

t is then identical
across all individuals since the marginal value over consumption at all dates is equalized
under frictionless financial conditions. However, in demographically-rich economies, dynamic
weights ωi

t may differ across individuals even when all individuals have access to frictionless
financial markets. This occurs because even if any two individuals can equalize the relative
valuation of consumption over the dates in which both are concurrently alive by frictionlessly
borrowing and saving, their individual valuation over consumption at a particular date
relative to the lifetime welfare numeraire — which must be based on perpetual consumption
as per Proposition 1 — will typically differ. From this observation, it is natural to conclude
that welfare gains from intertemporal-sharing have two sources: one related to the presence

10When
∑
i
dV

i|λ
t

dθ > 0, the winners of the perturbation at date t could hypothetically compensate the
losers in terms of the date welfare numeraire at that date (a unit of aggregate date-t consumption).
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of financial market frictions when borrowing and saving and the other due to demographic
differences among individuals.

Example 2. (Illustrating Differences in ωi
t in Demographically-Rich Economies with

Frictionless Financial Conditions) Consider a three-date (T = 2) two-individual (I = 2)
economy in which individual i = 1 is alive at dates 0, 1, and 2, and individual i = 2 is alive
at dates 1 and 2. Let’s assume that both individuals have a common discount factor β, and
the same instantaneous utility u (·) when alive. In this case

ω1
1 =

βu′ (
c1

1
)
c1

u′ (c1
0) c0 + βu′ (c1

1) c1 + (β)2
u′ (c1

2) c2
=

u′ (
c1

1
)
c1 + (β)2

u′ (
c1

2
)
c2

u′ (c1
0) c0 + βu′ (c1

1) c1 + (β)2
u′ (c1

2) c2

βu′ (
c1

1
)
c1

u′ (c1
1) c1 + (β)2

u′ (c1
2) c2

(16)

ω2
1 =

βu′ (
c2

1
)
c1

βu′ (c2
1) c1 + (β)2

u′ (c2
2) c2

. (17)

Hence, while frictionless borrowing and saving implies that ω2
1 equals the right-most fraction

in (16), in general ω1
1 ̸= ω2

1 in demographically-rich economies.

In the remainder of this section, we introduce a decomposition that allows us to
separate how much of the intertemporal-sharing efficiency gains— that is, due to the
fact that a perturbation differentially impacts individual with different valuations over
consumption at different dates — are due to i) imperfect financial conditions, or ii) different
demographics. Our approach is based on first multiplicatively decomposing the pairwise
cross-sectional variation of the dynamic weights at a given date ωi

t into a “markets” term
and a “demographic” term, and then exploiting a formula to the compute covariance of the
product of random variables, as we explain next.

First, we define all the ordered pairs (including self-pairs) of alive individuals at date t

by At = {(i, j) | {i, j} ∈ It}, and use the fact that the cross-sectional covariance-sum over all
individual at date t can be expressed as a sum of pairwise covariance-sums across any two
pairs of individuals. Formally, we can write the date-t component of intertemporal-sharing
as

CovΣ
i|ωit>0

ωi
t,

dV
i|λ

t

dθ


︸ ︷︷ ︸

Cross-Sectional Covariance at t

= 1
It

∑
(i,j)∈At

CovΣ
(i,j)∈At

ω
(i,j)
t ,

dV
(i,j)|λ

t

dθ


︸ ︷︷ ︸

Pairwise Covariances at t

,

where CovΣ
(i,j)∈At

[·, ·] denotes a pairwise-covariance-sum (with just two elements).
Second, we multiplicatively decompose the dynamic weight of individual i in the pair
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(i, j) at date t as
ω

i,(i,j)
t︸ ︷︷ ︸

Pairwise Dynamic
Weight

= ω
i,(i,j)|m
t︸ ︷︷ ︸

Markets

ωi,(i,j)|d︸ ︷︷ ︸
Demographics

, (18)

where we define normalized pairwise-market-dynamic and pairwise-demographic-dynamic
weights as follows:

ω
i,(i,j)|m
t =

(βi)t ∂uit
∂cit

ct∑
t|ωit,ω

j
t>0 (βi)t ∂uit

∂cit
ct

(Normalized Pairwise-Market-Dynamic Weight)

ωi,(i,j)|d =
∑

t|ωit,ω
j
t>0 (βi)t ∂uit

∂cit
ct∑

t (βi)t ∂uit
∂cit

ct

(Normalized Pairwise-Demographic-Dynamic Weight).

Intuitively, individual i’s market-dynamic weight normalizes the welfare gain at date t to
units of a common welfare numeraire, given by the value of aggregate consumption at
all dates in which both individuals i and j are jointly alive. Individual i’s demographic-
dynamic weight corresponds to valuation of marginal unit of aggregate consumption of
individual in all periods in which i and j are jointly alive, relative the value of a perpetual
aggregate consumption for individual i. Note that the demographic-dynamic weight is time-
independent and only relies on the marginal value of consumption during the common
lifespan of the two individuals considered.

When i and j have access to unrestricted financial markets over their common lifespans,
it is evident that ω

i,(i,j)|d
t = ω

j,(i,j)|d
t for all pairs of individuals since their valuations of

consumption across all dates are equalized, justifying the “market” label. Even if i and j

have access to unrestricted financial markets over their common lifespans, it will typically
be the case that ωi,(i,j)|d ̸= ωj,(i,j)|d, justifying the “demographics” label. In particular, when
any two individuals overlap for a single period ωi

t = ω
i,(i,j)|m
t = 1, and the dynamic weight is

exclusively due to demographics since there is no role for financial markets in that economy.
Third, we can use the formula for the product of random variables from Bohrnstedt

and Goldberger (1969) to decompose what part of the pairwise covariances is due to cross-
sectional variation at date t in the markets component or the demographic component. We
present this decomposition as our third main result in Proposition 3.

Proposition 3. (Intertemporal-Sharing Decomposition: Intertemporal-Market-Sharing vs.
Intertemporal-Demographic-Sharing) The intertemporal-sharing component can be decom-
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posed into intertemporal-market-sharing and intertemporal-demographic-sharing, as follows:

ΞIS =
∑

t

1
It

∑
(i,j)∈At

CovΣ
(i,j)∈At

[
ω

(i,j)|m
t ,

dV
(i,j)|λ

t

dθ

]
︸ ︷︷ ︸

ΞIMS (Intertemporal-Market-Sharing)

+
∑

t

1
It

∑
(i,j)∈At

CovΣ
(i,j)∈At

[
ω(i,j)|d,

dV
(i,j)|λ

t

dθ

]
︸ ︷︷ ︸

ΞIDS (Intertemporal-Demographic-Sharing)

,

(19)
where CovΣ

(i,j)∈At
[·, ·] denotes a pairwise-covariance-sum.

Proposition 4 presents three properties of the intertemporal-sharing decomposition.

Proposition 4. (Properties of Intertemporal-Sharing Decomposition)

a) (Frictionless Borrowing/Saving) When any two pairs of individuals alive at any date
t have identical marginal rates of substitution over consumption at the dates in which
they are concurrently alive — a condition satisfied when all individuals frictionlessly
borrow and save — then ΞIMS = 0.

b) (Demographically-rich economies) In demographically-rich economies, the demographic
component is generically non-zero, even when all individuals can frictionlessly borrow
and save, so ΞIDS ̸= 0.

c) (Frictionless Borrowing/Saving and Common Demographics) When any two pairs
of individuals alive at any date t have identical marginal rates of substitution over
consumption at the dates in which they are concurrently alive — a condition satisfied
when all individuals frictionlessly borrow and save — and all individuals have identical
birth and death dates, then ΞIS = ΞIMS = ΞIDS = 0.

Finally, it is important to highlight that both markets and demographics components
contribute to intertemporal-sharing in any demographically-rich economy, regardless of
whether the economy is demographically connected or not, or whether a lifetime welfare
numeraire based on consumption at dates in which not all individuals are concurrently alive
is chosen. We illustrate the mechanics behind Proposition 3 in Application 3.

4 Application 1: Young-to-Old Transfer

This application analyzes the welfare impact of transfers across individuals from different
generations in the simplest OLG economy: the two-date-life version of Samuelson (1958)’s
endowment economy. This application allows us to illustrate how a planner makes
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interpersonal and intertemporal welfare comparisons in a demographically disconnected
economy. In this economy, we show that a young-to-old transfer — a policy that has been
widely analyzed and that provides the foundation for the study of social security and money
— is a perturbation of a Pareto efficient allocation that generates efficiency gains, illustrating
Proposition 2.

4.1 Environment

We consider a single-good deterministic endowment economy with t ∈ {0, . . . , T} dates,
where T < ∞. A single representative individual is born at each date and typically lives
for two dates, so there are two individuals alive at any date — one “young” and the other
“old”.11 Since individuals are associated with a date of birth, we use t as superscript to index
individuals {−1, . . . , T}.

Preferences and Endowments. The lifetime utility of an individual born at date
t ∈ {0, . . . , T − 1} is

V t = u
(
ct

t

)
+ βu

(
ct

t+1

)
, (20)

where ct
t and ct

t+1 respectively denote individual t’s consumption at dates t and t + 1.
Individuals born at dates t = −1 and t = T are alive for only one date. Their lifetime
utility is given by

V −1 = βu
(
c−1

0

)
and V T = u

(
cT

T

)
. (21)

Individuals have endowments of the consumption good, denoted
{
et

t, et
t+1

}
for individuals

t ∈ {0, . . . , T − 1}, as well as e−1
0 and eT

T for individuals t ∈ {−1, T}, respectively.

Competitive Equilibrium. Using an Arrow-Debreu style formulation, we express the
budget constraints of individuals t ∈ {0, . . . , T − 1} as

ptc
t
t + pt+1c

t
t+1 = pte

t
t + pt+1e

t
t+1, (22)

where pt denotes the price of date t consumption. There exists an equivalent formulation in
which individuals sequentially trade a risk-free asset at all dates. Individuals t ∈ {−1, T}

11We abstract from population growth in all three applications purely for simplicity. It is possible to
introduce population growth in each application.
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face the budget constraints

p0c
−1
0 ≤ p0e

−1
0 and pT cT

T ≤ pT eT
T . (23)

The resource constraint for date t consumption can be written as

ct−1
t + ct

t = et−1
t + et

t. (24)

Definition. (Competitive Equilibrium) Given endowments (e0
−1,

{
et

t, et
t+1

}T −1

t=0
, eT

T ), a com-

petitive equilibrium comprises an allocation (c0
−1,

{
ct

t, ct
t+1

}T −1

t=0
, cT

T ) and prices {pt}T
t=0 such

that i) individuals maximize lifetime utility (20) – (21) subject to (22) – (23), and ii) con-
sumption markets at each date clear (24).

The unique competitive equilibrium in this economy features autarky (ci
t = ei

t). The ratios
of prices (interest rates) that support the autarky allocation must satisfy

pt+1

pt

= β
u′

(
et

t+1

)
u′ (et

t)
, (25)

where when needed we normalize p0 = 1. Intuitively, there is no intertemporal trade between
young and old individuals at any date since the old are no longer alive at future dates and
there is a terminal date. When T < ∞, standard arguments imply that the first welfare
theorem holds, so the competitive equilibrium is Pareto efficient.

Shares, Growth, and Young-to-Old Transfer. It is useful to formulate the model in
terms of consumption and endowment shares. First, we define aggregate consumption and
aggregate endowment at date t as ct = ct−1

t + ct
t and et = et−1

t + et
t, respectively. Hence,

individual t’s and t−1’s shares of date t aggregate consumption are χt
t,c = ctt

ct
and χt−1

t,c = ct−1
t

ct
,

and of aggregate endowment χt
t,e = ett

et
and χt−1

t,e = et−1
t

et
. Both consumption and endowment

shares add up to 1 by construction.
We assume that the aggregate endowment grows at a constant rate g, that is,

et = (1 + g)t e0.

In equilibrium, aggregate consumption also grows a constant rate g.
Finally, we formulate a young-to-old (YTO) transfer as a smooth perturbation of

endowment shares at all dates. Formally, we parametrize the model by initial endowment
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shares given by χ̄t
t,e and χ̄t−1

t,e , and then consider a policy — indexed by a perturbation
parameter θ ≥ 0 — that transfers endowments from young to old individuals at each date
according to

(Young-to-Old Transfer) χt
t,e = χ̄t

t,e − θ and χt−1
t,e = χ̄t−1

t,e + θ, (26)

In our calibration, the endowment share of the young is larger than the old, featuring
χ̄t

t,e > χ̄t−1
t,e .

Calibration. Individual preferences are u (c) = log (c). We interpret one date in the model
as 25 years, so β = (0.98)25 = 0.60. We normalize the date 0 aggregate endowment to e0 = 1,
and set the initial endowment shares of the young and old respectively to

χ̄t
t,e = 0.75 and χ̄t−1

t,e = 0.25.

Therefore, in the competitive equilibrium, individuals consume more when young than when
old. The economy grows at a rate g = 0.64 = (1.02)25 − 1, which implies an annual growth
rate of 2%. For ease of visualization, we assume that T = 5, so the economy runs for 125
years.

4.2 Normalized Welfare Weights

Welfare Assessments. We study welfare assessments for utilitarian planners, for whom
the welfare assessment of a perturbation dθ is given by

dW

dθ
=

T∑
t=−1

αt dV t (θ)
dθ

, (27)

where αt denotes the Pareto weight associated with the individual born at date t. To
simplify the exposition, we focus on two cases: i) an undiscounted utilitarian planner (our
benchmark), who puts the same weight on the lifetime utility of all individuals, so αt = 1,
and ii) a discounted utilitarian planner, who exponentially discounts the utilities of future
generations, with αt = (ᾱ)t for a constant ᾱ ∈ (0, 1), which we take to be ᾱ = β, the
individuals’ discount factor.

As in Section 3, we use aggregate perpetual consumption — the bundle that pays
aggregate consumption at each date — as the lifetime welfare numeraire. The normalizing
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Figure 1: Normalized Individual Weights (Application 1)
Note. This figure shows normalized individual weights for all individuals as a function of their date of
birth for the undiscounted and discounted utilitarian planners when θ = 0.

factor λt for individuals t ∈ {0, . . . , T − 1} is therefore

λt = u′
(
ct

t

)
ct + βu′

(
ct

t+1

)
ct+1, (28)

as well as λ−1 = βu′
(
c−1

0

)
c0 and λT = u′

(
cT

T

)
cT for individuals t ∈ {−1, T}, where ct

denotes aggregate consumption at date t.12

Normalized Individual Weights. By computing normalized individual weights, we
uncover the value assigned by different planners to the lifetime welfare gains of different
individuals in units of the lifetime welfare numeraire. Defined in equation (8), normalized
individual weights are given by

ωt = αtλt

1
I

∑T
t=−1 αtλt

, (29)

where λt is defined in (28) and where the number of individuals in this economy is I = T +2.
Normalized individual weights are thus shaped by i) marginal utilities of aggregate perpetual
consumption and ii) Pareto weights. In general, the former depends on individual lifespans,
discount factors, and aggregate and individual consumption levels. With isoelastic utility,

12Choosing unit perpetual consumption — the other natural choice in this environment — does not change
any of the qualitative insights. In fact, in economies without growth, the results are quantitatively identical
regardless of whether we adopt unit or aggregate perpetual consumption as lifetime welfare numeraires.
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individual t’s marginal utility of aggregate consumption at date t can be written as

u′
(
ct

t

)
ct = 1

(χt
t)

1
ψ

(ct)1− 1
ψ , (30)

which is useful to separate the impact of consumption shares relative to aggregate
consumption. Since we focus on log preferences, equation (30) implies that λt is exclusively
a function of individual consumption shares.13

Figure 1 illustrates the forces that determine the normalized individual weights ωt. The
left panel illustrates the form that individual weights take for undiscounted and discounted
utilitarian planners. The undiscounted utilitarian planner assigns lower weights to shorter
lived individuals t ∈ {−1, T}. When individuals live longer, all else equal, they value a
marginal unit of perpetual aggregate consumption more because they are alive to receive the
consumption flow in more periods, which increases their individual weight. The date-0-old
individual has a higher weight than the date-T -young because in our calibration young
individuals consume more. If the planner discounts individuals born in the future, so
ᾱ = β < 1, the forces just discussed remain, but normalized individual weights become lower
for individuals born later in time. Figure 1 implicitly defines a pecking-order over different
individuals by each planner. While the undiscounted utilitarian planner ranks highest the
longer lived individuals, then the date-0-old, and at last the date-0-young, the discounted
utilitarian planner simple ranks individuals by their date of birth.

Normalized Dynamic Weights. For individuals t ∈ {0, . . . , T − 1}, the normalized
dynamic weights, defined in equation (9), are given by

ωt
t = u′ (ct

t) ct

u′ (ct
t) ct + βu′ (ct

t+1) ct+1
and ωt

t+1 =
βu′

(
ct

t+1

)
ct+1

u′ (ct
t) ct + βu′ (ct

t+1) ct+1
. (31)

For individuals t ∈ {−1, T}, who are only alive at one date, ω−1
0 = βu′(c−1

0 )c0

βu′(c−1
0 )c0

= 1 and

ωT
T = u′(cTT )cT

u′(cTT )cT
= 1. Intuitively, normalized dynamic weights define marginal rates of

13In general, the marginal utility of aggregate consumption u′ (ctt) ct depends on aggregate consumption in
addition to consumption shares. As aggregate consumption ct increases, for a given consumption share χtt,
two effects materialize: on the one hand, there is more consumption (substitution effect), but consumption
is valued less (income/valuation effect), with the net of both effects captured by 1 − 1

ψ exponent. If ψ > 1,
individuals have a high willingness to substitute intertemporally, so the first effect dominates. If ψ < 1,
individuals are unwilling to substitute intertemporally, so the second effect dominates. In economies with
growth, these effects can impact both individual and dynamic weights, even when consumption shares remain
fixed.
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(a) No transfer (θ = 0)
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(b) Positive transfer (θ = 0.25)

Figure 2: Normalized Dynamic Weights (Application 1)
Note. This figure illustrates the normalized dynamic weights before the young-to-old transfer is implemented
(left panel, θ = 0, so χtt,c = 0.75 and χt−1

t,c = 0.25), and once the welfare-maximizing transfer for the
undiscounted utilitarian planner is implemented (right panel, θ = 0.25, so χtt,c = χt−1

t,c = 1
2 ).

substitution for each individual between date-t and perpetual aggregate consumption, and
capture whose consumption the planner values more at each date. A policy that shifts
consumption from individuals with low to high normalized dynamic weights at a given date
will generate efficiency gains due to intertemporal-sharing. Individuals who only consume
at one date are willing to exchange one-for-one a unit of aggregate consumption at the date
in which they are alive for a unit of perpetual aggregate consumption.

Figure 2 shows the dynamic weights (vertical axis) of the individuals alive at a given date
t (horizontal axis). In this calibration, an individual’s endowment is relatively large when
young and relatively small when old, so old individuals have a higher normalized dynamic
weight than young individuals at all dates, with the exception of the last date. In the left
panel of Figure 2, when θ = 0, the solid blue line is above the dashed yellow line for all
individuals alive for two dates. Concretely, a transfer of consumption from the young to the
old at, for instance, date t = 2 is desirable because ω1

2 = 0.64 > 0.36 = ω2
2. Hence, at each

date in which the weight of the old is above the weight of the young, a young-to-old transfer
generates efficiency gains. The only date in which such a transfer would lead to efficiency
losses is the final date T = 5, where the dynamic weight of the young is larger than that of
the old.

The right panel of Figure 2 shows the normalized dynamic weight once the welfare-
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maximizing transfer for the discounted utilitarian planner is implemented (θ = 0.25). In
this case, consumption shares are equalized across agents alive at period t. However, due to
private discounting (β < 1), individuals alive for two dates value consumption more when
young. Therefore, a marginal young-to-old transfer at θ = 0.25 generates efficiency losses
at each date but the initial date t = 0, which justifies the negative sign of the efficiency
component of the welfare decomposition when θ = 0.25, shown in Figure 4.

4.3 Policy Experiment: Young-to-Old Transfer

Individual Welfare Gains. To understand the aggregate welfare implications of a young-
to-old (YTO) transfer in the economy considered here, it is useful to first explore the impact
of the policy on individual welfare. Figure 3 plots normalized welfare gains of the YTO
transfer for each individual. The initial old (individual t = −1) always gains from the
perturbation, whereas the final young (individual t = T ) always loses from the perturbation,
simply because their consumption is higher and lower, respectively. All other individuals
initially benefit from the YTO transfer since their consumption becomes smoother. Starting
from θ = 0.125, further increases in the YTO transfer hurt consumption smoothing. Note
that these smoothing gains would disappear if individual utilities were linear in consumption.

Figure 3 shows that while the YTO transfer initially benefits all but one individual, it
is not a Pareto improvement: the final young is always worse off. Turning this policy into
a Pareto improvement requires compensating the final young for her welfare loss, but such
a compensation is not feasible. A technology that could turn a YTO transfer into a Pareto
improvement would require transferring resources to the initial old: this is an investment
technology not available in this economy. Note that, while the YTO transfer can never be a
Pareto improvement for finite T , the welfare gains from such a perturbation increase with T

because more generations of individuals benefit from smoother consumption, while only the
final young loses.

Welfare Decomposition. Figure 4 plots the efficiency/redistribution decomposition
(10) for this application. Since this is an endowment economy, in which aggregate
consumption remains fixed, ΞE = ΞIS, so all efficiency gains due to a YTO transfer
are due to intertemporal-sharing. Also, since individuals overlap for a single period,
all intertemporal-sharing gains are exclusively due to intertemporal-demographic-sharing,
defined in Proposition 3, so ΞIS = ΞIDS.

Initially, the YTO transfer generates both efficiency and redistribution gains. Intuitively,
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Figure 3: Normalized Individual Welfare Gains (Application 1)

Note. This figure shows the normalized individual welfare gains, defined by dV i|λ

dθ =
∑
t ω

i
t
dV

i|λ
t

dθ . The light
green dashed line corresponds to the normalized individual welfare gains of all individuals alive for 2 periods.
The dark blue solid line represents the gains of the initial old born at date −1. The yellow dotted line
corresponds to the gains of the final young born at date T .

the efficiency term is solely driven by the sum of consumption-smoothing gains from
individuals t ∈ {0, . . . , T − 1}, with the gains of the initial old exactly compensating the
losses of the final young in units of the lifetime welfare numeraire. The efficiency gains are
positive until θ = 0.125, at which point consumption-smoothing gains are exhausted. Since
efficiency gains are invariant to the choice of social welfare function, θ = 0.125 is the size of
the efficiency-maximizing transfer for any welfarist planner.14

The YTO transfer also generates redistribution gains initially for the two planners
considered. An undiscounted utilitarian planner assigns the lowest normalized individual
weight to the final young, so the YTO transfer, which relatively favors all other individuals,
generates positive gains from redistribution. It turns out that θ = 0.125 is the size of YTO
transfer that maximizes both redistribution and efficiency for this planner. A discounted
utilitarian planner values those individuals born in later dates even less, thus finding larger
gains from redistribution. This planner finds a larger transfer of θ = 0.25 optimal.

14It is worth highlighting that the welfare decomposition jumps in the limit when T = ∞. In every
finite T economy, aggregate consumption is fixed and efficiency gains are due to intertemporal-sharing. But
when T = ∞, the YTO transfer also generates aggregate efficiency gains due to the increase in aggregate
consumption at infinity. This is the type of T = ∞ phenomenon we have purposefully stayed away from in
this paper.
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Figure 4: Welfare Decomposition (Application 1)
Note. This figure illustrates the efficiency/redistribution decomposition, defined in equation (10). The left
panel shows the welfare assessment by an undiscounted utilitarian planner (ᾱ = β), and the right panel
shows the welfare assessment by a discounted utilitarian planner (ᾱ = 1). Because this is an endowment
economy, efficiency is exclusively due to intertemporal-sharing, so ΞE = ΞIS . Because individuals overlap
for a single date, intertemporal-sharing is exclusively due to demographics, so ΞIS = ΞIDS .

Broader Takeaway. This application shows that a YTO transfer is a perturbation of a
Pareto efficient allocation that generates (Kaldor-Hicks) efficiency gains. This application
therefore shows that Proposition 2 applies to one of the foundational OLG models. As
explained when introducing Proposition 2, this phenomenon can occur because the economy
is demographically disconnected, which makes it infeasible for the winners of the YTO
transfer to compensate the losers despite the aggregate gain in value.

5 Application 2: Capital Taxation

This application analyzes the welfare consequences of taxing capital in the simplest OLG
model with capital: the finite horizon version of Diamond (1965)’s growth model. Even
though the competitive equilibrium of this economy is Pareto efficient, we show that capital
taxes or subsidies can generate efficiency gains. In particular, we show that the efficiency-
maximizing capital tax is positive in low-capital-share economies but negative (i.e. a subsidy)
in high-capital-share economies. This application shows that it is possible to perturb Pareto
efficient allocations in a production economy to generate efficiency gains, providing a new
illustration of Proposition 2. More broadly, this application illustrates how the results of the
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paper can be used to define notions of over- and under-accumulation of capital in economies
that are Pareto optimal.

5.1 Environment

We study the finite horizon textbook version by Blanchard and Fischer (1989) of the
overlapping generations model with capital of Diamond (1965). This is a perfect foresight
economy with t ∈ {0, . . . , T} dates, where T < ∞.

Individuals. A single representative individual is born at each date and typically lives for
two dates, so there are two individuals alive at any date, young and old. Since individuals
are associated with a date of birth, we use t as superscript to index individuals {−1, . . . , T}.

The lifetime utility of an individual born at date t ∈ {0, . . . , T − 1} is

V t = u
(
ct

t

)
+ βu

(
ct

t+1

)
, (32)

where ct
t and ct

t+1 respectively denote individual t’s consumption at dates t and t + 1.
Individuals born at dates t = −1 and t = T are alive for only one date. Their lifetime

utility is given by
V −1 = βu

(
c−1

0

)
and V T = u

(
cT

T

)
. (33)

When young, individuals supply one unit of labor inelastically and decide how much of
their income to consume (ct

t) and save. The only savings vehicle available is capital. Young
individuals can either purchase a quantity kt of capital on a secondary market at a price qt

or invest ιt in new capital. The budget constraint of a young individual at date t is therefore

ct
t + ιt + qtkt = wt, (34)

where wt is the wage. Capital accumulates neoclassically between periods t and t + 1,
according to

kt+1 = (1 − δ) kt + ιt, (35)

where δ is the depreciation rate.
When old, individuals no longer work, but they rent the capital they have accumulated

to firms and subsequently sell it on the secondary market.15 The budget constraint of an old
15The timing assumption is therefore as follows: At the beginning of period t, old individuals rent their

capital to firms and receive rental income. At the end of period t, old individuals sell their capital to young
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individual at date t + 1 is therefore given by

ct
t+1 = (1 − τ) (qt+1 + dt+1) kt+1 + Tt+1, (36)

where dt+1 is the rental rate. We allow for a tax on capital τ and a lump-sum rebate Tt+1.

Firms. At each date t, a representative firm produces yt units of the final consumption
good with a constant-returns production function yt = f (kt, nt) that uses capital and labor.
The firm maximizes profit yt − wtnt − dtkt.

Government. We assume that the government budget must balance in each period.
Revenue from the capital tax is therefore fully rebated to the old individuals, which requires
that

Tt = τ (qt + dt) kt.

Competitive equilibrium.

Definition. (Competitive Equilibrium) Given an initial capital stock k0 and a capital tax
τ , a competitive equilibrium comprises allocations {yt, ct, ιt, nt, kt, Tt} and prices {wt, dt, qt}
such that (i) individuals maximize lifetime utility (32) – (33) subject to (34), (35), and (36),
(ii) firms maximize profits, (iii) the government budget balances, and (iv) markets clear,
that is,

yt = ct + ιt (37)

1 = nt, (38)

where ct = ct−1
t + ct

t denotes aggregate consumption at date t.

In equilibrium, young individuals must be indifferent between acquiring capital on the
secondary market or via new investment. The secondary market price must therefore satisfy
qt = 1 − δ for dates t ≤ T − 1. At the final date, qT = 0 since capital has no future use.
Firm optimization implies ∂f

∂kt
= dt and ∂f

∂nt
= wt.

individuals at price qt. Since capital was already used in production that period, young individuals have to
wait until period t+ 1 before they can make use of their newly acquired capital by renting it to firms. And
in the meantime, a fraction δ of this capital will have depreciated.
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Calibration. Individual preferences are u (c) = log (c). We interpret one date in the
model as 25 years, so β = (0.98)25 = 0.60. Consistent with this choice, we set δ = 1,
so capital depreciates fully between dates. The production technology is Cobb-Douglas,
f (k, n) = kan1−a, where a maps to the capital share. We contrast calibrations with two
different values of the capital share a:

a =


= 0.2 ⇒ low-capital-share/high-labor-share

= 0.4 ⇒ high-capital-share/low-labor-share

By assuming that T = 10 the economy runs for 250 years. We assume that k−1 = 0.01, so
this economy initially experiences growth before reaching a steady state in both calibrations.

5.2 Normalized Welfare Weights

Welfare Assessments. We study welfare assessments for utilitarian planners, for whom
the welfare assessment of a perturbation dθ is given by

dW

dθ
=

T∑
t=−1

αt dV t (θ)
dθ

, (39)

where αt denotes the Pareto weight associated with the individual born at date t. Once
again, we focus on undiscounted and discounted utilitarian planners and we use aggregate
perpetual consumption as the lifetime welfare numeraire, so equation (28) and its counterpart
for individuals t ∈ {−1, T} also apply here.

Normalized Individual Weights. Normalized individual weights capture the value
assigned by a planner to the lifetime welfare gains of different individuals in units of the
lifetime welfare numeraire. They are defined as in equation (29).

Two forces shape the normalized individual weights — shown in Figure 5 — for the
undiscounted utilitarian planner. First, as in Application 1, the initial old and the final
young live less, so the planner assigns lower individual weights to them. Second, the planner
assigns a higher individual weight to individuals born at T − 1 since they have a lower
consumption share when old at date T because the date-T young do not invest. Moreover,
the discounted utilitarian planner assign lower normalized individual weights to individuals
born later in time purely because she directly discounts the utility of individuals born in
the future. Qualitatively, normalized individual weights are similar in high- and low-capital-
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(b) High-capital-share (a = 0.4)

Figure 5: Normalized Individual Weights (Application 2)
Note. This figure shows the normalized individual weights as a function of the date of birth for the
undiscounted and discounted utilitarian planners when τ = 0 for the low-capital-share economy (a = 0.2,
left panel) and the high-capital-share economy (a = 0.4, right panel).

share economies.

Normalized Dynamic Weights. The normalized dynamic weights define marginal rates
of substitution for each individual between date-t and perpetual aggregate consumption, and
capture whose consumption the planner values more at each date. They are defined as in
equation (28) and its counterpart for individuals t ∈ {−1, T} also applies here.

Figure 6 shows the dynamic weights (vertical axis) of the individuals alive at a given date
t (horizontal axis). In the baseline low-capital-share economy (left panel), young individuals
consume more than old individuals in the absence of the tax, so old individuals have higher
normalized dynamic weights than young individuals at all dates, with the exception of the last
date. As the capital tax increases, the young invest less and consume more, further widening
the consumption gap relative to the old and further widening the gap between normalized
dynamic weights. Therefore, increasing the capital tax features negative intertemporal-
sharing, consistent with Figure 7.

In the high-capital-share economy (right panel), old individuals consume more than young
individuals in the absence of the tax, so young individuals have higher normalized dynamic
weights than young individuals at all dates, with the exception of the first date. As the
capital tax increases, the young invest less and consume more, narrowing the consumption
gap relative to the old as well as the gap between normalized dynamic weights. Therefore,
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(a) Low-capital-share (a = 0.2)
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(b) High-capital-share (a = 0.4)

Figure 6: Normalized Dynamic Weights (Application 2)
Note. This figure illustrates the normalized dynamic weights for the low-capital-share economy (left panel)
and the high-low-capital share economy (right panel) in the absence of the capital tax (left panel, τ = 0),
and when a capital tax of τ = 0.25 is implemented: this is the welfare-maximizing tax for the undiscounted
utilitarian planner in the low-capital-share economy.

increasing (reducing) the capital tax starting from τ = 0 features a negative intertemporal-
sharing component in the low-capital-share economy but a positive one in the high-capital-
share economy, consistent with Figure 7. Note that all intertemporal-sharing gains and losses
in this economy are entirely due to demographics since there is no date in which any two
individuals would enter in financial arrangements.

5.3 Policy Experiment: Capital Tax

Welfare Decomposition. Figure 7 plots the welfare/redistribution decomposition (10)
and the decomposition of efficiency in aggregate efficiency and intertemporal-sharing (15)
for this application. In contrast to the previous two applications, efficiency gains now
comprise both aggregate efficiency and intertemporal-sharing gains since we are considering
a production economy rather than an endowment economy.

Interestingly, in both low- and high-capital-share economies, intertemporal-sharing and
aggregate efficiency take opposite signs at τ = 0. In the low-capital-share economy (left
panel), an increase in the capital tax increases aggregate consumption at all dates, with the
exception of the last one, thus featuring a positive aggregate efficiency component. This
gain overcomes the intertemporal-sharing losses described when introducing the dynamic
weights. Overall, the efficiency-maximizing tax in the low-capital-share economy is τ ⋆ = 0.25.
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(a) Efficiency Decomposition: Low-capital-share (a =
0.2)
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(b) Efficiency Decomposition: High-capital-share (a =
0.4)
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(c) Welfare Decomposition: Low-capital-share (a = 0.2):
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(d) Welfare Decomposition: High-capital-share (a = 0.4)

Figure 7: Efficiency and Welfare Decompositions (Application 2)
Note. This figure shows the welfare assessment and its components.. The left panel shows the welfare
assessment by a discounted utilitarian planner (ᾱ = β), and the right panel shows the welfare assessment by
an undiscounted utilitarian planner (ᾱ = 1).

In the high-capital-share economy (right panel), an increase in the capital tax reduces
aggregate consumption at all dates, with the exception of the first one, thus featuring a
negative aggregate efficiency component — see also Figure 8 below. This loss overcomes
the intertemporal-sharing gains described when introducing the dynamic weights. Overall,
the efficiency-maximizing tax in the low-capital-share economy is negative (a subsidy):
τ ⋆ = −0.7.
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(b) Aggregate Efficiency: High-capital-share (a = 0.4)

Figure 8: Term Structure of Aggregate Efficiency Gains (Application 2)
Note. This figure shows the term structure of welfare assessments, illustrating the policy’s impact under two
scenarios: no capital tax, τ = 0, and a positive tax, τ = 0.25. Panel (a) to (c) show the three components
(ΞAEt , ΞISt and ΞRDt ), while Panel (d) shows their sum, i.e., dWλ

t

dτ = ΞAEt + ΞISt + ΞRDt .

The bottom panels in Figure 7 illustrate the role played by the choice of social welfare
function, undiscounted utilitarian in this case. In both the low- and high-capital-share
economies, a tax increase starting from τ = 0 always impacts most negatively the last young
individual, but this is the individual with the lowest normalized individual weight, as shown
in Figure 5. Hence, regardless of the calibration, higher capital taxes are associated with a
positive redistribution component.

Term Structure. At last, Figure 8 brings additional insight into aggregate efficiency by
showing the term structure of the aggregate efficiency gains. This is useful to determine the
horizon in which the aggregate consumption gains that shape aggregate efficiency materialize.
In both low- and high-capital-share economies, imposing a capital tax discourages investment
and increases aggregate consumption at impact at date 0, which is reflected as a positive
date-0 aggregate efficiency component, ΞAE

0 . In the low-capital-share economy, an increase
in τ starting from τ = 0 increases consumption at all dates but the last date. One could
say that this is an economy which overaccumulates capital, in the sense that discouraging
investment increases aggregate consumption at (almost) all times. The opposite occurs in a
high-capital-share economy. One could say that this is an economy underaccumulates capital,
in the sense that discouraging investment reduces aggregate consumption at almost all times.
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In both cases, increasing τ reduces capital overall accumulation, which reduces aggregate
consumption at the terminal date T , in which the available capital stock is consumed.

Broader Takeaway. What is therefore the broader takeaway from this application?
The prior literature (Diamond, 1965; Abel et al., 1989) has focused on characterizing the
conditions under which Pareto improvements are possible. These are rare and rely on an
infinite time horizon. The economy we characterize here is Pareto efficient, since a capital tax
always makes the individual born in the last period strictly worse off. And yet, there may be
Kaldor-Hicks efficiency gains from reducing the aggregate capital stock in low-capital share
economies. Our results illustrate once again Proposition 2, but in a production economy
— showing how it is possible to find efficiency gains at a Pareto efficient allocation of a
demographically disconnected.

6 Application 3: Markets vs. Demographics

This application analyzes the welfare impact of transfers between middle-aged and old
individuals in the simplest OLG economy in which individuals use financial markets to
smooth consumption: the three-date-life version of Samuelson (1958)’s endowment economy.
This application allows us to illustrate the intertemporal-sharing decomposition introduced
in Proposition 3, distinguishing between the intertemporal-sharing efficiency gains that arise
due to the fact that markets are incomplete and the fact that individuals are demographically
different.

6.1 Environment

We consider a single-good deterministic endowment economy with t ∈ {0, . . . , T} dates,
where T < ∞. A single representative individual is born at each date and typically lives for
three dates, so there are three individuals alive at any date — one “young”, one “middle-
aged”, and one “old”. Since individuals are associated with a date of birth, we use t as
superscript to index individuals {−2, . . . , T}.

Preferences and Endowments. The lifetime utility of an individual born at date
t ∈ {0, . . . , T − 2} is

V t = u
(
ct

t

)
+ βu

(
ct

t+1

)
+ β2u

(
ct

t+2

)
, (40)
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where ct
t, ct

t+1, and ct
t+2 respectively denote individual t’s consumption at dates t, t + 1, and

t + 2. Individuals born at dates t = −1 and t = T − 1 are alive for two dates. Their lifetime
utility is given by

V −1 = βu
(
c−1

0

)
+ β2u

(
c−1

1

)
and V T −1 = u

(
cT −1

T −1

)
+ βu

(
cT −1

T

)
. (41)

Individuals born at dates t = −2 and t = T are alive for only one date. Their lifetime utility
is given by

V −2 = β2u
(
c−2

0

)
and V T = u

(
cT

T

)
. (42)

Individuals have endowments of the consumption good, denoted
{
et

t, et
t+1, et

t+2

}
for individ-

uals t ∈ {0, . . . , T − 2},
{
e−1

0 , e−1
1

}
and

{
eT −1

T −1, eT −1
T

}
for individuals t ∈ {−1, T − 1}, as well

as e−2
0 and eT

T for individuals t ∈ {−2, T}.

Competitive Equilibrium. Individuals t ∈ {0, . . . , T − 2} face the sequence of budget
constraints

ct
t = et

t + bt
t, ct

t+1 + (1 + rt+1) bt
t = bt

t+1 + et
t+1, and ct

t+2 + (1 + rt+2) bt
t+1 = et

t+2, (43)

where bt
t and bt

t+1 denote individual t’s borrowing at dates t and t+1 respectively, and 1+rt+1

denotes the interest rate between dates t and t + 1. Analogous budget constraints hold for
individuals that live for only one or two dates.

We assume that individuals face a borrowing constraint at all dates of the form

bi
t ≤ b. (44)

The resource constraint for the consumption good at date t is given by

ct−2
t + ct−1

t + ct
t = et−2

t + et−1
t + et

t, (45)

while market clearing in the borrowing market at date t requires that

bt−1
t + bt

t = 0. (46)

Definition. (Competitive Equilibrium) Given endowments, a competitive equilibrium com-
prises consumption allocations and interest rates such that i) individuals maximize lifetime
utility (40) – (42) subject to (43) and (44), and ii) markets clear, that is, (45) and (46) hold
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Figure 9: Normalized Individual Weights (Application 3)
Note. This figure shows the normalized individual weights as a function of the date of birth for the
undiscounted and discounted utilitarian planners when θ = 0.

at each date.

Shares and Middle-Aged-to-Old Transfer. It is useful to formulate the model in
terms of consumption and endowment shares. First, we define aggregate consumption and
aggregate endowment at date t as ct = ct−2

t + ct−1
t + ct

t and et = et−2
t + et−1

t + et
t, respectively.

Hence, individual t’s, t−1’s, and t−2’s shares of date t aggregate consumption are χt
t,c = ctt

ct
,

χt−1
t,c = ct−1

t

ct
, and χt−2

t,c = ct−2
t

ct
and of aggregate endowment χt

t,e = ett
et

, χt−1
t,e = et−1

t

et
, and

χt−2
t,e = et−2

t

et
. Both consumption and endowment shares add up to 1 by construction. We

assume no growth of the aggregate endowment.
We formulate a middle-aged-to-old (MTO) transfer as a smooth perturbation of

endowment shares at all dates. Formally, we parametrize the model by initial endowment
shares given by χ̄t

t,e, χ̄t−1
t,e , and χ̄t−2

t,e and then consider a policy — indexed by a perturbation
parameter θ ≥ 0 — that transfers endowments from middle-aged to old individuals at each
date according to

(Middle-Aged-to-Old Transfer) χt−1
t,e = χ̄t−1

t,e − θ and χt−2
t,e = χ̄t−2

t,e + θ, (47)

In our calibration, the endowment share of the middle-aged is larger than the young and
old, featuring χ̄t−1

t,e > χ̄t
t,e = χ̄t−2

t,e .
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(b) Positive transfer (θ = 0.125)

Figure 10: Normalized Dynamic Weights (Application 3)
Note. This figure illustrates the normalized dynamic weights before the young-to-old transfer is
implemented (left panel, θ = 0, so χtt,c = 0.25, χt−1

t,c = 0.5, and χt−1
t,c = 0.25), and once the

welfare-maximizing transfer for the undiscounted utilitarian planner is implemented (right panel,
θ = 0.125, so χtt,c = 0.25, χt−1

t,c = 0.375, and χt−1
t,c = 0.375).

Calibration. Individual preferences are u (c) = log (c). We interpret a date in the model
as 15 years, so β = (0.98)20 = 0.67. We normalize the aggregate endowment to et = 1
at all times and calibrate individuals’ endowments consistently with the life-cycle profile of
earnings, setting the initial endowment shares of the young, middle-aged, and old respectively
to

χ̄t
t,e = 0.25, χ̄t−1

t,e = 0.5, and χ̄t−2
t,e = 0.25.

To more clearly illustrate our results, we set b̄ = 0, but similar results obtain as long as the
borrowing constraint binds. We assume that individuals i = −2 and −1 have no savings at
date 0. For ease of visualization, we assume that T = 10, so the economy runs for 200 years.

6.2 Normalized Welfare Weights

Welfare Assessments. We study welfare assessments for utilitarian planners, for whom
the welfare assessment of a perturbation dθ is given by

dW

dθ
=

T∑
t=−2

αt dV t (θ)
dθ

, (48)
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Figure 11: Normalized Individual Welfare Gains (Application 3)

Note. This figure shows the normalized individual welfare gains, given by dV i|λ

dθ . The left panel focuses on
the first three individuals alive for three consecutive periods — that is, individuals born at dates 0, 1 and
2. The right panel shows the normalized individual welfare gains at the steady-state.

where αt denotes the Pareto weight associated with the individual born at date t. Once
again, we focus on undiscounted and discounted utilitarian planners and we use aggregate
perpetual consumption as the lifetime welfare numeraire, so the counterpart of equation (28)
is now

λt = u′
(
ct

t

)
ct + βu′

(
ct

t+1

)
ct+1 + β2u′

(
ct

t+2

)
ct+2,

with equivalent expressions for shorter-lived individuals. Since aggregate consumption is
constant over time, this is equivalent to using unit perpetual consumption as lifetime welfare
numeraire.

Normalized Individual Weights. Normalized individual weights capture the value
assigned by a planner to the lifetime welfare gains of different individuals in units of the
lifetime welfare numeraire. They are defined as in equation (29).

As in Application 1, normalized individual weights are shaped by perpetual marginal
utility differences, individual lifespans, and generational discounting. Longer-lived individu-
als in general have higher individual weights. The initial old and middle-aged have a higher
individual weight than the final middle-aged and young because of our calibration and the
definition of individuals utilities in (41) and (42) discounts the flow utilities of the latter.
The discounted utilitarian planner assign lower normalized individual weights to individuals
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Figure 12: Multiplicative Decomposition of Normalized Dynamic Weights (Application 3)
Note. This figure illustrates the multiplicative decomposition of the normalized dynamic weights, as
defined in equation (18).

born later in time purely because she directly discounts the utility of individuals born in
the future. This planner has clear pecking order that favors the date 0 young. Individual
weights barely change with θ.

Normalized Dynamic Weights. The normalized dynamic weights define marginal rates
of substitution for each individual between date-t and perpetual aggregate consumption, and
capture whose consumption the planner values more at each date. They are defined as in
(9), and we provide explicit expressions in the Appendix.

Figure 10 shows the normalized dynamic weights (vertical axis) of the individuals alive
at a given date t (horizontal axis). In general, shorter-lived individuals — old and middle-
aged born at date 0 and middle-aged and old at date T — have larger dynamic weights. At
dates in which all individuals have identical lifespans, in the absence of the transfer young
individuals have higher dynamic weights than old, because of discounting. Middle-aged in
turn have the lowest dynamic weights because they have the highest consumption.

As the transfer is implemented, the consumption of middle-aged and old is equalized,
making the dynamic weight of the middle-aged higher than the old due to discounting.
Therefore, while a marginal middle-aged-to-old transfer initially generates intertemporal-
sharing efficiency gains, at θ = 0.125 this transfer generates efficiency losses, consistent with
Figure 13.

42



Multiplicative Decomposition of Normalized Dynamic Weights. Figure 12 illus-
trates the multiplicative decomposition of the normalized dynamic weights, introduced in
(18). This figure shows that the normalized pairwise-market-dynamic weight is higher at
θ = 0 for old individuals relative to middle-aged at any given date, with the exception of
initial and final dates. Note that middle-aged and old individuals overlap when the former
are young and middle-aged and the latter are middle-aged and old, so the value of consump-
tion at a date relative to the value when they overlap is mostly driven by their consumption
at that date. Since old individuals consume less than middle-aged, they a have a relatively
higher valuation for consumption, justifying why their market component is higher.

This figure also shows why — again with the exception of initial and final dates —
the normalized pairwise-demographic-dynamic weight is higher at θ = 0 for middle-aged
individuals. The demographic component captures the relative valuation for an individual
to a unit of aggregate consumption over the overlapping period between middle-aged and
old, and permanent consumption. In this case, because of discounting, a unit of aggregate
consumption when young and middle-aged is more valuable than when middle-and and old,
justifying why the demographic component is higher.

As θ grows, old individuals consume more and the the marginal value of consumption
decreases, explaining why the differences between these weights narrow. These patterns
explain the intertemporal-sharing decomposition in Figure 13.

6.3 Policy Experiment: Middle-Aged-to-Old Transfer

Individual Welfare Gains. Figure 11 shows normalized welfare gains of the MTO
transfer for each individual. Similar to Application 1, the initial old (individual t = −2)
always gains from the perturbation, whereas the final middle-aged (individual t = T − 1)
always loses, with the final young remaining indifferent. All other individuals initially benefit
from the MTO transfer since their consumption becomes smoother. Figure 11 also shows
that the MTO transfer is not a Pareto improvement since the final middle-aged are worse
off.

Welfare and Intertemporal-Sharing Decompositions. The left panel of Figure
13 plots the efficiency/redistribution decomposition defined in (10) for an undiscounted
utilitarian planner. Similar to Application 1, since this is an endowment economy, in which
aggregate consumption remains fixed, ΞE = ΞIS, so all efficiency gains due to a MTO transfer
are due to intertemporal-sharing. In contrast to Application 1, in which intertemporal-
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Figure 13: Welfare Decomposition (Application 3)
Note. The left panel of this figure illustrates the efficiency/redistribution decomposition, defined in
equation (10) for an undiscounted utilitarian planner (ᾱ = β). Because this is an endowment economy,
efficiency is exclusively due to intertemporal-sharing, so ΞE = ΞIS . The right panel of this figure illustrates
intertemporal-sharing (ΞIS) and its components (intertemporal-market-sharing, ΞIMS , and
intertemporal-demographic-sharing, ΞIDS), as defined in Proposition 3.

sharing gains were purely demographic in nature, both the market and demographic
components of the intertemporal-sharing decomposition introduced in Proposition 3 are non-
zero in this application.

The right panel of Figure 13 plots the intertemporal-sharing decomposition introduced
in Proposition 3. As explained above, the market-dynamic weight is higher for old than for
middle-aged individuals, explaining the positive sign of ΞIMS, and why it decreases with θ.
The demographic-dynamic weight is instead relatively higher for middle-aged, justifying the
negative-sign of ΞIDS. As the transfer increases, the ΞIMS becomes smaller and eventually
turns negative. Since the demographic-dynamic weight are not that sensitive to the value of
the transfer, ΞIDS continuous to be negative. This application provides an illustration of a
scenario in which the demographic structure reduces the gains from implementing a policy
that seeks to “complete markets”.

7 Conclusion

This paper studies welfare assessments in economies with rich demographics, providing a
systematic way to evaluate the efficiency and redistribution implications of policies. Three
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main results are worth highlighting. First, we introduce the concept of demographically
disconnected economies, where no single date exists when all individuals are alive at the
same time. In such economies, we show that interpersonal welfare comparisons can only
be made in terms of perpetual consumption. Second, we show that there exist feasible
perturbations of Pareto efficient allocations in demographically disconnected economies that
generate positive Kaldor-Hicks efficiency gains. This is a phenomenon that cannot occur
in conventional infinitely-lived agent economies. Third, we introduce a decomposition of
intertemporal-sharing welfare gains into market and demographic components, providing
insights into how financial frictions and demographic heterogeneity separately drive efficiency
gains.

We use our framework to revisit three foundational OLG models in economics, yielding
novel insights into the desirability of intergenerational transfers and the implications
of capital taxation. We hope that our results spur the study of policies addressing
intergenerational challenges such as social security, public debt, and climate change.
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Online Appendix

A Proofs and Derivations: Section 3

Proof of Proposition 1. (Unique Class of Lifetime Welfare Numeraires)

Proof. The proof is constructive. Consumption at a given date or a bundle of consumption
across different dates are valid lifetime welfare numeraires only when all individuals in the
economy have a positive value for each of them. In demographically disconnected economies,
consumption at a particular date cannot be a valid lifetime welfare numeraire, since there is
always at least one individual who is not alive at that date. In principle, if I < T , one could
choose a numeraire based on consumption over a subset of dates in which all individuals are
at least alive for one period. For instance, with three individuals and four dates, if i = 1
is alive at {0, 1}, i = 2 is alive {1, 2}, and i = 3 is alive at {2, 3}, numeraires based on
bundles of consumption at {0, 1, 2}, {1, 2, 3}, and {0, 1, 2, 3} (perpetual consumption) are
valid lifetime welfare numeraires. As I increases while the economy remain disconnected
(in this example, say that i = 4 is alive only at t = 0 or t = 4), only numeraires based on
perpetual consumption remain valid lifetime welfare numeraires.

Proof of Lemma 1. (Normalized Welfare Gains and Normalized Weights)

Proof. We can express an (unnormalized) welfare assessment dW
dθ

as

dW

dθ
=

∑
i

∂W
∂V i

dV i

dθ
=

∑
i

∂W
∂V i

λi
dV i

dθ

λi
,

where our choice of lifetime welfare numeraire is such that λi = ∑
t (βi)t ∂uit

∂cit
ct. Hence, the

normalized welfare assessment takes the form

dW λ

dθ
=

dW
dθ

1
I

∑
i

∂W
∂V iλi

=
∑

i

ωi
dV i

dθ

λi
, where ωi =

∂W
∂V iλ

i

1
I

∑
i

∂W
∂V iλi

.

We can then express individual i’s normalized lifetime welfare gains as

dV i|λ

dθ
=

dV i

dθ

λi
=

∑
t

(βi)t ∂uit
∂cit

ct∑
t (βi)t ∂uit

∂cit
ct

1
ct

dci
t

dθ
=

∑
t

ωi
t

dV
i|λ

t

dθ
,
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where

ωi
t =

(βi)t ∂uit
∂cit

ct∑
t (βi)t ∂uit

∂cit
ct

and dV
i|λ

t

dθ
= 1

ct

dci
t

dθ
.

Proof of Lemma 2. (Efficiency/Redistribution Decomposition)

Proof. For any two random variables xi and yi, it follows that ∑
i xiyi = 1

I

∑
i xi

∑
i yi +

CovΣ
i [xi, yi], where CovΣ

i [xi, yi] = I · Covi [xi, yi]. Equation (10) follows from

dW λ

dθ
=

∑
i

ωi dV i|λ

dθ
=

∑
i

dV i|λ

dθ︸ ︷︷ ︸
ΞE

+CovΣ
i

[
ωi,

dV i|λ

dθ

]
︸ ︷︷ ︸

ΞRD

,

where we use the fact that 1
I

∑
i ωi = 1. This is the unique decomposition of the weighted

sum ∑
i ωi dV i|λ

dθ
into an unweighted sum and its complement.

Proof of Proposition 1. (Feasible Perturbations from Pareto Efficient Allocations
with Kaldor-Hicks Efficiency Gains)

Proof. The proof is constructive. Part a) is proven in the text. Part b) pertains
demographically connected economies. In these economies, if the lifetime welfare is based
on consumption at dates in which all individuals are concurrently alive, then ∑

t∈T ωi
t = 1,

where T is the set of dates in which all individuals are concurrently alive. In this case,
ωi = ∑

t∈T ηt, which implies that ωi
t is equalized across all individuals whenever they are

alive. If instead the lifetime welfare is based on consumption at dates in which not all
individuals are concurrently alive, the same proof as in the demographically disconnected
economies applies.

Proof of Lemma 3. (Aggregate Efficiency/Intertemporal-Sharing Decomposi-
tion)

Proof. It follows that

ΞE =
∑

i

∑
t

ωi
t

dV
i|λ

t

dθ
=

∑
t

∑
i|ωit>0

ωi
t

dV
i|λ

t

dθ
=

∑
t

ωt

∑
i|ωit>0

dV
i|λ

t

dθ︸ ︷︷ ︸
ΞAE

+
∑

t

CovΣ
i|ωit>0

ωi
t,

dV
i|λ

t

dθ


︸ ︷︷ ︸

ΞIS

,
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where ωt = 1
It

∑
i ωi

t with It = ∑
i I {i | ωi

t > 0}, and where CovΣ
i|ωit>0 [·, ·] = I · CovΣ

i|ωit>0 [·, ·].

Proof of Proposition 4. (Intertemporal-Sharing Decomposition: Intertemporal-
Market-Sharing vs. Intertemporal-Demographic-Sharing

Proof. It follows that

ΞIS =
∑

t

CovΣ
i|ωit>0

ωi
t,

dV
i|λ

t

dθ

 =
∑

t

1
It

∑
(i,j)∈At

CovΣ
(i,j)∈At

ω
(i,j)
t ,

dV
(i,j)|λ

t

dθ

 .

Using the fact that ω
i,(i,j)
t = ω

i,(i,j)|m
t ωi,(i,j)|d, we can apply the result in Bohrnstedt and

Goldberger (1969) to write ΞIS as

ΞIS =
∑

t

1
It

∑
(i,j)∈At

CovΣ
(i,j)∈At

ω
(i,j)|m
t ,

dV
(i,j)|λ

t

dθ

 +
∑

t

1
It

∑
(i,j)∈At

CovΣ
(i,j)∈At

ω(i,j)|d,
dV

(i,j)|λ
t

dθ


+

∑
t

1
It

∑
(i,j)∈At

CoskΣ
(i,j)∈At

ω
(i,j)|m
t , ω(i,j)|d,

dV
(i,j)|λ

t

dθ

 ,

where, given three random variables X, Y , and Z, the coskewness operator is defined
as CoskΣ

i [X, Y, Z] = Ei [(X − Ei[X]) (Y − Ei[Y ]) (Z − Ei[Z])] and CoskΣ
i [·, ·, ·] = I ·

Coski [·, ·, ·]. In this case, since all coskewness are computed pairwise (with two elements),
they must be zero, which yields equation (19) in the text.

B Redistribution

The redistribution component captures the equity concerns embedded in a particular Social
Welfare Function. ΞRD is positive when the individuals relatively favored in a perturbation
are those relatively preferred by the planner, i.e., have higher normalized individual weights
ωi. At times, it is convenient to distinguish whether redistribution gains take place i) within
individuals from the same generation or ii) across individuals from different generations.
To this end, we show how further decompose the redistribution component into intra-
generational redistribution and inter-generational redistribution.

Proposition 5. (Redistribution Decomposition) The redistribution component, ΞRD, can be
decomposed into i) intra-generational redistribution and inter-generational redistribution, as
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follows:

ΞRD =
∑

t

|Gt| · Covi∈Gt

ωi,
dV i|λ

dθ


︸ ︷︷ ︸

ΞRD−intra (Intra-Generational)

+ I · CovG

[
Ei∈Gt

[
ωi

]
,Ei∈Gt

dV i|λ

dθ


︸ ︷︷ ︸

ΞRD−inter (Inter-Generational)

, (49)

where Gt is the set of individuals born at date t (generation-t) and G0 is the set of individual
alive at date 0. CovG[·, ·] denotes a covariance across generations that weights each generation
by the probability |Gt|

I
of a given individual coming from a particular generation t. Finally,

the cross-sectional conditional expectation is given by Ei∈Gt [Xi] = 1
|Gt|

∑
i∈Gt Xi.

This decomposition illustrates that welfare gains from redistribution have two sources:
a weighted sum of within generations redistribution; and a covariance between the per-
generation average normalized individual weight, and the per-generation average normalized
lifetime welfare gains. This last term, ΞRD−inter, is positive when the generations relatively
favored in a perturbation are those relatively preferred by the planner, i.e., have higher
per-generation average normalized individual weights. This decomposition of ΞRD separates
the component that is zero if the planner can costlessly transfer across individuals alive,
ΞRD−intra, an its complement, ΞRD−inter. Even if transfers are generally not possible across
generations, especially when individuals do not overlap, certain policies can still redistribute
across generations. For example, policies aimed at mitigating climate change require current
generations to make sacrifices that benefit future individuals that are yet-to-be-born. We
illustrate this trade-off and how our welfare decomposition rationalizes the implied welfare
effects in the following example.

Example 3. (Aggregate Efficiency v.s. Intergenerational Redistribution) Consider a two-
date endowment economy with two individuals (I = 2). Individual A is alive at date 0, with
preferences V A = u

(
cA

0

)
; and individual B is alive at date 1, with preferences V B = u

(
cB

1

)
.

We study a perturbation that reallocates consumption across periods as follows:

cA
0 = 1 − θ and cB

1 = 1
2 + φ · θ; θ ∈ (0, 1) , φ ∈ (0, ∞) .

We interpret the negative consequences of climate change as follows. In the absence of policy
intervention (θ = 0), the current generation, individual A, consumes more than the unborn
generation, individual B. Individual A can make an effort, indexed by θ, that reduces their
consumption levels and allows the future generation to consume more. This effort represents
a costly climate change mitigation policy. Lastly, φ summarizes the effectiveness of the
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policy.

The efficiency gains, whose unique source is aggregate efficiency, are determined by the
effectiveness parameter φ, and given by

ΞAE = φ − 1,


ΞAE ≥ 0, if φ ∈ [1, ∞)

ΞAE < 0, if φ ∈ (0, 1) .

Only when φ > 1 does the perturbation result in an increase in the total aggregate
consumption across periods, which is interpreted as an aggregate efficiency gain. The other
source of welfare gains is intergenerational redistribution. For instance, if φ < 1, the planner
may still consider the transfer worthwhile, especially if she places a high enough weight
on the unborn, even though this transfer reduces efficiency. To highlight the importance
of individual weights, consider the case with a constant social generational discount factor
where αA = 1 and αB = ᾱ ∈ (0, 1], set φ = 1, and use u(c) = log(c). Then,

ΞRD = ΞRD−inter > 0 if


θ ∈

(
0, 1

4

)
, if ᾱ = 1

θ ∈
(
0, ᾱ−0.5

ᾱ+1

)
, if ᾱ < 1.

In this special case, the only justification for implementing the policy is a redistribution
motive. As the social generational discount rate rises — meaning the planner’s discounting
applied to unborn generations is smaller — the desirable level of effort to mitigate climate
change also increases. In the extreme case where the planner attaches a very low social
generational discount factor (ᾱ ≤ 1

2), mitigation of climate change is not desirable at all.
Instead, the planner would prefer to redistribute away from unborn individuals by increasing
the consumption of those currently alive, at the expense of future generations.

C Extensions

C.1 Stochastic Environment

Demographic and non-demographic uncertainty can be introduced using history-notation, as
in Stokey, Lucas and Prescott (1989) or in Chapter 8 of Ljungqvist and Sargent (2018). In
this case, let’s consider an economy populated by a countable, indexed by i ∈ I = {1, . . . , I},
where 1 ≤ I ≤ ∞. At each date t ∈ {0, . . . , T}, where 0 ≤ T ≤ ∞, there is a realization of a
stochastic event st ∈ S. We denote the history of events up to date t by st = (s0, s1, . . . , st),
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and the probability of observing a particular sequence of events st by πt (st). The initial value
of s0 is predetermined, so π0 (s0) = 1. At all dates and histories, individuals (potentially)
consume a single good.

Births and deaths are now simply stochastic events captured by the realization of st.
Formally, individual i dies at history st if ui

t (·) = 0 for all future histories. If births are
random, individual i is potentially born at a date denoted τ i

b ∈ {−∞, . . . , T}, where this is
the first date with is a history in which ui

t (·) > 0. This notion allows us to index individuals
by the first time in which they are potentially born. In general, there are different reasonable
stances one can take on how to formalize births and deaths, and this is sufficiently interesting
to spur future work.

Formally, preferences in this case can be written as

V i =
T∑

t=τ i
b

(
βi

)t ∑
st

πt

(
st

)
ui

t

(
ci

t

(
st

)
; st

)
,

where βi ∈ [0, 1) denotes individual i’s discount factor, and ui
t (·; st) and ci

t (st) respectively
correspond to individual i’s instantaneous utility and consumption at history st at date t.
Whenever individual i is not alive, ui

t (·; st) = 0. Whenever individual i is alive, ui
t (·; st) is

well behaved, so that ∂uit(·)
∂cit

> 0 and an Inada condition applies.
Lemma 1 applies unchanged in this case, after a few redefinitions. Normalized date

welfare gains are now
dV

i|λ
t

dθ
=

∑
st

ωi
t

(
st

) dV
i|λ

t (st)
dθ

,

where the normalized stochastic weight ωi
t (st) is given by

ωi
t

(
st

)
=

(βi)t
πt (st) ∂uit(st)

∂cit
ct (st)∑

st (βi)t πt (st) ∂uit(st)
∂cit

ct (st)
.

Normalized history welfare gains are defined as

dV
i|λ

t (st)
dθ

= 1
ct (st)

dci
t (st)
dθ

.

In this economy, efficiency can be decomposed into aggregate efficiency, risk-sharing, and
intertemporal-sharing, as shown in Dávila and Schaab (2024).
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C.2 Multiple Goods and Factors

It is straightforward to augment individual preferences to account for more goods and/or
factors. Formally, we can consider preferences of the form

V i =
T∑

t=τ i
b

(
βi

)t
ui

t

(
cij

t , nif
t

)
,

where individual i now has preferences over J consumption, indexed by j ∈ {1, . . . , J}, and
F factors, goods and f ∈ {1, . . . , F} factors. In this case, a version of Proposition 1 still
applies where the lifetime welfare numeraire needs to be defined over perpetual bundles of
particular goods or factors.

C.3 Preference Disconnect

As explained in Remark 1, an analogous notion to demographic disconnect can be defined
in static multi-good economies. Formally, consider a static economy populated by a finite
number of individuals, indexed by i ∈ I = {1, . . . , I} with preferences over J consumption
goods, indexed by j ∈ {1, . . . , J}. In this case, individual i preferences are given by

V i = ui
({

cij
}

j

)
.

In this case, an economy is preference disconnected if there is no good j such that ∂ui

∂cij
> 0

for all individuals. A version of Proposition 1 also applies to these economies: only
welfare numeraires based on consumption of all goods are always valid in demographically
disconnected economies. A version of Proposition 2 also applies in this case.

C.4 Unit Perpetual Consumption as Lifetime Welfare Numeraire

As discussed in Section 3, the two natural choices for lifetime welfare numeraire among those
based on perpetual consumption are i) unit perpetual consumption, the bundle that pays
one unit of the consumption good at each date, and ii) aggregate perpetual consumption, the
bundle that pays aggregate consumption at each date. In the body of the text, we adopted
aggregate perpetual consumption as lifetime welfare numeraire, but here we derive Lemma
1 for the unit perpetual consumption welfare numeraire.
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In this case, we can express an (unnormalized) welfare assessment dW
dθ

as

dW

dθ
=

∑
i

∂W
∂V i

dV i

dθ
=

∑
i

∂W
∂V i

λi
dV i

dθ

λi
,

where our choice of lifetime welfare numeraire is such that λi = ∑
t (βi)t ∂uit

∂cit
. Hence, the

normalized welfare assessment takes the form

dW λ

dθ
=

dW
dθ

1
I

∑
i

∂W
∂V iλi

=
∑

i

ωi
dV i

dθ

λi
, where ωi =

∂W
∂V iλ

i

1
I

∑
i

∂W
∂V iλi

.

We can then express individual i’s normalized lifetime welfare gains as

dV i|λ

dθ
=

dV i

dθ

λi
=

∑
t

(βi)t ∂uit
∂cit∑

t (βi)t ∂uit
∂cit

dci
t

dθ
=

∑
t

ωi
t

dV
i|λ

t

dθ
,

where

ωi
t =

(βi)t ∂uit
∂cit∑

t (βi)t ∂uit
∂cit

and dV
i|λ

t

dθ
= dci

t

dθ
.

As explained in the text, in economies without aggregate consumption growth both
numeraires yield identical results.
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