Discussion Stablecoin Runs and the Centralization of Arbitrage

by Yiming Ma, Yao Zeng, and Anthony Lee Zhang

Eduardo Dávila

Yale and NBER

OFR Rising Scholars Conference May 5, 2023

This Paper

Studies fiat-backed stablecoins

- Special type of "deposit" that pays no interest
- Pegged 1-for-1 to the dollar

This Paper

Studies fiat-backed stablecoins

- Special type of "deposit" that pays no interest
- Pegged 1-for-1 to the dollar
- ► Stablecoin = ETF + MMF
 - ETF: stablecoins trade in secondary market
 - MMF: stablecoins can be redeemed at par only by arbitrageurs

This Paper

Studies fiat-backed stablecoins

- Special type of "deposit" that pays no interest
- Pegged 1-for-1 to the dollar
- ► Stablecoin = ETF + MMF
 - ETF: stablecoins trade in secondary market
 - MMF: stablecoins can be redeemed at par only by arbitrageurs
- Main results:
 - Facts about stablecoins
 - Theoretical model
- Nice mix of facts and theory!

Outline of Discussion

Summarize paper

Facts

Model

Comments/Remarks/Questions

Many open questions!

Data: 6 largest fiat-backed stablecoins (circa 2021)

- Primary market: creation and redemption
- Secondary market: hourly prices
- Reserves: snapshots for USDT (tether) and USDC (circle)

Data: 6 largest fiat-backed stablecoins (circa 2021)

- Primary market: creation and redemption
- Secondary market: hourly prices
- Reserves: snapshots for USDT (tether) and USDC (circle)
- Facts

#1 Prices deviate from \$1 (between \$0.96 and \$1.04)

- Data: 6 largest fiat-backed stablecoins (circa 2021)
 - Primary market: creation and redemption
 - Secondary market: hourly prices
 - Reserves: snapshots for USDT (tether) and USDC (circle)
- Facts
 - #1 Prices deviate from \$1 (between \$0.96 and \$1.04)
 - #2 Concentration of arbitrageurs (redeemers/issuers) varies by stablecoin

(USDT more concentrated than USDC)

- Data: 6 largest fiat-backed stablecoins (circa 2021)
 - Primary market: creation and redemption
 - Secondary market: hourly prices
 - Reserves: snapshots for USDT (tether) and USDC (circle)
- Facts
 - #1 Prices deviate from \$1 (between \$0.96 and \$1.04)
 - #2 Concentration of arbitrageurs (redeemers/issuers) varies by stablecoin

(USDT more concentrated than USDC)

#3 Stablecoins with concentrated arbitrageurs deviate more from \$1

(USDT deviates more than USDC)

- Data: 6 largest fiat-backed stablecoins (circa 2021)
 - Primary market: creation and redemption
 - Secondary market: hourly prices
 - Reserves: snapshots for USDT (tether) and USDC (circle)
- Facts
 - #1 Prices deviate from \$1 (between \$0.96 and \$1.04)
 - #2 Concentration of arbitrageurs (redeemers/issuers) varies by stablecoin

(USDT more concentrated than USDC)

#3 Stablecoins with concentrated arbitrageurs deviate more from \$1

(USDT deviates more than USDC)

#4 Stablecoins hold different portfolios (USDT holds less liquid assets than USDC)

Double Bank Run?

By CNN Newsource FOLLOW Published March 11, 2023 8:11 AM

Stablecoin USDC breaks dollar peg after revealing \$3.3 billion Silicon Valley Bank exposure

Circle has \$3.3 billion of its \$40 billion of USDC reserves at collapsed lender Silicon Valley Bank, the company said in a tweet Friday.

The coin broke its 1:1 dollar peg and fell as low as \$0.88 early Saturday, according to market tracker CoinGecko. It recovered slightly to trade around \$0.90.

Double Bank Run?

By CNN Newsource FOLLOW Published March 11, 2023 8:11 AM

Stablecoin USDC breaks dollar peg after revealing \$3.3 billion Silicon Valley Bank exposure

Circle has \$3.3 billion of its \$40 billion of USDC reserves at collapsed lender Silicon Valley Bank, the company said in a tweet Friday.

The coin broke its 1:1 dollar peg and fell as low as \$0.88 early Saturday, according to market tracker CoinGecko. It recovered slightly to trade around \$0.90.

Used in cryptocurrency trading, they have surged in value in recent years. USDC is the second-biggest stablecoin with a market cap of \$37 billion. The largest, Tether, has a market cap of \$72 billion, according to CoinGecko.

USDC's price usually holds close to \$1, making Saturday's drop unprecedented. According to CoinGecko data, its previous all-time low was around \$0.97 in 2018, though in 2022 it fell just below \$0.99 when cryptocurrency markets were roiled by the collapse of crypto hedge fund Three Arrows Capital.

- Goldstein-Pauzner style model
- Three dates

- Goldstein-Pauzner style model
- Three dates
- Investors: (continuum, ex-ante homogenous)
 - At 0: invest in coin
 - At 1: π are early, 1π are late at date; $\lambda \ge \pi$ sell to arbitrageurs
 - Equilibrium price $q(\cdot)$

- Goldstein-Pauzner style model
- Three dates
- Investors: (continuum, ex-ante homogenous)
 - At 0: invest in coin
 - At 1: π are early, 1π are late at date; $\lambda \ge \pi$ sell to arbitrageurs
 - Equilibrium price $q(\cdot)$
- Aggregate risk at 2:
 - Probability $p(\theta)$: value is $R(\phi)$
 - Probability $1 p(\theta)$: value is 0
 - Private signal over $\theta \Rightarrow$ Global game

- Goldstein-Pauzner style model
- Three dates
- Investors: (continuum, ex-ante homogenous)
 - At 0: invest in coin
 - At 1: π are early, 1π are late at date; $\lambda \ge \pi$ sell to arbitrageurs
 - Equilibrium price $q(\cdot)$
- Aggregate risk at 2:
 - Probability $p(\theta)$: value is $R(\phi)$
 - Probability $1 p(\theta)$: value is 0
 - Private signal over $\theta \Rightarrow$ Global game
- Arbitrageurs: (finite number n)
 - ► *S* purchasing capacity
 - ▶ Redeem from issuer: liquidated assets at 1 pay 1ϕ

Stablecoin issuer: receives $R(\theta) - 1$

Secondary market price is

$$q(\lambda) = \begin{cases} 1 - \frac{n-1}{n-2}\frac{\lambda}{S}, & \lambda \le 1 - \phi\\ \frac{1-\phi}{\lambda} - \frac{n-1}{n-2}\frac{\lambda}{S}, & \lambda > 1 - \phi \end{cases}$$

Decreasing in selling pressure λ and illiquidity φ
Increasing in buying capacity S and number of arbitrageurs n

Strategic Incentives

- Strategic substitutability: other investors sell ⇒ depress price ⇒ reduces incentive to sell
- ► Strategic complementarity: most investors sell ⇒ costly liquidations ⇒ increases incentive to sell

Model: Solution

▶ Global Game: late investors sell if signal $\leq \theta^*$ (threshold)

Model: Solution

- ► Global Game: late investors sell if signal $\leq \theta^*$ (threshold)
- Probability of run $p(\theta^{\star})$ increases with
 - 1. illiquidity ϕ (typically)
 - 2. number of arbitrageurs n
 - 3. purchasing capacity of arbitrageurs S

Model: Solution

- ► Global Game: late investors sell if signal $\leq \theta^*$ (threshold)
- Probability of run $p(\theta^{\star})$ increases with
 - 1. illiquidity ϕ (typically)
 - 2. number of arbitrageurs n
 - 3. purchasing capacity of arbitrageurs S
- #2 and #3 are definitely surprising
 - They rely on strategic behavior (arbitrageurs redeem more, so prices more sensitive to sales)
- **Comment**: unpack direct effect vs. strategic response
- **Comment**: robustness of the results

Concentration of Arbitrageurs + Calibration

- Proposition #4: Optimal n* decreases in illiquidity \u03c6 (if \u03c6 high enough)
 - Where n^* chosen by issuer

Concentration of Arbitrageurs + Calibration

- Proposition #4: Optimal n* decreases in illiquidity \u03c6 (if \u03c6 high enough)
 - Where n^* chosen by issuer

Comments:

- 1. Little intuition in the paper
- 2. What is the right objective for issuer?
- 3. Is it obvious that this problem has an interior solution?
- 4. ϕ and *n* should be jointly determined
- 5. Is the choice of n^* by the issuer efficient?

Concentration of Arbitrageurs + Calibration

- Proposition #4: Optimal n* decreases in illiquidity \u03c6 (if \u03c6 high enough)
 - Where n^* chosen by issuer

Comments:

- 1. Little intuition in the paper
- 2. What is the right objective for issuer?
- 3. Is it obvious that this problem has an interior solution?
- 4. ϕ and *n* should be jointly determined
- 5. Is the choice of n^* by the issuer efficient?
- Calibration exercise
 - Between 1% and 3% run probabilities (annual?)
- Comment: how seriously should we take these numbers?

1. Why would anyone invest in stablecoins?

- Dominated by fiat currency/bonds/etc.
- It has to be due to
 - Non-pecuniary benefits (liquidity, tax evasion, etc.)
 - Irrationality/sentiment (see e.g. Gorton et al 2023 on leverage and speculative demand)

1. Why would anyone invest in stablecoins?

- Dominated by fiat currency/bonds/etc.
- It has to be due to
 - Non-pecuniary benefits (liquidity, tax evasion, etc.)
 - Irrationality/sentiment (see e.g. Gorton et al 2023 on leverage and speculative demand)
- 2. Why stablecoin issuers allow for arbitrageurs at all?
 - Arbitrageurs capture seigniorage revenue
 - Issuers could keep such revenue

1. Why would anyone invest in stablecoins?

- Dominated by fiat currency/bonds/etc.
- It has to be due to
 - Non-pecuniary benefits (liquidity, tax evasion, etc.)
 - Irrationality/sentiment (see e.g. Gorton et al 2023 on leverage and speculative demand)

2. Why stablecoin issuers allow for arbitrageurs at all?

- Arbitrageurs capture seigniorage revenue
- Issuers could keep such revenue

3. Why are arbitrageurs not fully closing the arbitrage gap?

- Market power (in the model "double auction")
- Forward looking behavior (future seignorage)
 - Trading off smaller gains today for future gains
- Why would arbitrageurs let stablecoin be worth *more* than 1\$?

No liquidations involved

What if arbitrageurs decide not to participate?

4. What determines the portfolios of each stablecoin?

Are portfolio choices complements or substitutes across coins?

- 4. What determines the portfolios of each stablecoin?
 - Are portfolio choices complements or substitutes across coins?
- 5. Is there a role for regulation?
 - Definitely! Coordination failures call for regulation

- 4. What determines the portfolios of each stablecoin?
 - Are portfolio choices complements or substitutes across coins?

5. Is there a role for regulation?

- Definitely! Coordination failures call for regulation
- Subtle questions:
 - Efficient number of arbitrageurs n^{*}
 - Efficient redemption mechanisms
 - Deposit insurance? (these are deposits after all!)
 - Asset/liability side regulation

Conclusion

Important topic

- Digital assets deserve careful scrutiny
- ▶ Pegged securities are run-prone ⇒ Financial stability concerns
- This paper puts together
 - Useful facts on stablecoins
 - Model to illustrate arbitrage mechanism

Valuable contribution!

Conclusion

Important topic

- Digital assets deserve careful scrutiny
- ▶ Pegged securities are run-prone ⇒ Financial stability concerns
- This paper puts together
 - Useful facts on stablecoins
 - Model to illustrate arbitrage mechanism

Valuable contribution!

- ► Still many central questions unanswered ⇒ Scope for further research
 - Empirical
 - Theoretical \Rightarrow Regulation?