Discussion
 Valuing Financial Data
 by Maryam Farboodi, Dhruv Singal, Laura Veldkamp, and Venky Venkateswaran

Eduardo Dávila

Yale and NBER

SFS Cavalcade, Austin

May 24, 2023

This Paper

- Fundamental question:

How much is an investor willing to pay for some data?
data=information

This Paper

- Fundamental question:

How much is an investor willing to pay for some data?
data=information

- This paper:

1. Theoretical framework to answer this question Sufficient statistics

This Paper

- Fundamental question:

How much is an investor willing to pay for some data?
data=information

- This paper:

1. Theoretical framework to answer this question Sufficient statistics
2. Measurement exercises

Emphasis on role of wealth and risk aversion

- Value of median analyst forecasts
- Value of realized GDP

This Paper

- Fundamental question:

How much is an investor willing to pay for some data?
data=information

- This paper:

1. Theoretical framework to answer this question Sufficient statistics
2. Measurement exercises

Emphasis on role of wealth and risk aversion

- Value of median analyst forecasts
- Value of realized GDP
- Underexplored topic \Rightarrow Very important exercise

Outline of Discussion

1. Theoretical Framework
2. Measurement
3. Comments/Remarks/Questions

Framework

- Standard OLG-AR(1)-REE model with N assets
- Competitive and strategic

Framework

- Standard OLG-AR(1)-REE model with N assets
- Competitive and strategic
- Second-order approximation to utility (critical)

$$
\mathbb{E}\left[U\left(c_{i t+1}\right) \mid \mathcal{I}_{i t}\right]=\rho_{i} \mathbb{E}\left[c_{i t+1} \mid \mathcal{I}_{i t}\right]-\frac{\rho_{i}^{2}}{2} \mathbb{V}\left[c_{i t+1} \mid \mathcal{I}_{i t}\right]
$$

- Absolute RA: $\rho_{i}=-\frac{U^{\prime \prime}}{U^{\prime}}$, so $\rho_{i}=\frac{R R A}{w_{i t}}$

Framework

- Standard OLG-AR(1)-REE model with N assets
- Competitive and strategic
- Second-order approximation to utility (critical)

$$
\mathbb{E}\left[U\left(c_{i t+1}\right) \mid \mathcal{I}_{i t}\right]=\rho_{i} \mathbb{E}\left[c_{i t+1} \mid \mathcal{I}_{i t}\right]-\frac{\rho_{i}^{2}}{2} \mathbb{V}\left[c_{i t+1} \mid \mathcal{I}_{i t}\right]
$$

- Absolute RA: $\rho_{i}=-\frac{U^{\prime \prime}}{U^{\prime}}$, so $\rho_{i}=\frac{R R A}{w_{i t}}$
- Standard REE with information set: $\mathcal{I}_{i t}=\left\{\mathcal{I}_{t}^{-}, s_{i t}, p_{t}\right\}$

Key Result

- Lemma 1: (competitive case)

$$
\begin{aligned}
\underbrace{\mathbb{E}\left[U\left(c_{i t+1}\right) \mid \mathcal{I}_{i t}\right]}_{=\tilde{U}\left(\mathcal{I}_{i t}\right)} & =\frac{1}{2} \mathbb{E}\left[\Pi_{i t}\right]^{\prime} \mathbb{V}\left[\Pi_{i t} \mid \mathcal{I}_{i t}\right]^{-1} \mathbb{E}\left[\Pi_{i t}\right] \\
& +\frac{1}{2} \operatorname{Tr}\left[\mathbb{V}\left[\Pi_{i t}\right]^{-1} \mathbb{V}\left[\Pi_{i t} \mid \mathcal{I}_{i t}\right]^{-1}-I\right]+r \rho_{i} \bar{w}_{i t}
\end{aligned}
$$

- "Excess payoff": $\Pi_{i t}=\theta_{i}\left[p_{t+1}+d_{t+1}-r p_{t}\right]$

Key Result

- Lemma 1: (competitive case)

$$
\begin{aligned}
\underbrace{\mathbb{E}\left[U\left(c_{i t+1}\right) \mid \mathcal{I}_{i t}\right]}_{=\tilde{U}\left(\mathcal{I}_{i t}\right)} & =\frac{1}{2} \mathbb{E}\left[\Pi_{i t}\right]^{\prime} \mathbb{V}\left[\Pi_{i t} \mid \mathcal{I}_{i t}\right]^{-1} \mathbb{E}\left[\Pi_{i t}\right] \\
& +\frac{1}{2} \operatorname{Tr}\left[\mathbb{V}\left[\Pi_{i t}\right]^{-1} \mathbb{V}\left[\Pi_{i t} \mid \mathcal{I}_{i t}\right]^{-1}-I\right]+r \rho_{i} \bar{w}_{i t}
\end{aligned}
$$

- "Excess payoff": $\Pi_{i t}=\theta_{i}\left[p_{t+1}+d_{t+1}-r p_{t}\right]$

$$
\text { Value of data }=\frac{1}{\rho_{i}}\left(\tilde{U}\left(\mathcal{I}_{i t}+\text { data }\right)-\tilde{U}\left(\mathcal{I}_{i t}\right)\right)
$$

Key Result

- Lemma 1: (competitive case)

$$
\begin{aligned}
\underbrace{\mathbb{E}\left[U\left(c_{i t+1}\right) \mid \mathcal{I}_{i t}\right]}_{=\tilde{U}\left(\mathcal{I}_{i t}\right)} & =\frac{1}{2} \mathbb{E}\left[\Pi_{i t}\right]^{\prime} \mathbb{V}\left[\Pi_{i t} \mid \mathcal{I}_{i t}\right]^{-1} \mathbb{E}\left[\Pi_{i t}\right] \\
& +\frac{1}{2} \operatorname{Tr}\left[\mathbb{V}\left[\Pi_{i t}\right]^{-1} \mathbb{V}\left[\Pi_{i t} \mid \mathcal{I}_{i t}\right]^{-1}-I\right]+r \rho_{i} \bar{w}_{i t}
\end{aligned}
$$

- "Excess payoff": $\Pi_{i t}=\theta_{i}\left[p_{t+1}+d_{t+1}-r p_{t}\right]$

$$
\text { Value of data }=\frac{1}{\rho_{i}}\left(\tilde{U}\left(\mathcal{I}_{i t}+\text { data }\right)-\tilde{U}\left(\mathcal{I}_{i t}\right)\right)
$$

- Remarks

1. Sufficient statistics: $\mathbb{E}\left[\Pi_{i t}\right], \mathbb{V}\left[\Pi_{i t}\right], \mathbb{V}\left[\Pi_{i t} \mid \mathcal{I}_{i t}\right]^{-1}$ (and ρ_{i})
2. Note that ρ_{i} is key for magnitudes high wealth \Rightarrow high value; given RRA
3. Money-metric (in $\$$) \Rightarrow Linear-quadratic is quasilinear
4. Paper also allows for price impact
high price impact \Rightarrow less value of information

Measurement

- Switch to returns for measurement: $\Pi_{i t} \Rightarrow R_{t}$
- $\mathbb{E}\left[\Pi_{i t}\right]$ and $\mathbb{V}\left[\Pi_{i t}\right]$ estimated via unconditional moments
- $\mathbb{V}\left[\Pi_{i t} \mid \mathcal{I}_{i t}\right]^{-1}$ estimated via

$$
\begin{aligned}
& R_{t}=\overbrace{\beta_{1} X_{t}}^{\text {data }}+\overbrace{\beta_{2} Z_{t}}^{\text {existing info. }}+\varepsilon_{t}^{X Z} \\
& R_{t}=\underbrace{\gamma_{2} Z_{t}}_{\text {existing info. }}+\varepsilon_{t}^{Z}
\end{aligned}
$$

Measurement

- Switch to returns for measurement: $\Pi_{i t} \Rightarrow R_{t}$
- $\mathbb{E}\left[\Pi_{i t}\right]$ and $\mathbb{V}\left[\Pi_{i t}\right]$ estimated via unconditional moments
- $\mathbb{V}\left[\Pi_{i t} \mid \mathcal{I}_{i t}\right]^{-1}$ estimated via

$$
\begin{aligned}
& R_{t}=\overbrace{\beta_{1} X_{t}}^{\text {data }}+\overbrace{\beta_{2} Z_{t}}^{\text {existing info. }}+\varepsilon_{t}^{X Z} \\
& R_{t}=\underbrace{\gamma_{2} Z_{t}}_{\text {existing info. }}+\varepsilon_{t}^{Z}
\end{aligned}
$$

- Exercise \#1: X_{t} is I/B/E/S forecasts
- Variation in wealth, investment styles, existing data, etc.
- Headline willingness-to-pay:
- For \$500k investor: ~\$3,000
- For $\$ 250 \mathrm{~m}$ investor: $\sim \$ 1 \mathrm{~m}$
- Exercise \#2: realized GDP

Comments/Remarks/Questions

1. Why is information valuable?

- Can investors trade more/better?
- Is it because of preferences for early resolution of uncertainty?
Implied by linear-quadratic preferences
- Can underlying sources of value be decomposed?
- No role for production

Comments/Remarks/Questions

2. Why do we need the equilibrium structure?

- Lemma 3 in Appendix:

$$
\underbrace{\mathbb{E}\left[U\left(c_{i t+1}\right) \mid \mathcal{I}_{i t}\right]}_{=\tilde{U}\left(\mathcal{I}_{i t}\right)}=\frac{1}{2} \mathbb{E}\left[\Pi_{i t} \mid \mathcal{I}_{i t}\right]^{\prime} \mathbb{V}\left[\Pi_{i t} \mid \mathcal{I}_{i t}\right]^{-1} \mathbb{E}\left[\Pi_{i t} \mid \mathcal{I}_{i t}\right]+r \rho_{i} \bar{w}_{i t}
$$

- This expression requires fewer assumptions than Lemma 1
- Why not using $\mathbb{E}\left[\Pi_{i t} \mid \mathcal{I}_{i t}\right]^{\prime}$ and $\mathbb{V}\left[\Pi_{i t} \mid \mathcal{I}_{i t}\right]$ as sufficient statistics?
- Small aside: finance/asset pricing "invented" sufficient statistics!
- CAPM, SDF, etc.
- Makes sense to use this approach!

Comments/Remarks/Questions

3. How does the "big K, little k " issue with information manifests here?

- The value of data for one investor depends on the information of others and how they respond:

$$
V_{i}\left(\mathcal{I}_{i} ;\left\{\mathcal{I}_{j}\right\}_{j \in I}\right)
$$

- How can we see this in the measurement?
- Can we decompose the value holding fixed behavioral responses and then reacting?
- Can we compute the willingness to pay of one investor if everyone gets the information?
- Easy to compute these counterfactuals in the model (connects to comment \#1)
- Sufficient statistics as intermediate objects for modeling

Comments/Remarks/Questions

3. How does the "big K, little k " issue with information manifests here?

- The value of data for one investor depends on the information of others and how they respond:

$$
V_{i}\left(\mathcal{I}_{i} ;\left\{\mathcal{I}_{j}\right\}_{j \in I}\right)
$$

- How can we see this in the measurement?
- Can we decompose the value holding fixed behavioral responses and then reacting?
- Can we compute the willingness to pay of one investor if everyone gets the information?
- Easy to compute these counterfactuals in the model (connects to comment \#1)
- Sufficient statistics as intermediate objects for modeling

4. Distinction between private and social value?

- Welfare question remains open

Conclusion

- Important question
- I'm very supportive of the overall approach
- Nice way to connect theory and measurement

Conclusion

- Important question
- I'm very supportive of the overall approach
- Nice way to connect theory and measurement
- There is scope to dig deeper into the sources of value...
- ... while qualifying the role of some of the assumptions
- I conjecture much work will follow

