Discussion

Falling Interest Rates and Credit Reallocation: Lessons from General Equilibrium by Vladimir Asriyan, Luc Laeven, Alberto Martin, Alejandro Van der Ghote, and Victoria Vanasco

Eduardo Dávila

Yale and NBER

Third Conference on Non-Bank Financial Sector and Financial Stability Program May 31, 2023

Fact: secular decline in interest rates

Also cyclical low interest rate periods

• Fact: secular decline in interest rates

Also cyclical low interest rate periods

• **Question**: What is the impact on output and welfare?

▶ Fact: secular decline in interest rates

Also cyclical low interest rate periods

• **Question**: What is the impact on output and welfare?

- In economies with
 - 1. heterogeneous productivity
 - 2. financial frictions
 - 3. partially elastic capital supply

▶ Fact: secular decline in interest rates

Also cyclical low interest rate periods

- **Question**: What is the impact on output and welfare?
 - In economies with
 - 1. heterogeneous productivity
 - 2. financial frictions
 - 3. partially elastic capital supply
- This paper:
 - <u>GE-induced capital reallocation</u> dampens/may overcome direct effect of interest rate changes

How?

▶ Fact: secular decline in interest rates

Also cyclical low interest rate periods

- **Question**: What is the impact on output and welfare?
 - In economies with
 - 1. heterogeneous productivity
 - 2. financial frictions
 - 3. partially elastic capital supply
- This paper:
 - <u>GE-induced capital reallocation</u> dampens/may overcome direct effect of interest rate changes

How?

► Lower interest rates ⇒ <u>All</u> entrepreneurs invest more ⇒ Capital prices go up (<u>GE</u>) ⇒ <u>More efficient</u> entrepreneurs invest less

▶ Fact: secular decline in interest rates

Also cyclical low interest rate periods

- **Question**: What is the impact on output and welfare?
 - In economies with
 - 1. heterogeneous productivity
 - 2. financial frictions
 - 3. partially elastic capital supply
- This paper:
 - <u>GE-induced capital reallocation</u> dampens/may overcome direct effect of interest rate changes

How?

- ► Lower interest rates ⇒ All entrepreneurs invest more ⇒ Capital prices go up (GE) ⇒ More efficient entrepreneurs invest less
- Elegant and carefully crafted framework
 - Theory + Dynamics/Quantification + Empirics

Outline of Discussion

- 1. Reallocation vs. Aggregate Effects (in general)
- 2. Mechanism in the paper
- 3. Comments/Remarks/Questions

Let's start with the planning problem Adding up utilities

- Let's start with the planning problem
 - Adding up utilities
 - 1. Entrepreneurs, indexed by efficiency A: distribution G(A)With curvature, so production function is $AF(k_A)$
 - 2. Capital supplier

Let's start with the planning problem

Adding up utilities

- 1. Entrepreneurs, indexed by efficiency A: distribution G(A)With curvature, so production function is $AF(k_A)$
- 2. Capital supplier
- Social welfare

$$W = \underbrace{\int AF(k_A) \, dG(A)}_{\text{Output}} - R\left(\underbrace{\chi\left(\int k_A dG(A)\right)}_{\text{Cost of Investment}} - w\right)$$

Take any perturbation (in the paper: interest rates)

$$dW = \int AF'(k_A) \, dk_A dG(A) - R\chi'(K) \int dk_A dG(A)$$

Take any perturbation

$$dW = \int \left(\underbrace{\underbrace{AF'(k_A) - R\chi'(K)}_{SNV_A}}^{\text{Mg. Benefit}} \underbrace{Rg. Cost}_{QA}\right) dk_A dG(A)$$

► *SNV*_A : Social net valuation

► Take any perturbation: $SNV_A = AF'(k_A) - R\chi'(K)$

$$dW = \int SNV_{A} dk_{A} dG(A)$$

► Take any perturbation: $SNV_A = AF'(k_A) - R\chi'(K)$

$$dW = \mathbb{E}_A \left[SNV_A dk_A \right]$$

► *SNV*_A : Social net valuation

► Take any perturbation: $SNV_A = AF'(k_A) - R\chi'(K)$

$$dW = \mathbb{E}_A\left[SNV_A dk_A\right]$$

• Define share of capital owned by a, ψ_A , as

$$\psi_A = \frac{k_A}{K}$$

► Take any perturbation: $SNV_A = AF'(k_A) - R\chi'(K)$

$$dW = \mathbb{E}_A\left[SNV_A dk_A\right]$$

• Define share of capital owned by a, ψ_A , as

$$\psi_A = \frac{k_A}{K} \Rightarrow k_A = \psi_A K$$

► Take any perturbation: $SNV_A = AF'(k_A) - R\chi'(K)$

$$dW = \mathbb{E}_A\left[SNV_A dk_A\right]$$

• Define share of capital owned by a, ψ_A , as

$$\psi_A = \frac{k_A}{K} \Rightarrow dk_A = d\psi_A K + \psi_A dK$$

• Take any perturbation: $SNV_A = AF'(k_A) - R\chi'(K)$

$$dW = \mathbb{E}_A \left[SNV_A \left(d\psi_A K + \psi_A dK \right) \right]$$

► Take any perturbation: $SNV_A = AF'(k_A) - R\chi'(K)$

 $dW = \mathbb{E}_A \left[SNV_A d\psi_A \right] K + \mathbb{E}_A \left[SNV_A \psi_A \right] dK$

• Take any perturbation: $SNV_A = AF'(k_A) - R\chi'(K)$

$$dW = \underbrace{\mathbb{C}ov_{A}\left[SNV_{A}, d\psi_{A}\right]K}_{\text{Cross-Sectional}} + \underbrace{\mathbb{E}_{A}\left[\psi_{A}SNV_{A}\right]dK}_{\text{Aggregate}}$$

Capital Efficiency

Capital Efficiency

• Take any perturbation: $SNV_A = AF'(k_A) - R\chi'(K)$

• This paper is a theory of $d\psi_A$ (and dK)

► Take any perturbation: $SNV_A = AF'(k_A) - R\chi'(K)$

- This paper is a theory of $d\psi_A$ (and dK)
- Remarks:
 - 1. First term captures reallocation: it is negative if $d\psi_A$ goes up for low NSV_A (low A) This is the key mechanism of the paper!

► Take any perturbation: $SNV_A = AF'(k_A) - R\chi'(K)$

- This paper is a theory of $d\psi_A$ (and dK)
- Remarks:
 - 1. First term captures <u>reallocation</u>: it is negative if $d\psi_A$ goes up for low NSV_A (low A) This is the key mechanism of the paper!
 - 2. $\mathbb{E}_A [\psi_A SNV_A]$ is typically positive due to <u>aggregate</u> financial frictions

• Take any perturbation: $SNV_A = AF'(k_A) - R\chi'(K)$

- This paper is a theory of $d\psi_A$ (and dK)
- Remarks:
 - 1. First term captures reallocation: it is negative if $d\psi_A$ goes up for low NSV_A (low A) This is the key mechanism of the paper!
 - 2. $\mathbb{E}_A [\psi_A SNV_A]$ is typically positive due to <u>aggregate</u> financial frictions
 - 3. This derivation only requires preferences, technologies, and resource constraints (different from paper)
 - No assumptions on market structure
 - Check "Welfare Accounting" for a general version of this decomposition

► Model

• Budget constraint:
$$qk_A = w + b_A$$

Model

• Budget constraint: $qk_A = w + b_A$

Financial constraint:
$$Rb_A = \lambda Ak_A \Rightarrow b_A = \frac{\lambda A}{R}k_A$$

Model

• Budget constraint: $qk_A = w + b_A$

Financial constraint: $Rb_A = \lambda Ak_A \Rightarrow$

$$b_A = \frac{\lambda A}{R} k_A$$

Capital demand (if constrained):

$$k_{A}\left(q,R\right) = \frac{1}{q - \frac{\lambda A}{R}}w$$

► Model

Budget constraint: $qk_A = w + b_A$ Financial constraint: $Rb_A = \lambda Ak_A \Rightarrow$

$$b_A = \frac{\lambda A}{R} k_A$$

Capital demand (if constrained):

$$k_A(q,R) = \frac{1}{q - \frac{\lambda A}{R}}w$$

• Market clearing: demand=supply $\Rightarrow q(R)$

Model

• Budget constraint: $qk_A = w + b_A$

Financial constraint: $Rb_A = \lambda Ak_A \Rightarrow$

$$b_A = \frac{\lambda A}{R} k_A$$

Capital demand (if constrained):

$$k_A\left(q,R\right) = \frac{1}{q - \frac{\lambda A}{R}}w$$

- Market clearing: demand=supply ⇒ q(R)
 Effect of changes in rates
 - Low rates \Rightarrow More borrowing capacity
 - Low rates \Rightarrow High prices

Stronger effect for for high k_A investors

$$\frac{dk_A\left(q\left(R\right),R\right)}{dR} = \underbrace{\frac{\partial k_A}{\partial q}}_{<0} \underbrace{\frac{dq}{dR}}_{<0} + \underbrace{\frac{\partial k_A}{\partial R}}_{<0} \gtrless 0$$

1. Role of net vs. gross capital purchases

• If investors start with some capital $qk_A = w + b_A + qk_A^0$

$$k_{A}\left(q,R\right)=\frac{1}{q-\frac{\lambda A}{R}}\left(w+qk_{A}^{0}\right)$$

1. Role of net vs. gross capital purchases

• If investors start with some capital $qk_A = w + b_A + qk_A^0$

$$k_{A}\left(q,R\right)=\frac{1}{q-\frac{\lambda A}{R}}\left(w+\frac{qk_{A}^{0}}{R}\right)$$

- "Endowment effect" that minimizes the GE channel
- Distributive pecuniary effects operate through <u>net trade</u> positions (Davila/Korinek 18)
- 2. What is the right frequency for the model?
 - Calibration is annual
 - Empirical analysis is high-frequency (aggregated)
 - We need
 - Persistent productivity differences
 - Persistent financial frictions
 - Not fully elastic capital supply in the long run

3. Empirical results

- "Monetary expansion is weaker in regions with a lower elasticity of real-estate supply"
- Sector-Year, Sector-Region, Region-Year FE: sources of identification?
- GDP in data vs. Output in the paper: $\frac{dW}{dR}$ vs. $\frac{dY}{dR}$

3. Empirical results

- "Monetary expansion is weaker in regions with a lower elasticity of real-estate supply"
- Sector-Year, Sector-Region, Region-Year FE: sources of identification?

• GDP in data vs. Output in the paper: $\frac{dW}{dR}$ vs. $\frac{dY}{dR}$

4. Evidence on the GE channel

- ► Key mechanism: prices of capital (real-estate) go up ⇒ productive investors no longer purchase capital
- Can we find more direct evidence?
 - Misallocation literature (dispersion on MPK)
- Could there be other sources of misallocation?
 - Asymmetric information?
 - Bubbles?

5. Constrained efficient solution

- Papers finds that marginal entrepreneur is more efficient than in CE
- Careful: less efficient entrepreneurs are worse off
- Paper looks at aggregate efficiency

Conclusion

- Nicely executed paper
- Plausible channel for why lower rates reduce output and welfare via misallocation
 - Clear mechanism
- Going forward: more measurement needed!